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Emerging contaminants such as microplastics and pharmaceuticals in freshwater
ecosystems are a growing concern, seriously affecting aquatic organisms.
Ibuprofen, a widely used anti-inflammatory drug, is commonly found in rivers,
streams, and water systems where it is discharged. As a result, organisms that
inhabit these environments, such as snails, are affected in their natural habitats.
This study examines the effects of microplastics (10 μg/L), ibuprofen (500 μg/L),
and a combination of ibuprofen (500 μg/L) andmicroplastics (10 μg/L) on growth,
movement, and reproduction in Physella acuta, a freshwater snail species. While
no significant effects were observed on movement or number of egg clusters,
there was a significant decrease in growth when snails were exposed to
microplastics or the combination of microplastics and ibuprofen (p = 0.021).
Additionally, snail egg production decreased when exposed to ibuprofen (p =
0.001) but increased when exposed to microplastics (p = 0.002). Microplastic
exposure produced more eggs than ibuprofen (p < 0.001) and ibuprofen and
microplastics combined (p < 0.001). Our results suggest that ibuprofen affects
growth and the total number of eggs, likely due to oxidative stress, neurotoxicity,
or disrupted hormonal pathways. In contrast, microplastics may have caused
digestive system blockage, thus affecting energy allocation for growth and
reproduction. Changes in snail fitness can directly and indirectly affect food
webs and nutrient cycles, highlighting the need for research on these pollutants
to understand their chronic and long-term effects on ecosystems.
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Introduction

The global human population is projected to reach 9.7 billion by 2050, significantly
increasing the demand for products and services, including medicines, food, and clothing
(Sadigov, 2022; Albahri et al., 2023). A negative consequence of this growing demand is the
rise in waste production, including pharmaceuticals and plastics, which contribute to
environmental pollution. From 1950 to 2018, plastic production exceeded 6.3 billion tons,
with 370 million tons produced in 2019 alone, representing 16% of the previous 68 years
(Alabi et al., 2019; Ritchie et al., 2023). Further, it is estimated that 23 million tons of plastic
entered aquatic ecosystems in 2016, and it is projected to reach 53 million tons by 2030
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(Borrelle et al., 2020). Improper disposal of plastic, with 21% of this
plastic being recycled or incinerated, leads to pollution in aquatic
and terrestrial ecosystems (Kumar et al., 2021; Shetty et al., 2023).
This widespread plastic pollution highlights the critical need to
study its long-term ecological impacts.

Microplastics, defined as plastic particles smaller than 5 mm, are
an emerging concern due to their potential effects on marine
organisms and human health (Prata et al., 2020). Microplastics
have multiple applications. For example, polylactic acid (PLA),
polyethylene terephthalate (PET) and polyethylene (PE) are
found in bottles, polyhydroxyalkanoates (PHA) are used in
disposable items, polycaprolactone (PCL) is common in medical
devices and food packaging, polypropylene in clothing, polystyrene
in food containers, and polyurethane is found in tires, furniture, and
insulation (Iwata, 2015; Lambert and Wagner, 2018; González-
Pleiter et al., 2019; Krueger et al., 2015; Majewsky et al., 2016;
Zhang et al., 2020; Shah et al., 2008).

These particles can persist in the environment for thousands of
years without degrading (Andrady and Koongolla, 2022).
Microplastics have been detected in aquatic and terrestrial
ecosystems, with polyethylene microplastics accounting for more
than 50% of total microplastics floating in the ocean (Issac and
Kandasubramanian, 2021), thus representing a risk for multiple
species and human health (Li et al., 2023). They have been found in
daphnia, salmon, tuna, and shellfish (Guzzetti et al., 2018; Prata
et al., 2020; Li et al., 2023) Despite their frequent detection in the
aquatic and terrestrial habitats, microplastics effects on ecosystem
health remain poorly understood, specifically when combined with
other pollutants.

The production of pharmaceuticals has also seen a sharp
increase. Similar to plastic, pharmaceuticals contribute
significantly to environmental pollution. Ibuprofen (e.g., Advil,
Motrin, Midol, Nurofen, Dalsi, etc.) is one of the most used non-
steroidal anti-inflammatory drugs (NSAIDs) globally and is
considered an essential medicine by the World Health
Organization (Miranda et al., 2021; Michalaki and Grintzalis,
2023). The global ibuprofen market is valued at USD
294.4 million in 2020 and is estimated to grow to USD
447.6 million by 2026 (Makuch et al., 2021). In the US,
ibuprofen was prescribed 21.3 million times in 2016
(Thammineni et al., 2019). Additionally, 45% of global sales of
pharmaceuticals are attributed to NSAIDs and ibuprofen being a
major contributor (Schmidt and Redshaw, 2015).

Ibuprofen is frequently detected in water systems due to its
widespread use and improper disposal (Austin et al., 2022; Petrie
and Camacho-Muñoz, 2021).

Ibuprofen mechanism of action involves the reversible
inhibition of cyclooxygenase enzymes (i.e., COX-1 and COX-2).
These enzymes are part of the synthesis of prostaglandins, which
mediate inflammation and pain (Negres, 2019). Ibuprofen inhibiting
these enzymes reduces the levels of prostaglandins and decreases
inflammation and pain perception (Negres, 2019).

In aquatic organisms, ibuprofen has been linked to oxidative
stress, cytotoxicity, genotoxicity, and neurotoxic effects, including
changes in behavior (Sibiya et al., 2023). Changes in enzyme
activity, including glutathione S-transferase (GST), catalase, lipid
peroxidation, and protein carbonyls, are biomarkers indicating
oxidative damage in multiple aquatic organisms such as

Chironomus riparius (Muñiz-González, 2021), Danio rerio
(Falfushynska et al., 2022), and Dreissena polymorpha (Gonzalez-
Rey and Bebianno, 2012). Ibuprofen’s effects on acetylcholinesterase
(AChE) activity can lead to neurotoxic effects, such as altered
behavior, growth, and reproduction. For example, ibuprofen
exposure inhibited AChE in Carassius auratus, disrupting normal
neurotransmission and causing physiological stress (Yang et al., 2019).
Similarly, when exposed to ibuprofen,Daphniamagna showed altered
spontaneousmovement, free-swimming distance, duration, and speed
under dark conditions (Michalaki and Grintzalis, 2023). In addition,
Kovacevic et al. (2016) demonstrated neurotoxic impacts inD. magna
using metabolomic analysis, revealing disruptions in physiological
functions and reductions in organismal fitness.

Both pharmaceuticals and microplastics in freshwater
environments present a significant risk to aquatic organisms and
water quality. Thus, the co-occurrence of these pollutants in aquatic
ecosystems highlights the importance of understanding their
combined effects on freshwater species.

Research has shown that microplastics affect marine organisms’
health, reproduction, and survival (Pantos, 2022), though the full
ecological consequences remain unclear (Santillo et al., 2017; Mishra
et al., 2021). For example, European Perch (Perca fluviatilis) exposed
to polystyrene microplastics displayed inhibited hatching, reduced
growth rates, altered feeding preferences, and increased predation risk
(Lönnstedt and Eklöv, 2016). In European seabass (Dicentrarchus
labrax), microplastics inhibited he activity of acetylcholinesterase
enzyme, increased lipid oxidation in the brain (Li et al., 2023).
Therefore, these studies emphasize the need to further explore the
broader ecological impacts of microplastic exposure.

Overusing pharmaceuticals like ibuprofen contributes to high
waterway concentrations, negatively impacting aquatic organisms.
Ibuprofen exposure has been linked to cytotoxic and genotoxic
effects, oxidative stress, and adverse impacts on growth,
reproduction, and behavior (Sibiya et al., 2023). Pharmaceuticals
and microplastics pose significant risks to water quality and aquatic
life due to their bioactivity and toxic metabolites (Chopra and
Kumar, 2020).

Ibuprofen is commonly detected in surfacewaters at concentrations
ranging from ng/L to μg/L. However, significantly higher
concentrations have been reported in streams influenced by effluents
from hospitals and wastewater treatment plants. Specifically, maximum
concentrations of 280 μg/L (Taiwan), 414 μg/L (Korea), and 603 μg/L
(United Kingdom) have been detected (Almeida et al., 2013; Luo et al.,
2014; Jan-Roblero and Cruz-Maya, 2023). These concentrations in
effluent-impacted streams highlight the localized contribution of
wastewater discharges to pharmaceutical contamination in streams.
Understanding the interactions between ibuprofen and microplastics
and their combined effects on freshwater ecosystems is crucial for
predicting long-term environmental consequences.

Freshwater organisms, including Physella acuta, are particularly
susceptible to pollutants. Physella acuta plays a key role in the
ecosystems as a food source for larger species and by contributing to
nutrient cycling (McClain et al., 2012; Naldi et al., 2020; Konschak
et al., 2021). Due to its rapid population growth and adaptability to
various environments, Physella acuta has become an important
model organism for studying the impact of environmental
pollution (Camargo and Alonso, 2017; Prieto-Amador et al.,
2021; Nandy et al., 2024). Assessing the effects of ibuprofen and

Frontiers in Environmental Science frontiersin.org02

Elías et al. 10.3389/fenvs.2024.1514062

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1514062


microplastics on P. acuta provides valuable information into
potential disruptions in nutrient cycling and aquatic food webs.

Our study explores the individual and combined effects of
ibuprofen and microplastic exposure on the growth, movement,
and reproduction of Physella acuta, including the number of egg
clusters and total eggs produced. Previous research has focused on
the independent effects of microplastics (e.g., Meaza et al., 2021;
Mason et al., 2022; Pantos, 2022) and ibuprofen (e.g., De Lange et al.,
2006; Muñiz-González, 2021; Jan-Roblero and Cruz-Maya, 2023) on
aquatic organisms. However, limited research has addressed their
combined effect, particularly on freshwater snails.

We hypothesize that 1) ibuprofen will decrease snail growth,
movement, and reproduction by affecting energy allocation due to
oxidative stress and neurotoxicity, 2) microplastic exposure will
impair metabolic processes (i.e., digestion through physical
blockage), reducing growth, movement, and reproduction, and 3)
combined exposure will have a greater negative effect on these
endpoints than ibuprofen or microplastics alone.

Methods

Snails (Physella acuta) were purchased from Carolina Biological
Supply. Snails were kept in a 40 L glass aquarium with aerated
synthetic spring water under a 16:8 photoperiod, room temperature
(~20°C), and fed fish flakes (Tetramin®). Physella acuta snails were
estimated to be juveniles and adults based on their shell lengths
(Núñez, 2010) ranging from 3.94 mm to 8.47 mm, with a mean of
6.68 mm (SD 1.045 mm). Three snails were placed in 200 mL glass
jars. Each treatment included five replications (n = 20 experimental
units; 60 snails). Water changes, treatment renewals, and feedings
were performed biweekly. Similar to Bartolini et al. (2017) and Rivi
et al., 2021, snails were marked using a permanent marker to
differentiate between each other. No detrimental effects were
observed as in Garlick-Ott and Wright (2022).

Clear polyethylene microspheres (density: 0.96 g/cm³, size
range: 10–90 μm) were purchased from Cospheric LLC
(United States) to study the effects of microplastic exposure.
Ibuprofen stock solutions (≥98% purity, Sigma Aldrich,
United States) were prepared, and aliquots were added to each
glass jar to achieve the target treatment concentration of 500 μg/L.

Snails were exposed for 14 days to four treatments: control,
ibuprofen (IBU, 500 μg/L), microplastics (MP, 10 μg/L), and
ibuprofen and microplastics mixture (IBU × MP, 500 μg/L and
10 μg/L). Environmentally relevant concentrations of ibuprofen
(500 μg/L) and microplastics (10 μg/L) were chosen to represent
concentrations commonly detected in contaminated aquatic
ecosystems (ibuprofen: Pharms UBA Umwelt Bundesamt, 2024;
Jan-Roblero and Cruz-Maya, 2023, and microplastics: Goldstein
et al., 2012; Oliveira et al., 2013; Rochman et al., 2014).

Experimental design

Snail shell length was measured using ImageJ (version 1.53)
software to determine snail growth. Individual snails were placed
in a 40 L aquarium filled with synthetic spring water (5 cm height) for
quantifying movement. A one cm2 grid paper was placed underneath

the aquarium. Distance traveled was not recorded for the first 10 s to
allow snails to acclimatize but was recorded for the next one minute.
Snail reproduction was measured using a stereo microscope by
counting the number of egg clusters and the total number of eggs.

Statistical analysis

Four treatment groups (IBU alone, MP alone, IBU and MP, and
control) were tested for their effects on growth, movement, number of
egg clusters, and total number of eggs. Growth and movement are
continuous variablesmodeled usingANOVA for normally distributed
responses or the Kruskal-Wallis test for non-normally distributed
responses. If statistically significant differences were found among
treatments, a Tukey’s Honest Significant difference test was used for
multiple comparisons across groups for normally distributed response
variables. Dunn’s test was used for multiple comparisons across
groups for non-normally distributed response variables. Normality
was checked using the Shapiro-Wilkes test. The number of egg
clusters and the total number of eggs are count data, and the
effects of the treatment groups were assessed using a generalized
linear model with a Poisson error distribution. Multiple comparisons
across groups were made using the expected marginal means
estimated with the emmeans () function and the contrast ()
function from the emmeans package version 1.10.4 (Lenth, 2024).
Alpha was set at 0.05 for all analyses. All analysis was conducted using
R version 4.4.1 (R Core Team, 2024). Figures were constructed in R
using the ggplot2 () package version 3.5.1 (Wickham, 2016).

Results

Growth

Snail growth ranged from 0.16 mm to 0.32 mm after 14 days of
treatment exposure (Figure 1; Table 1). Snails exposed to
microplastics alone and ibuprofen and microplastics combined

FIGURE 1
Physella acuta growth (mm) as a result of exposure to ibuprofen
(500 μg/L; IBU), microplastics (10 μg/L; MP), and combined ibuprofen
(500 μg/L) and microplastics (10 μg/L). Different letters represent
significant differences between treatments.
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showed a 50% significant decrease in mean growth compared to the
control group (p = 0.021). Snails exposed to ibuprofen alone
exhibited a 15.6% decrease in mean growth.

Movement

Snail movement ranged from 0.02 cm/s to 0.07 cm/s after 14 days
of treatment exposure (Figure 2; Table 1). Mean snail movement
decreased by 50% in the combined ibuprofen and microplastics
treatment (0.02 cm/min) compared to the control (0.04 cm/min).
However, snails exposed to microplastics showed a 75% increase in
the mean movement (0.07 cm/min), and those exposed to ibuprofen
alone showed a 50% increase (0.06 cm/min) compared to the control.
There was no significant difference between treatments.

Egg clusters

The number of egg clusters ranged from 0.6 to 2.8 after 14 days
of treatment exposure (Figure 3; Table 1). Compared to the control,
mean snail production of egg clusters increased 1.33× (33%) when
exposed to ibuprofen, 4.67× (367%) when exposed to microplastics,
and 3× (200%) when exposed to ibuprofen and microplastics
combined. There was no significant difference between treatments.

Total egg count

Total egg count ranged from 8 to 16.4 after 14 days of exposure
to treatments.(Figure 4; Table 1) Mean snail total egg count

TABLE 1 Changes in Physella acuta growth, movement, number of egg clusters, and total number of eggs after 14 days of exposure to control, ibuprofen
(IBU; 500 μg/L), microplastics (MP; 10 μg/L), and ibuprofen and microplastics (IBU × MP; 500 μg/L × 10 μg/L). Numbers in parentheses represent the
standard deviation.

Treatment Growth (mm) Movement (cm/s) # Of egg clusters Total # of eggs

Ctrl 0.32 (0.08) 0.04 (0.03) 0.60 (0.89) 16.40 (23.77)

IBU 0.27 (0.11) 0.06 (0.04) 0.80 (0.84) 8.00 (7.62)

MP 0.16 (0.03) 0.07 (0.07) 2.80 (1.30) 29.20 (11.03)

IBU x MP 0.16 (0.05) 0.02 (0.02) 1.80 (2.49) 12.80 (17.54)

FIGURE 2
Physella acuta movement (cm/s) as a result of exposure to
ibuprofen (500 μg/L; IBU), microplastics (10 μg/L; MP), and combined
ibuprofen (500 μg/L) and microplastics (10 μg/L). There were no
significant differences between treatments.

FIGURE 3
Physella acuta total number of eggs as a result of exposure to
ibuprofen (500 μg/L; IBU), microplastics (10 μg/L; MP), and combined
ibuprofen (500 μg/L) and microplastics (10 μg/L). Different letters
represent significant differences between treatments.

FIGURE 4
Physella acuta number of egg clusters as a result of exposure to
ibuprofen (500 μg/L; IBU), microplastics (10 μg/L; MP), and combined
ibuprofen (500 μg/L) and microplastics (10 μg/L). There were no
significant differences between treatments.
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decreased by 51% when exposed to ibuprofen (p = 0.001), by
22% when exposed to combined ibuprofen and microplastics,
and increased by 78% when exposed to microplastics (p =
0.002). Additionally, snails exposed to microplastics produced
265% × (3.65) more eggs on average than snails exposed to
ibuprofen (p < 0.001) and 56% × (2.3) more eggs on average than
snails exposed to ibuprofen and microplastics combined
(p < 0.001).

Discussion

This study assessed the individual and combined effects of
ibuprofen and microplastic exposure on Physella acuta growth,
movement, and reproduction. Snail growth significantly
decreased when exposed to microplastics alone and in
combination with ibuprofen (p = 0.021; Figure 1). These
findings support our hypotheses, implying that the reduction
in growth likely results from a trade-off between growth and
detoxification. Specifically, nutrient absorption impairment
caused by microplastic physical blockage of the digestive
system likely contributed to these effects (Imhof et al., 2013;
Jeyavani and Vaseeharan, 2023). Previous studies on Physa
fontinalis, amphipods, and rotifers also indicated reduced
growth when exposed to microplastics (Au et al., 2015;
Jeong et al., 2016; Michler-Kozma et al., 2022). This
highlights the susceptibility of freshwater biota to short-term
pollutant exposure, which could lead to effects on
ecosystem functions.

Although we did not directly assess chemical interactions
(i.e., synergistic, additive, antagonistic), the reduced growth
observed with ibuprofen and microplastics combined may
suggest that in addition to an impaired digestive system,
oxidative stress from ibuprofen likely contributed to the effects
of microplastics alone (Srain et al., 2021; Jan-Roblero and Cruz-
Maya, 2023). In response to ibuprofen, aquatic organisms exhibit
detoxification responses (Batucan et al., 2022). For example,
glutathione S-transferase (GST) activity increased to prevent
oxidative damage in Chironomus riparius after ibuprofen
exposure (Muñiz-González, 2021). In Danio rerio (zebrafish),
ibuprofen increased oxidative stress markers, including catalase,
glutathione S-transferase, and protein carbonyls (Falfushynska
et al., 2022). For Dreissena polymorpha (zebra mussel),
ibuprofen elicited lipid peroxidation and disrupted enzymatic
responses (Gonzalez-Rey and Bebianno, 2012). These findings
suggest that oxidative stress and impaired detoxification
processes are key mechanisms reducing snail fitness when
exposed to ibuprofen and microplastics.

Reduced growth in P. acuta can disrupt ecosystem dynamics.
For example, decreased feeding is associated with smaller snails (e.g.,
Silva et al., 2020). Thus, lower grazing may promote algal growth,
affecting food available to primary consumers (Lowe and Hunter,
1988; Konschak et al., 2021). A reduction in snail populations and a
corresponding decrease in egestion may also affect nutrient cycling
(Mulholland et al., 1991; Perrotta et al., 2020), altering nitrogen and
phosphorus availability (Elias and Bernot, 2017). Additionally,
smaller snail populations can affect predator-prey dynamics by
reducing food sources for predators (Justice and Bernot, 2014;

Krupsi et al., 2018). These changes can affect biodiversity and
community structure (Swamikannu and Hoagland, 1989;
Konschak et al., 2021; Kumari et al., 2023).

Reproductive output was measured by counting the number
of egg clusters and the total number of eggs (Table 1).
Treatments did not affect number of egg clusters (Figure 3)
but significantly decreased (ibuprofen) or increased
(microplastics) the total number of eggs (Figure 4). Contrary
to previous research (e.g., Michler-Kozma et al., 2022; Kumari
et al., 2023; Merbt et al., 2024) that reported reduced
reproductive outputs under microplastic exposure, we found a
significant increase in egg production with microplastic
exposure (p < 0.001). Several factors could explain this
difference: 1) microplastic type and size influence their
bioavailability and toxicity (Alak et al., 2022). The size and
characteristics of polyethylene (PE) microspheres used in this
study (10–90 μm) likely influenced their bioavailability and
interaction with Physella acuta. Particles in this size range are
small enough to be ingested but large enough to cause physical
blockages in the digestive tract, impairing nutrient absorption.
Additionally, these microplastics may adhere to mucus
membranes, causing stress responses (Alak et al., 2022; Imhof
et al., 2013). In addition to physical effects, PE microplastics
often contain chemical additives, such as plasticizers, stabilizers,
and flame retardants, which can act as endocrine-disrupting
chemicals (Chen et al., 2019; Lin et al., 2023; Bucci et al.,
2024). Furthermore, the hydrophobic nature of PE
microplastics allows them to adsorb other contaminants
which can worsen their toxicity. 2) exposure period and
concentration can influence reproductive outcomes. Pedersen
et al. (2020) found no changes in quagga mussel reproduction
within 24 h, even at elevated microplastic concentrations of
0.8 g/L, however reduced sac production and egg hatching
was observed on Physella acuta after 93 days exposure of
150 mg/L of polystyrene (Kumari et al., 2023); 3)
reproductive stage and experimental conditions contribute to
egg production. Saha et al. (2019) found that P. acuta produces
more eggs with age. Feeding schedules, water quality, and
organism density per experimental unit may also influence
energy allocation toward reproduction, contributing to
variability across studies. These findings highlight the need
for standardized protocols to assess the complexity of
ibuprofen and microplastics effects on reproduction
accurately (de Ruijter et al., 2020).

Ibuprofen exposure decreased the total egg count. Although
research on ibuprofen’s impact on P. acuta is limited, similar
effects on reproduction have been reported in other aquatic
organisms and pollutants. For example, P. acuta egg
production decreased when exposed to fluoxetine (Sánchez-
Argüello et al., 2009; Henry et al., 2022) and reclaimed water
(Aquilino et al., 2018). When exposed to ibuprofen, impaired
reproduction was reported for Planorbis carinatus, Moina
macrocopa, and Oryzias latipes (Das et al., 2019). When
exposed to ibuprofen and microplastics combined, there was
no significant effect on the total number of eggs, thus
complicating predictions of multiple-pollutant exposure (Fent
et al., 2006; Di Poi et al., 2018; Zhang et al., 2022). Reduced
reproduction in P. acuta could alter community structure and
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function. Specifically, declining snail populations and their
corresponding roles as grazers and detritivores (Wikström
and Hillebrand, 2012; Tchakonte et al., 2023) and as a food
source for predators (Gilioli et al., 2017) may reduce biodiversity.
Similarly, smaller populations can impact nutrient cycling in
freshwater ecosystems (Auld, 2018).

Movement increased when exposed to combined ibuprofen and
microplastics (Figure 2). Kumari et al. (2023) reported decreased
movement when exposed to microplastics alone. Even though this
increase was not statistically significant, it may have biological
relevance as it can reflect behavioral changes or stress responses
(Calow and Forbes, 1998; Almeida and Nunes, 2019), including
feeding behaviors and predator avoidance (Justice and Bernot, 2014;
Elias and Bernot, 2017), and changes in food web dynamics and
nutrient cycling (Newman et al., 1996; Hall et al., 2003;
Vannatta, 2021).

In addition to changes in ecosystem structure and function, long
term effects of reduced Physella snails’ populations can be
significant. Smaller populations are more vulnerable to genetic
drift, inbreeding, and disrupted adaptive responses which
eventually can affect survival and reproduction success. Genetic
diversity is critical for an effective population size and adaptive
responses (Grueber et al., 2019). For example, for colonizing
populations, especially since Physella acuta is considered an
invasive species, smaller populations could lead to reduced
fecundity, earlier maturation (Fruh et al., 2017; Chapuis et al.,
2024), reduced population density, and persistence of this
conditions over generations (Szucs et al., 2017). Further,
smaller populations exposed to chronic pollution are more
susceptible to environmental pressures affecting birth and
death rates. Thus, leading to impaired recovery from
perturbations (Lopez et al., 2009).

Our study partially supports our hypothesis: microplastic and
ibuprofen exposure negatively affect P. acuta. Specifically,
microplastics alone and combined with ibuprofen significantly
reduced snail growth, likely because of nutrient absorption
impairment and energy trade-offs with detoxification processes.
Ibuprofen decreased the total egg count because of impaired
reproductive function. In contrast, microplastic exposure
increased egg production, indicating variability in reproductive
responses potentially influenced microplastic type, exposure
duration, and reproductive stage. Ibuprofen and microplastics
combined did not significantly affect egg count. Although
increased movement with combined exposure was not statistically
significant, it may still indicate biological stress responses, which
could impact feeding behaviors and food web dynamics. Overall,
based on our findings, we suggest that oxidative stress,
neurotoxicity, and impaired digestive system affect snail fitness.
The effects of these pollutants on P. acuta identified in this study:
reduced growth and reduced reproductive incomes can lead to
ecological impacts, including disrupted nutrient cycling, altered
prey-predator dynamics, and decreased biodiversity in freshwater
ecosystems.

Further, these findings contribute to the larger literature, by
exploring the combined effects of ibuprofen and microplastics on
Physella acuta, by addressing the knowledge gap of these pollutants
and understanding multiple stressor exposure which is more
relevant of real environmental conditions. The 14-day exposure

period can serve as a starting point for other research to address long
term impacts of ibuprofen and microplastics alone and combined.
Specifically, exploring multi generation effects of these pollutants.

Future research should explore interactions between pollutants
(i.e., synergistic, additive, antagonistic), wider range of pollutant
concentrations, exposure times, and additional endpoints. For
example, multi-generational studies would be able to address
chronic impacts on P. acuta populations and their adaptive
responses. Additionally, studies need to confirm the different
mechanisms we suggested as key factors affecting snail fitness,
therefore integrating biochemical assays in addition to
ecotoxicological dose-response experiments. Further, to better
understand the effects of these pollutants, other ecological
relevant endpoints should be studied including egg sizes,
ingestion volume, and snail speed. Furthermore, standardization
of protocols to reduce variability, including microplastic types, sizes,
and concentrations, is critical for reliable risk assessment and
management strategies. We also propose field studies that explore
the larger ecological impacts of reduced snail fitness on community
structure and function. Therefore, continuing research like this
contributes to and strengthens conservation strategies and
mitigation efforts to protect freshwater environments from
pharmaceuticals and microplastics.
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