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This study proposes a more efficient discrete grey prediction model to describe
the seasonalvariation trends of carbon dioxide emissions. The setting of the
bernoulli parameter and the time powerterm parameter in the new model
ensures that the model can capture the trend of nonlinear changesin the
sequence. At the same time, the inclusion of dummy variables allows for the
direct simulationof seasonal fluctuations in carbon dioxide emissions without the
need for additional treatment of theseasonality in the sequence. The optimal
search for themodel’s hyperparameters is achieved using theMPA algorithm. The
constructed model is applied to the monthly U.S. carbon dioxide emissions
datafrom January 2003 to December 2022, a total of 240 months. The model
is trained on 216 months of datafrom January 2003 to December 2020, and the
monthly data from January 2021 to December 2022 is usedfor prediction, which
is then compared with the actual values. The results show that the proposed
modelexhibits higher forecasting performance compared to SARIMA and other
models. Therefore, this methodcan effectively simulate the seasonal variation
trends in carbon dioxide emissions, providing valuablereference information for
relevant departments to formulate more effective policies.
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1 Introduction

1.1 Research significance

The urgency of global climate change is intensifying, making it one of the most severe
challenges facing the world today. In recent years, the persistent rise in global temperatures
has led to widespread ecological imbalances, resulting in more frequent extreme weather
events such as heatwaves, floods, hurricanes, and droughts, which pose serious threats to
human habitats, agricultural production, and water security. Scientists warn that if global
warming continues at its current pace, the Earth could reach an irreversible tipping point
within the coming decades, causing irreparable ecological damage. Therefore, it is
imperative that the world accelerates the implementation of emission reduction
measures, promotes a shift to clean energy, and advances sustainable development.
Carbon emission forecasting plays a critical role in the global fight against climate
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change. By predicting future emission trends, governments,
businesses, and society can proactively develop strategies to
reduce emissions, adjust energy systems, and promote the
adoption of clean technologies. Forecasting data allows the
quantification of different policies and technologies’ effectiveness,
helping stakeholders make informed decisions to prevent
irreversible environmental damage. Additionally, it provides
scientific backing for countries’ carbon neutrality goals, fostering
global collaboration in addressing the challenges posed by climate
change. Accurate carbon emission forecasts are not only essential for
environmental protection but also serve as a crucial tool for driving
sustainable economic development. Carbon emission forecasting
also serves as a crucial support tool in policy-making. By predicting
future emission trends, policymakers can develop and assess
environmental policies more scientifically, identify key areas for
emission reduction, and allocate resources more effectively.
Accurate carbon emission forecasts allow the quantification of
the potential impact of different policies and technological
measures on emission reduction, enabling governments,
businesses, and society to make more effective plans backed by
data. Monthly carbon emission forecasting, in particular, holds
significant strategic importance. It provides more granular
insights into emission trends, capturing seasonal variations,
economic activity fluctuations, and the short-term impacts of
policy measures. This high-frequency forecasting enables timely
adjustments in response strategies, allowing key interventions at
critical moments to better manage emission peaks and avoid the
accumulation of harmful greenhouse gases. Monthly forecasts
enhance the flexibility and precision of policy actions and
provide vital support for accelerating progress toward global
carbon neutrality.

1.2 Related research on carbon dioxide
emissions prediction

The prediction of carbon dioxide emissions is a crucial step in
addressing global climate change and formulating emission
reduction policies. In recent years, researchers have employed
various methods to forecast carbon dioxide emissions, which can
generally be classified into several categories, including traditional
statistical models, machine learning methods, and grey prediction
models. Traditional statistical forecasting methods mainly include
regression-based models and time series models represented by
ARIMA. Kaur et al. (2023) develops a regression-based tool to
estimate carbon dioxide emissions from cities, considering climatic
and urban design factors. Applied to 3,646 cities, it examines the
impact of electric vehicle adoption, urban density changes, and
IPCC climate scenarios. Wang et al. (2019) employed input-output
analysis and panel regression models to predict carbon emissions in
China-Australia trade. They analyzed data from 2000 to 2014 and
forecasted emissions for 2015 to 2022 under four development
scenarios. The results showed a significant increase in net carbon
outflow from China to Australia, with emissions varying greatly
across different scenarios (Wang et al., 2024) constructed a carbon
emission combination forecasting model based on the Generalized
Induced Ordered Weighted Averaging (GIOWA) operator to
address the limitations of using a single forecasting method and

analyzed its carbon reduction performance. Empirical testing with
China’s carbon emission data from 1980 to 2020 revealed that the
GIOWA combination forecasting model significantly improved the
accuracy of carbon emission predictions, achieving an average
accuracy of over 99.5% during the sample period, surpassing
various single forecasting methods. Malik et al. (2020) employed
the ARIMA model to forecast carbon dioxide emissions in Pakistan
up to 2030. Themodel demonstrated good accuracy, with a generally
low Mean Absolute Percentage Error (MAPE) value consistently
below 10%. Yang and O’Connell (2020) utilized the ARIMA model
to forecast carbon emissions within the Shanghai aviation industry.
Their findings revealed a projected continual increase in carbon
emissions. Lin and Agyeman (2019) formulated an ARDL model to
forecast carbon emissions in Ghana spanning from 2017 to 2030. In
recent years, machine learning algorithms have played an important
role in various fields, leading many scholars to attempt using
different machine learning methods to predict carbon emissions.
Li (2020) developed a new forecasting model called KLS, which
integrates the Kalman filter (KF), long short-term memory (LSTM),
and support vector machine (SVM) to enhance carbon emission
(CE) predictions. LSTM is used for time series forecasting, while
ridge regression selects relevant variables for SVM regression. Chai
et al. (2023) used an improved particle swarm optimization (PSO)
combined with deep neural networks (DNN) to predict building
carbon emissions. The results showed that this method
outperformed SVR, DNN, and other approaches in terms of
prediction accuracy. Peng et al. (2024) proposed a method to
predict carbon emissions in Sichuan Province’s construction
industry for the period from 2021 to 2025 by optimizing a
backpropagation (BP) neural network using a genetic algorithm
(GA). The prediction results showed a MAPE value of 6.303% and a
coefficient of determination of 0.853. Wu et al. (2024) developed a
new deep learning model, the CNN-GRU-Attention model, which
was used to predict carbon emissions in Jiangsu Province’s
transportation sector in China.The results showed that this
model achieved higher prediction accuracy compared to other
models, with a mean absolute error (MAE) of 0.061582, root
mean square error (RMSE) of 0.086, and an R2 of 0.916 on the
test set. Although scholars have employed different methods to
predict carbon dioxide emissions, most studies are based on annual
data, possibly because it is easier to obtain. Forecasting monthly
carbon emissions can enable policymakers to make better decisions
to address changes in emissions. Therefore, it is necessary to develop
more effective prediction models for accurate monthly carbon
emission forecasting. Grey prediction models have been widely
applied to carbon dioxide emission forecasting due to their
excellent predictive performance. Li et al. (2023a) proposed a
fractional-order grey multivariable forecasting model based on
the principle of prioritizing new information to analyze and
predict China’s carbon emissions. This model extends the
traditional integer-order accumulated sequence by incorporating
a fractional-order accumulated sequence, with the fractional
sequence and time response equation expressed using the
Gamma function. Additionally, the particle swarm optimization
algorithm is employed to find the optimal order of the accumulated
sequence. Zhu et al. (2024) proposed an adaptive fractional discrete
grey system model for carbon emission forecasting. This model
improves the traditional discrete grey model by incorporating CFA
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and CFD, and it was built and tested using annual carbon dioxide
emission data from Germany, Japan, and Thailand for the period
from 2011 to 2021. The experimental results demonstrated that this
model offers significant advantages over several benchmark grey
models. Although scholars have employed different methods to
predict carbon dioxide emissions, most studies are based on
annual data, possibly because it is easier to obtain. Forecasting
monthly carbon emissions can enable policymakers to make better
decisions to address changes in emissions. Therefore, it is necessary
to develop more effective prediction models for accurate monthly
carbon emission forecasting.

1.3 Related research on grey
prediction model

In 1982, Deng (1982) proposed the grey system theory, tailored
for modeling systems with partial unknowns, small samples, and
limited information. The grey prediction model is a forecasting
method that accumulates the original sequence and uses
differential equations to simulate changes in the sequence. To
address the limitations of traditional grey models, several
significant innovative approaches have been proposed. To solve the
issue of “inhomogeneity” between the time response function and
parameter estimation, (Xie and Liu, 2009). Tntroduced the discrete
grey prediction model. To capture the nonlinear characteristics of
sequence changes, (Chen et al., 2008). Developed the classic nonlinear
Bernoulli model and provided its solution process. The distinction of
grey models from other forecasting models lies in performing
modeling after accumulating the original sequence. Wu et al.
(2013) proposed the classic fractional-order accumulation
generation operator, which uses fractional-order accumulation to
describe the nonlinear variation trends of sequences. While
standard grey prediction models perform well for growth-type
sequences, they are less effective for sequences with seasonal
characteristics. Some scholars have attempted to construct grey
prediction models capable of forecasting seasonal sequences. For
example, Wang et al. (2012) built a seasonal fluctuation grey
model [SFGM (1, 1)] to predict the monthly electricity demand in
South Australia. Applying a seasonal accumulating generation
operator, (Wang et al., 2018) proposed a seasonal GM (1, 1)
model [SGM (1, 1)] to forecast the quarterly electricity
consumption of the Chinese primary industries. The results
showed that the SGM (1, 1) model possessed higher accuracy than
its competitors. Li et al. (2023b) developed a multivariable seasonal
grey model with time-power terms and applied it to solar power
generation forecasting. Chen et al. (2023) proposed an optimized
Hausdorff fractional grey seasonal model that integrates a seasonal
index, Hausdorff fractional accumulation, and particle swarm
optimization to address seasonal fluctuations and random
oscillations. The model was applied to forecast quarterly natural
gas production (Wang et al. 2019) combined seasonal fluctuation
techniques with the optimization of background values, power
indices, and fractional orders to develop a seasonally optimized
fractional nonlinear grey Bernoulli model (SOFANGBM(1,1)),
which was applied to the analysis and forecasting of quarterly CO2

emissions in the United States. In summary, the above methods
emphasize preprocessing data to eliminate seasonal effects before

applying grey modeling to the processed data. Wang et al. (2017)
proposed a method of grouping time series from different seasons for
grey prediction. Building on this, Zhou et al. (2021a) proposed a
seasonal fractional-order grey forecasting model, which improves
prediction accuracy by capturing seasonal and nonlinear
fluctuations, demonstrating superior performance in electricity
demand forecasting in Zhejiang Province.Although this approach
performs well for some sequences, artificially separating the seasonal
sequences leads to the loss of correlation information between
different seasons. In order to accurately describe real systems that
typically exhibit seasonal disturbances with monthly or quarterly
cycles, (Zhou et al., 2021a) proposed a novel discrete grey seasonal
model, namely DGSM(1,1), which simulates and forecasts seasonal
fluctuation sequences by incorporating seasonal dummy variables
into the traditional grey model. This model does not require data
preprocessing but instead enhances the grey model’s ability to handle
seasonal data through the design of dummy variables, making it a
highly innovative and significant contribution.

1.4 Research on grey prediction models in
carbon emission forecasting

Grey prediction models for carbon dioxide emission forecasting
can be broadly categorized into univariate grey prediction models and
multivariate grey prediction models. Univariate prediction models
primarily utilize methods such as accumulation generation to
uncover the inherent variation patterns of the sequence and achieve
forecasting by simulating these characteristics with grey models. Zhou
et al. (2021b) developed a grey forecasting model based on the new
information priority principle and rolling mechanism, which was
applied to predict China’s carbon dioxide emissions, demonstrating
superior accuracy and stability compared to classical methods. Ding
et al. (2023) proposes a new-information-based grey model combining
damping accumulation, data smoothing, and particle swarm
optimization to forecast carbon dioxide emissions across China’s
30 provinces. The model outperforms existing methods in accuracy
and robustness, offering valuable insights for regional decarbonization
policies. Jiang et al. (2024) developed a discrete fractional accumulation
grey gompertz prediction model to forecast the annual carbon dioxide
emissions of China and the United States. On the other hand,
multivariate grey prediction models integrate multiple influencing
factors and analyze and forecast the target variable by considering
the relationships between the target variable and its related factors.
However, the inclusion of additional variables also increases the
complexity of the model. Yin et al. (2023) conducted a predictive
study on China’s annual carbon dioxide emissions based on a new grey
multivariate prediction model and related influencing factors. Xu et al.
(2024).proposes a novel multivariate grey model, FBNGM(1, N, r),
which incorporates a fractional-order operator and an intelligent
optimization algorithm to enhance prediction accuracy by
emphasizing new information and optimizing parameters. Through
numerical experiments on CO2 emissions, the model demonstrates
superior accuracy, effective data utilization, and robustness against
overfitting compared to traditional models. It also highlights the
importance of influencing factors in carbon dioxide emissions
prediction and provides future forecasts to support policy-making.
To address the time-lag effects in carbon emission forecasting, (Ye
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et al., 2022) developed a dynamic time-delay discrete grey forecasting
model (DTDGM(1, N, t)). By introducing a time-lag driving term and
linear correction, the model effectively captures the delayed
relationships between carbon emissions and related factors and is
applied to the prediction of China’s carbon emissions. In conclusion,
grey prediction models are widely used for carbon dioxide emission
forecasting. However, it is worth noting thatmost existing studies focus
primarily on annual predictions. Therefore, developing grey prediction
models capable of forecasting carbon dioxide emissions on a quarterly
basis is highly necessary.

1.5 Contributions and the organization of
other parts

In order to more accurately predict seasonal carbon dioxide
emissions, this paper constructs a seasonal grey prediction model
based on discretization, dummy variables, Bernoulli parameters, and
time power terms. Specifically, the model enhances its self-adaptive
capability by using discretization operations, Bernoulli parameters, and
time power terms, and it directly processes seasonal data by employing
the dummy variables. For parameter optimization, the MPA algorithm
is utilized to achieve optimal hyperparameter search, thereby
improving computational efficiency. The advantages of the method
proposed in this paper lie in its flexible modeling approach, simple
modeling mechanism, and the ability to fit seasonal time series.
Specifically, the introduction of dummy variables addresses the
difficulties faced by traditional grey prediction models in dealing
with seasonal time series, while Bernoulli parameters and time
power terms enhance the model’s adaptability. The discretization
operation not only solves the issue of lack of unbiasedness in
traditional grey prediction models. The main contributions of this
paper are as follows: 1) Compared to most carbon dioxide emission
predictions that are only based on annual or quarterly data, this paper
proposes a targeted seasonal grey prediction model based on the
unique nonlinear characteristics of monthly carbon dioxide
emissions. The construction of this model not only enriches the
research on carbon dioxide emissions prediction at different time
dimensions but also promotes the development of grey prediction
theory. 2) This paper establishes a planning model for obtaining
optimal hyperparameters and uses the MPA algorithm to solve the
planning model instead of traditional mathematical methods,
significantly improving the model’s computational efficiency. The
rest of this paper is organized as follows. Section 2 introduces the
process of building the model and its solution methods. Section 3
models the data from the United States from January 2003 to
December 2022 using the constructed model and compares it with
other comparative models to verify the effectiveness of the proposed
model. The fourth part is the conclusion of this paper.

2 Methods

2.1 Basic concepts of the DGSM(1,1) model

The DSGM(1, 1) model, put forward by Li et al. (2023b), is a
useful tool for confronting uncertain issues existing in insufficient
information systems with sparse data. In comparison with the

GM(1, 1) model, this model has significant advantages in
reducing the inherent errors generated by the transformation
from the discrete function to the continuous one. Thus, the
detailed procedures of the DSGM(1, 1) model can be outlined below.

Step 1: Assume that Equation 1.

X 0( ) � x 0( ) 1( ), x 0( ) 2( ), . . . , x 0( ) n( )( ) (1)

is an original non-negative varying sequence, where n is the
length of the sequence. Subsequently, by using the one-order
accumulation generation (1-AGO), these above raw data can be
transformed into Equation 2

X 1( ) � x 1( ) 1( ), x 1( ) 2( ), . . . , x 1( ) n( )( ) (2)

for which the kth entry is denoted as

x 1( ) k( ) � ∑k
i�1

x 0( ) i( ), k � 1, 2, . . . , n

Step 2: Build the novel discrete seasonal grey model.

x 1( ) k + 1( ) � ax 1( ) k( ) + bM k+1,s( ), k � 1, 2, . . . , (3)

is called as a novel Discrete Grey Seasonal Model having one
variable and one order, abbreviated as DGSM(1, 1), where s is the
number of the seasonal cycle,bM(k+1,s) represents the seasonal item,

and m(t, s) � s, tmods � 0
tmods, tmods ≠ 0

{ ,s = 4 and 12 stand for the

quarterly and monthly sequences, respectively, thereby the
corresponding parameters in Equation 3 are ramarked as
(a, b1, . . . , b4) and (a, b1, . . . , b12).

Step 3: Estimate the model parameters. Substitute the values of k
into Equation 3, we can obtain Set that A � (a, b1, . . . , bs) is the
parameter vector of the DGSM(1, 1) model.the estimated parameter
vectorÂ can be calculated as Â � (â, b̂1, . . . , b̂s) � (BTB)−1BTY,
where B and Y are shown in Equation 4.

Bω �

x 1( ) 1( ) 0 1 0 / / 0
x 1( ) 2( ) 0 0 1 / / 0

..

. ..
. ..

.
1 1 1 ..

.

x 1( ) s − 1( ) 0 0 0 / / 1
x 1( ) s( ) 1 0 0 / / 0

..

. ..
. ..

.
1 1 1 ..

.

x 1( ) n − 1( ) / / / 1 / 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y1 �

x 1( ) 2( )
..
.

x 1( ) n( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

Step 4: Calculate the time response function for generating
predictions in the transformed domain. And the predicted
sequence is given by Equations 5, 6.

x̂ 1( ) k( ) � âk−1x 0( ) 1( ) + âk−2b̂2 +∑k
i�3

âk−ib̂M j,s( ) (5)

x̂ 0( ) k( ) � âk−2 â − 1( )x 0( ) 1( ) + âk−2b̂2

+∑k
i�3

âk−i b̂M j,s( ),−b̂M j−1,s( )( ), k≥ 2 (6)

where x̂(1)(1) � x̂(0)(1) � x(0)(1).
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2.2 Novel disctete grey Bernoulli seasonal
model with a time powter term

In grey prediction models, the grey action quantity controls
the trend of a sequence’s variation over time. Using time power
terms as the grey action can better simulate the time-dependent
trend of the sequence, while the introduction of Bernoulli
parameters can more effectively capture the nonlinear
characteristics of the sequence. Therefore, this paper combines
these two improvements with the DGSM(1,1) model to propose a
new grey model for modeling seasonal sequences. The principle of
this model is illustrated below.

Definition 1: If {x(1)(t)}nt�1 is the first-order accumulated
generating sequence of the original non-negative time series
{x(0)(t)}nt�1,The following Equation 7.

dx 1( ) t( )
dt

+ ax 1( ) t( ) � btα + cm t,s( )( ) x 1( ) t( )[ ]γ, α≥ 0, γ ≠ 1 (7)

is called the new adaptive seasonal grey bernoulli forecasting
model with a time powter term (DSNGBM(1,1,tα)) where α is time
power term coefficient, γ is a bernoulli coefficient, and

m(t, s) � s, tmods � 0
tmods, tmods ≠ 0

{ . cm(t,s) is a dynamic parameter

used to capture the periodicity of a time series. For example,
when {x(0)(t)}nt�1represents a seasonal time series, s is the period
of this time series.

Definition 2: If {x(1)(t)}nt�1 is the first-order accumulated
generating sequence of the original non-negative time series
{x(0)(t)}nt�1,Let y(1)(t) � [x(1)(t)]1−γ, then the following Equation
8 is referred to as the Novel Disctete Grey Bernoulli Seasonal Model
with a Time Powter Term (DSNGBM(1.1,tα))

y 1( ) t( ) � a′′y 1( ) t − 1( ) + b′′tα + c′′m t,s( ) (8)

Proof:
Lety(1)(t) � [x(1)(t)]1−γ, then one can obtain

dy 1( ) t( )
dt

+ a′y 1( ) t( ) � b′tα + cm t,s( )′ , (9)

where a′ � a(1 − γ), b′ � b(1 − γ), cm(t,s)′ � cm(t,s)(1 − γ)
Based on traditional grey modeling theory, equations similar to

Equation 9 are typically integrated over the interval to obtain a
discrete estimation formula for estimating parameters. However,
this approach is not practical. For example, the integral of b′ tα
Equation 9 over the interval does not exist. To address this issue,
methods such as the trapezoidal rule or Simpson’s rule are often
used, but these methods introduce additional estimation errors. In
this paper, we discretize Equation 9 using difference equations, i.e.,

y 1( ) t( ) − y 1( ) t − 1( ) + a′y 1( ) t( ) � b′tα + cm t,s( )′ (10)

Further simplifying Equation 10, we have Equation 11.

y 1( ) t( ) � a′′y 1( ) t − 1( ) + b′′tα + c′′m t,s( ) (11)

Where a′′ � 1
(1+a′), b

′′ � b′
(1+a′), c

′′
m(t,s) � cm(t,s)′

(1+a′).
Proof complete.

Theorem 1: If the hyperparameters are known, then the model
parameters estimation is given byω̂ � [â′′, b̂′′, ĉ′′1 , . . . , ĉ′′s ]T �
(BT

ωBω)−1BT
ωY1, where B and Y are shown in Equation 12.

Bω �

y 1( ) 1( ) 2α 0 1 / / 0
y 1( ) 2( ) 3α 0 0 1 1 0

..

. ..
. ..

.
1 1 1 ..

.

y 1( ) s − 1( ) sα 0 0 / / 1
y 1( ) s( ) s + 1( )α 1 0 / / 0

..

. ..
. ..

.
1 1 1 ..

.

y 1( ) n − 1( ) nα 0 0 / / 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y1 �

y 1( ) 2( )
..
.

y 1( ) n( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

Proof:
According to Equation 11, once the hyperparameters are

obtained, an unconstrained optimization problem can be
formulated

min
a′′ ,b′′ ,c′′

m t,s( )
∑n
i�1

y 1( ) t( ) − a′′y 1( ) t − 1( ) − b′′tα − c′′m t,s( )( )2. (13)

Equation 13 can be transformed into Equation 14.

ω̂ � arg min
ω

L � εTε � Y1 − Bω( )T Y1 − Bω( ) (14)

According to the conditions for the existence of extreme, we can
obtain Equation 15.

dL

dω
� 2BT

ωBω − 2BT
ωY1 � 0 (15)

If BT
ωBω exists, then we have

ω̂ � [â′′, b̂′′, ĉ′′1 , . . . , ĉ′′s ]T � (BT
ωBω)−1BT

ωY1, where

Bω �

y 1( ) 1( ) 2α 0 1 / / 0
y 1( ) 2( ) 3α 0 0 1 1 0

..

. ..
. ..

.
1 1 1 ..

.

y 1( ) s − 1( ) sα 0 0 / / 1
y 1( ) s( ) s + 1( )α 1 0 / / 0

..

. ..
. ..

.
1 1 1 ..

.

y 1( ) n − 1( ) nα 0 0 / / 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y1 �

y 1( ) 2( )
..
.

y 1( ) n( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Proof complete.

Theorem 2: once the estimates of the parameters are obtained
through Equation 13, then one can get the final prediction results
shown in Equation 16.

x̂ 0( ) k( ) � x̂ 1( ) k( ) − x̂ 1( ) k − 1( ) (16)
Where the time response function is represented by Equation 17.

x̂ 1( ) t( ) � â′′( )t−1y 1( ) 1( ) +∑t−2
i�0

â′′( )i b̂
′′
t − i( )α + ĉ ′′

m t−i,s( )(⎧⎨⎩ ⎫⎬⎭ 1
1−γ

.

(17)
Proof: when t = 2, we can get

ŷ 1( ) 2( ) � â′′y 1( ) 1( ) + b̂
′′
2α + ĉ ′′m 2,s( ), (18)

When t = 3, we can get
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ŷ 1( ) 3( ) � â′′y 1( ) 2( ) + b̂
′′
3α + ĉ ′′m 3,s( ) (19)

Combining Equation 18 with Equation 19, we get Equation 20,
as shown below:

ŷ 1( ) 3( ) � â′′ â′′y 1( ) 1( ) + b̂
′′
2α + ĉ′′m 2,s( )[ ] + b̂

′′
3α + ĉ ′′

m 3,s( )

� â′′( )2y 1( ) 1( ) + a′′ b̂
′′
2α + c ′′m 2,s( )( ) + b̂

′′
3α + ĉ ′′

m 3,s( )

� â′′( )2y 1( ) 1( ) +∑1
i�0

â′′( )i b̂
′′
3 − i( )α + ĉ ′′m 3−i,s( )( ) (20)

According to this law, we can obtain Equation 21.

ŷ 1( ) t( ) � â′′( )t−1y 1( ) 1( ) +∑t−2
i�0

â′′( )i b̂
′′
t − i( )α + ĉ ′′

m t−i,s( )( ) (21)

Since y(1)(t) � [x(1)(t)]1−γ, the time response function of the
model can be expressed as

x̂ 1( ) t( ) � â′′( )t−1y 1( ) 1( ) +∑t−2
i�0

â′′( )i b̂
′′
t − i( )α + ĉ ′′

m t−i,s( )( )⎧⎨⎩ ⎫⎬⎭ 1
1−γ

Finally, based on the first-order accumulated reduction
calculation, the final prediction result can be obtained as

x̂ 0( ) t( ) � x̂ 1( ) t( ) − x̂ 1( ) t − 1( ), t � 2, . . . , n.

Proof complete.

2.3 The method for solving the model

Due to the presence of unknown hyperparameters in the
DSNGBM (1.1,tα) model, it is challenging to apply the model
directly. To address such issues, constructing an optimization
model is a common approach. In this paper, we formulate an
optimization problem using the mean absolute percentage error
as the loss function, namely,

min
α,γ

fitness � Mean |x̂ − x

x
|( ) × 100%

s.t.

α ∈ −2, 0[ ) ∪ 0, 2( ], γ ∈ −2, 2[ ]
ω̂ � BTB( )−1BTY

Bω �

y 1( ) 1( ) 2α 0 1 / / 0

y 1( ) 2( ) 3α 0 0 1 1 0

..

. ..
. ..

.
1 1 1 ..

.

y 1( ) s − 1( ) sα 0 0 / / 1

y 1( ) s( ) s + 1( )α 1 0 / / 0

..

. ..
. ..

.
1 1 1 ..

.

y 1( ) n − 1( ) nα 0 0 / / 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Y1 �

y 1( ) 2( )
..
.

y 1( ) n( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

x̂ 1( ) t( ) � â′′( )t−1y 1( ) 1( ) +∑t−2
i�0

â′′( )i b̂
′′
t − i( )α + ĉ ′′

m t−i,s( )( )⎧⎨⎩ ⎫⎬⎭ 1
1−γ

x̂ 0( ) t( ) � x̂ 1( ) t( ) − x̂ 1( ) t − 1( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
For nonlinear normalization models, ordinary mathematical

solving methods require a substantial amount of time. In

prediction problem solving, quick execution of predictions is
essential. Therefore, utilizing swarm intelligence algorithms is an
effective method for addressing such issues. The Marine Predators
Algorithm (MPA) is a bio-inspired optimization algorithm that
simulates the behavior of marine predators while hunting for prey. It
models different search phases and the interaction between
predators and prey in the marine ecosystem to find optimal
solutions for complex optimization problems (Faramarzi et al.,
2020). The MPA algorithm simulates marine predation behavior
by dividing the search process into three stages, progressively
balancing global search, local search, and mixed search. This
three-stage distributed search mechanism enables MPA to
flexibly shift during optimization: it initially performs broad
exploration to avoid local optima, then gradually converges near
the optimal solution, enhancing both diversity and convergence.
Additionally, strategies like “Levy flight” and “marine diffusion”
allow MPA to achieve faster convergence and adaptability in high-
dimensional, multimodal problems. The algorithm is structurally
simple with convenient parameter settings, making it effective across
various types of problems. Compared to other common
optimization algorithms, MPA offers a stronger balance between
global exploration and local exploitation. For example, genetic
algorithms rely on genetic variation but often converge
prematurely; particle swarm optimization (PSO), while effective
in multidimensional searches, tends to be sensitive to initial
solutions and risks getting trapped in local optima. Through its
three-stage distributed search and marine-inspired strategies, MPA
effectively balances global search and local refinement, excelling in
convergence speed and locating global optima. Furthermore, MPA
requires minimal parameter dependence, typically only needing
settings for population size and maximum iterations, making it
relatively easy to apply to complex or large-scale problems. The
“Levy flight”mechanism in MPA also reduces the likelihood of local
optima while maintaining global search capability, making MPA
highly adaptable in dynamically changing or uncertain
problem scenarios.

The specific solving process of the MPA algorithm is as follow: A
population of candidate solutions is generated randomly. Each
individual in the population represents a potential solution. Let
the problem’s dimension bed, and the population size be n. The
initial population matrix P0 � [P01, P02, . . . , P0n] contains n
individuals, each of which is a d-dimensional vector.

(1) Parameter Setting

Set key algorithm parameters, including the maximum number
of iterations (MaxIter), predation rate (r), and other ecological
parameters.

(2) Iterative Update Phase

MPA uses three distinct phases to simulate the hunting
behavior: exploration, exploitation, and Levy flight. These phases
mimic the process of predators gradually approaching and
capturing prey.

(3) Exploration Phase (Linear Search)
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This phase simulates the early stage where predators search
broadly over large areas for prey. The predators move
randomly, often based on Levy flight or other random
search patterns:

Pnew
t � Pt + F. rand 0, 1( )( ). Pbest − Pt( ) + rand 0, 1( ). Pr − Pt( )

Where.

• Pt is the current solution (position of the predator).
• Pbest is the best solution found so far.
• Pr is a randomly selected solution.
• F is a scaling factor.
• rand(0, 1) is a random number between 0 and 1.

(4) Exploitation Phase (Chase and Follow)

In this phase, the predator begins to focus on a smaller area,
closely tracking the prey. The search becomes more focused as
predators narrow in on the best solutions:

Pnew
t � Pt + F. rand 0, 1( )( ). Pbest − Pt( )

The population begins to converge toward the best current
solution, refining the search in local regions to improve the
quality of the solutions.

(5) Levy Flight Phase (Levy Walk)

This phase simulates random, long-distance movements that
help the predator explore more widely and avoid local optima. Levy
flight is used to enable long jumps and escape from local traps:

FIGURE 1
The application process of the proposed model.
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Pnew
t � Pt + Levy d( ). Pt − Pbest( )

Where:
Levy(d) is a Levy distribution that creates large random jumps.
This phase ensures a balance between global exploration and

local exploitation.

(6) Update and Correction Phase

Boundary Correction: Ensure that solutions remain within the
defined search space. If any new solution exceeds the boundaries, it
is corrected to fall within the allowable range:

Pnew
t � min max Pnew

t , lower_bound( ), upper_bound( )
Fitness Evaluation: Each individuals fitness is calculated

based on the objective function of the problem. Solutions are
evaluated to measure how well they solve the
optimization problem:

f Pt( ) � objective function value

Elite Preservation Strategy: Ensure that the current best solution
is retained. If a newly generated solution is better than an existing
one, it replaces the old solution in the population, preserving the
quality of the search.

(7) Termination

The algorithm terminates when either the maximum
number of iterations (Max_Iter) is reached, or the
convergence criteria are satisfied. Otherwise, the algorithm
repeats steps 2 and 3.

(8) Result Output

The algorithm outputs the optimal solution found (Pbest) and its
corresponding objective function value. This solution is the best
approximation of the global optimum found during the
optimization process.Due to the strong performance of the MPA
algorithm, this paper uses it to solve the optimal hyperparameter
search problem. This paper employs the classical Marine Predators
Algorithm (MPA) to solve for the optimal hyperparameters. The
solving process based on this algorithm is illustrated in Figure 1.

3 Experiment

3.1 Data sources

The United States is one of the largest carbon emitters in the
world, with a profound impact on global climate change. By
forecasting U.S. carbon emission trends, it becomes possible to
assess the effectiveness of its energy policies and emission
reduction measures, driving policy adjustments to achieve carbon
neutrality. The U.S.’s large economy and complex energy
consumption structure make predicting its emissions valuable as
a reference for other nations, fostering international cooperation in
addressing the climate crisis. Understanding U.S. carbon emission
trends is crucial to the global reduction effort. Additionally, carbon
emission forecasting helps assess future emission trends in advance,
providing a scientific basis for developing effective reduction
policies. It enables governments and businesses to optimize
energy use, promote clean technologies, prevent irreversible
impacts of climate change, and ensure the feasibility and
effectiveness of achieving carbon neutrality goals. The raw data
of U.S. Total Energy carbon dioxide Emissions [(Million Metric
Tons of Carbon Dioxide)] are collected form the official website
Energy Information Administration of USA (https://www.eia.gov/).
The specific monthly carbon dioxide emission variation curve and
statistical data indicators are shown in Figure 2 and Table 1.

3.2 Competing methods

Given the characteristics of the research subject, 3 seasonal
statistical forecasting models [SARIMA, Holt-winter (Winters, ,
1960), Prophet (Taylor et al., 2018)], 2 classical machine learning
forecasting models [BPNN (Hecht-Nielsen, 1992) and ELM
(Rahman et al., 2024)], and 5 classical seasonal grey forecasting
models [GSLSSVR (Zhou et al., 2021c), SGM(1.1) (Wang et al.,
2018), SIOGM(1.1) (Zhou et al., 2022),DDGM(1.1) (Wang et al.,
2017), DSGM(1.1) (Zhou et al., 2021a)] are selected as competing
methods. The calculation processes of (SARIMA, Holt-winter and
Prophet are implemented using built-in functions in the R software,
the other models were all implemented using MATLAB 2019a. It is
worth mentioning that GSLSSVR are established based on a hybrid
kernel function, which is a linear combination of Gaussian and

FIGURE 2
The variation curve of monthly carbon dioxide emissions in the
United States.

TABLE 1 Statistical indicators of monthly carbon dioxide emissions in the United States.

Statistical indicators Max Min Mean Sd Interval of data Data span

value 560.782 305.597 452.230 45.638 Month January 2003 to December 2022
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polynomial kernel functions. By the way, all modeling parameters
for models with unknown parameters are obtained through MPA.
To evaluate the training and prediction performance of the model,
this paper adopts four commonly used evaluation metrics, the
definitions are shown in Equations 22–25. The mean absolute
percentage error (MAPE), which is defined as follows

MAPE � 1
n − 1

∑n
i�2

x̂ 0( ) t( ) − x 0( ) t( )
x 0( ) t( )

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ × 100% (22)

Mean Squared Error: MSE

MSE � 1
n − 1

∑n
i�2

x̂ 0( ) t( ) − x 0( ) t( )( )2 (23)

Root Mean Squared Error: RMSE

RMSE �
�����������������������
1

n − 1
∑n
i�2

x̂ 0( ) t( ) − x 0( ) t( )( )2√
(24)

Mean Absolute Error: MAE

MAE � 1
n − 1

∑n
i�2

x̂ 0( ) t( ) − x 0( ) t( )∣∣∣∣ ∣∣∣∣ (25)

3.3 Comparative analysis

In this paper, the training set consists of data from January
2003 to December 2020, and the test set comprises data from

January 2021 to December 2022. Regarding the calculation of the
DSNGBM(1,1,tα) model,to ensure that the MPA algorithm achieves
optimal hyperparameter search, the algorithm parameters are set as
follows: population size is set to 50, maximum iterations to 100, and
the Levy flight step size to 2.0. Additionally, the three stages of the
MPA algorithm are typically distributed as 30%, 50%, and 20%, with
30% allocated to global exploration, 50% to local exploitation, and
20% to mixed search.Due to the high search efficiency of MPA, the
loss function descends rapidly, almost reaching the optimal value
after 12 iterations, and finally converges to the minimum value after
50 iterations. The specific iteration process is shown in Figure 3. The
MAPE value eventually converged to 2.847%, with the optimal
values of the hyperparameters being α � 0.94 and γ � −0.06.
Finally, using the monthly data from January 2021 to 2022, a 24-
month forecast was performed. The cumulative time response
sequence was obtained using Equation 21, and the final predicted
values were derived through accumulation reversal. The parameters
involved in the model construction process are detailed in Table 2,
and the four forecasting evaluation metrics for each model are
presented in Table 3.

As shown in Table 3, the performance of each model across the
four evaluation metrics (MAPE, RMSE, MAE, MSE) varies
significantly. DSNGBM(1,1,t) stands out as the best-performing
model, with a MAPE of only 1.40%, significantly lower than the
other models, indicating its superior error control capability.
Additionally, its RMSE (5.78) and MSE (82.02) are the lowest
among all models, demonstrating its exceptional predictive
accuracy and stability. The gray prediction models performed
well overall, with SGM(1,1) achieving a MAPE of 2.50% and an
RMSE of 10.47, closely following DSNGBM in error control and
variability. Its MSE (136.41) is also relatively low, reflecting stable
performance. Other gray prediction models, such as DDGM(1.1),
DSGM(1,1), and SIOGM(1,1), also performed well, underscoring
the unique advantages of gray prediction models in small-sample
nonlinear prediction tasks. However, it is noteworthy that the
GSLSSVR model performed the worst among all comparison
models. This is likely due to the use of a hybrid kernel function
to enhance nonlinear fitting capability during parameter
optimization, which led to overfitting. Among traditional
statistical models, Holt-winters and SARIMA demonstrated
average performance with MAPE values of 5.46% and 5.43% and
RMSE values of 22.25 and 22.35, respectively, falling short compared
to gray prediction models. The poor performance of the Holt-
Winters model may be attributed to overly optimized selection
strategies, while the subpar performance of SARIMA might result
from mismatches between the model assumptions and the data
characteristics. In contrast, Prophet, as a time series forecasting tool

FIGURE 3
MPA algorithm iteration curve.

TABLE 2 The parameters value of models.

Model DSNGBM(1.1,tα) Holt-winters SARIMA GSLSSVR

Parameters Value α � 0.94, γ � −0.06 α � 0.929, β � 0.195, γ � 1 p � q � d � 1 σ � 0.0001, γ � 30,
λ � 0.0048, d � 1

Model Prophet SGM(1.1) SIOGM(1.1)

Parameters Value cp = 0.001, sp = 0.1 f1 � 1.13, f2 � 1.02, f3 � 1.02, f4 � 0.91
f5 � 0.93, f6 � 0.96, f7 � 1.03, f8 � 1.04
f9 � 0.94, f10 � 0.95, f11 � 0.97, f12 � 1.09

α1 � 1, α2 � 1, α3 � 1, α4 � 0.95
α5 � 0.98, α6 � 0.96, α7 � 0.96, α8 � 0.98
α9 � 0.97, α10 � 1, α11 � 1, α12 � 1
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bridging traditional statistical models and machine learning models,
combines the ideas of statistical modeling with some automated
features of machine learning. Consequently, it outperformed both
statistical learning and machine learning models but fell short of
gray prediction models. Prophet achieved a MAPE of 4.24%, better
than other statistical models, but its MSE (372.18) indicates higher

prediction volatility.The overall performance of machine learning
models was poor. BPNN and ELM had high MAE values (29.66 and
22.44) and MSE values (879.86 and 831.73), reflecting limited error
control capability. The suboptimal performance of machine learning
models can be attributed to the limited training data, as each month
only had 18 data points, leading to insufficient model training. The

TABLE 3 DSNGBM(1,1,tα) and the competing methods’ evaluation metrics.

Evaluation metrics DSNGBM(1.1,tα) Holt-winters SARIMA ELM BPNN

MAPE (%)_test set 1.40 5.46 5.43 5.58 5.53

RMSE_test set 5.78 22.25 22.35 28.84 22.34

MAE_test set 9.06 24.22 26.60 22.44 29.66

MSE_test set 82.02 586.38 707.51 831.73 879.86

Evaluation Metrics Prophet SGM(1.1) DSGM(1.1) GSLSSVR DDGM(1.1)

MAPE (%)_test set 4.24 2.50 3.47 6.13 3.08

RMSE_test set 19.29 10.47 14.79 25.25 12.55

MAE_test set 17.57 11.68 14.25 30.44 14.22

MSE_test set 372.18 136.41 218.66 926.44 202.34

FIGURE 4
Comparison of the performance of each model across four prediction evaluation metrics.
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detailed performance of each model across the four evaluation
metrics is shown in Figure 4, while the fitted curves of the
models are illustrated in Figure 5.

In summary, when using the DSNGBM model to forecast the
monthly carbon dioxide data in the United States, the model
effectively captures the nonlinear variation characteristics of the
series and extracts seasonal features through the setting of dummy
variables. Based on various forecasting evaluation metrics, this
method significantly outperforms most models, demonstrating its
effectiveness. Additionally, the performance of other grey prediction
models also confirms that grey prediction models have certain
advantages in forecasting with small samples.

4 Conclusion

This paper proposes a novel seasonal grey prediction model
that integrates discretization, dummy variables, Bernoulli
parameters, and time power terms, with the Marine Predators
Algorithm (MPA) used for optimal hyperparameter tuning. These
innovations enhance the model’s adaptability and forecasting
precision. Unlike traditional grey models, the proposed model
leverages Bernoulli parameters and time power terms to capture

the seasonal and nonlinear characteristics of time series data more
effectively, representing a significant improvement in grey
prediction methodologies. To validate the model’s effectiveness,
an empirical analysis was conducted using monthly carbon dioxide
emission data from the United States. The results demonstrate that
the proposed model significantly outperforms existing statistical,
machine learning, and grey models across multiple evaluation
metrics, including MAPE, RMSE, MAE, and MSE. The model
not only achieves superior forecasting accuracy but also provides a
better simulation of the variation patterns of U.S. monthly carbon
dioxide emissions, showcasing its robustness and adaptability in
addressing seasonal and nonlinear time series prediction tasks. The
model’s advantages highlight its potential for application in real-
world forecasting scenarios, particularly in environmental and
energy-related fields. However, this study has several limitations
that warrant further exploration. Firstly, the model employs
ordinary first-order accumulation, which, while effective, might
constrain its adaptability to certain complex data structures.
Secondly, the univariate nature of the model does not account
for the influence of external factors, such as economic activity or
energy consumption, which could improve forecasting accuracy.
Lastly, the computational efficiency of the model could be further
optimized to enhance its scalability for larger datasets. Future

FIGURE 5
Comparison of the prediction performance of the DSNGBM (1,1,tα) model and three other models for monthly carbon dioxide emissions in the
United States (A–C).
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research could focus on extending the model to incorporate
multivariate grey models, allowing external influencing factors
to be included. This would enhance the model’s predictive
adaptability and accuracy but would also increase its
complexity. Challenges such as matrix non-invertibility in
parameter estimation, rendering the least squares method
unusable, and the risk of overfitting may arise. Additionally,
improving the traditional first-order accumulation generation,
such as adopting fractional-order accumulation, could further
capture the nonlinear characteristics of the sequence. Exploring
alternative optimization algorithms could also enhance the
model’s adaptability and performance. These improvements
would provide a broader foundation for the application of grey
models in forecasting seasonal carbon dioxide emissions and other
complex time series tasks.
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