
Simulation of slope soil erosion
intensity with different vegetation
patterns based on cellular
automata model

Yan Sheng1, Shangxuan Zhang1*, Long Li1,2, Zhiming Cao1 and
Yu Zhang1

1College of Desert Control, Science, and Engineering, Inner Mongolia Agricultural University, Hohhot,
China, 2Key Laboratory of Desert Ecosystem Protection and Restoration, State Forestry Administration,
Hohhot, China

Introduction: Soil erosion plays a crucial role in soil and water conservation
management, as well as in ecological construction planning. This study focuses
on the slopes of three planting patterns (uniform distribution, aggregation
distribution, and random distribution), along with bare slopes, in the Baojiagou
watershed of the Pisha Sandstone area, based on soil erosion intensity grade
maps after rainfall from 2021 to 2023.

Methods: A method combining Multi-Criteria Evaluation (MCE) and the CA-
Markovmodel is used to analyze the spatial variation of soil erosion intensity types
on different slopes. This approach integrates multiple influencing factors and
generates a suitability map for the conversion of soil erosion intensity types.
Ultimately, the dynamic characteristics of soil erosion in 2023 are simulated under
various slope conditions.

Results: Results indicated: (1) The spatial distribution of simulated soil erosion
intensity grade maps for different slopes largely aligned with actual maps, and
regions with soil erosion depth greater than 3 cmwere resistant to transitioning to
lower erosion zones. (2) The Kappa coefficients for simulated soil erosion
intensity in uniform distribution, random distribution, aggregate distribution,
and bare control slopes were 65.24%, 73.62%, 75.88%, and 69.06%,
respectively, confirming the feasibility of the CA-Markov model for simulating
soil erosion dynamics. (3) The simulation of soil erosion intensity on different
slopes in 2023 revealed that erosion intensity on uniformly distributed,
aggregated, and bare control slopes remained predominantly in the erosion
zone with a depth of 1–2 cm, while randomly distributed slopes experienced a
shift from mild erosion area to slight erosion area.

Discussion: This study improves the understanding of soil erosion across different
vegetation patterns and demonstrates the applicability of the CA-Markov model
for simulating dynamic erosion on slopes. The findings contribute to the
development of broader ecological models and offer insights into vegetation
management and erosion control strategies for similar landscapes.
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1 Introduction

Erosion is a continuous natural process occurring on the Earth’s
surface, especially in arid and semi-arid regions (Zhang et al., 1996;
Grazhdani and Shumka, 2007; Liu et al., 2016). Soil erosion depletes
land resources, worsens ecological degradation, and threatens
human survival and development (Nurlina et al., 2022; Porto
et al., 2022). In the Pisha sandstone region of the Yellow River
Basin, water and soil loss has led to desertification of one-third of
fertile soil, severely impacting agriculture and the environment (Yeh
et al., 2006; Liu and Zhang, 2015). Research has shown that
vegetation plays a critical role in slope soil erosion, making it
central to erosion control and watershed management (BriniImen
et al., 2021). However, vegetation on slopes in this region often fails
to provide sufficient coverage. More commonly, vegetation appears
in patchy or strip patterns, resulting in a fragmented vegetation
structure (Pajouhesh et al., 2020; Eigentler and Sherratt, 2020). This
pattern of vegetation influences the redistribution of runoff and
sediment during hydraulic erosion on slopes. Therefore, simulating
soil erosion dynamics under the influence of vegetation patterns
is essential.

With the advancement of quantitative analysis of vegetation
pattern indices, combined with remote sensing and geographic
information systems, various mathematical models have been
applied to studying soil erosion and vegetation patterns. Among
them, the cellular automata (CA) model effectively utilizes
vegetation pattern characteristics to explain key processes
influencing soil erosion (Xiang et al., 2019; Fazlolah et al., 2018;
Zhang et al., 2017). CA (cellular automata), as a tool for studying
complex spatial phenomena, offers excellent simulation capabilities
and has been widely recognized in the geographic research
community (Qun et al., 2019). Currently, many scholars have
applied CA for spatio-temporal dynamic simulation and
prediction of various geographical phenomena. For instance,
Yuan et al. (2008) used the CA model to develop a small
watershed erosion and sediment production process model,
CASEM, and explored its application in simulating soil erosion
processes. Ma et al. (2003) utilized the CA model, supported by GIS
technology, to analyze the spatial evolution of soil erosion under
different land-use models and predict erosion development trends
based on various land-use plots. Chase Clement, 1992 developed a
CA model to simulate rainfall spatter erosion and runoff on slopes
using simple rules, achieving notable results. D’Ambrosio et al.
(2001) developed SCAVATU, a CA-based model to simulate
hydraulic soil erosion, and obtained favorable simulation results.
Although the CA model has been successfully applied to simulate
the spatial development of soil erosion in large watersheds, building
a dynamic slope soil erosion model based on CA remains in the
exploratory phase. Slope erosion, as a typical nonlinear dynamic
system, involves highly complex internal development and
evolutionary processes, characterized by significant uncertainty
and chaos. Therefore, it is imperative to develop a slope soil
erosion model capable of simulating complex spatio-temporal
dynamics and the spatial evolution of erosion. The CA-Markov
model, based on transition probability matrices and suitability maps,
leverages CA’s spatial transformation capability to simulate complex
systems and utilizes Markov’s strengths to predict future trends in
soil erosion intensity. In CA-Markov model simulations, complex

spatio-temporal processes and interactions occur between various
erosion intensity levels, necessitating a simulation model for
transforming different soil erosion intensities and expanding its
application scope. Vegetation patterns regulate and redistribute
runoff and sediment during slope hydraulic erosion (Crompton
and Thompson, 2020). Thus, investigating the relationship between
vegetation patterns and soil erosion at the slope scale is crucial for
comprehensive soil and water conservation.

While much research has explored soil erosion in various
contexts, few studies have focused on simulating slope erosion
under different vegetation patch patterns. Unlike earlier models
that predominantly consider uniform vegetation distributions, this
study investigates the impact of varied vegetation patterns, such as
random and aggregated distributions, on erosion dynamics. This
approach provides a more nuanced understanding of the role of
vegetation in regulating runoff and sediment flow, offering valuable
insights for erosion control in challenging environments. Therefore,
this study focuses on the slopes of three planting patterns (uniform
distribution, random distribution, and aggregation distribution) and
bare control slopes in the Baojiagou Watershed of the Pisha
Sandstone area. Starting with the rainfall-soil-erosion relationship
at the slope scale, field monitoring experiments were conducted
using runoff plots under natural rainfall conditions. Based on soil
erosion intensity maps of slopes with varying vegetation patterns
over a 3-year rainfall period, the spatial variation and intensity of soil
erosion types were analyzed across slopes with different vegetation
patch patterns. The CA-Markov model in IDRISI software was used
to examine the conversion rules of soil erosion intensity types,
integrating various influencing factors. A suitability map for soil
erosion intensity conversion was developed to simulate the dynamic
characteristics of erosion on slopes with different vegetation patch
patterns, further verifying the ecological benefits of vegetation and
providing valuable references for soil and water conservation
management in the Pisha sandstone region.

2 Research methodology and methods

2.1 Study area

The study area is located in Nuanshui Town, Zhungeer Banner,
Ordos City, Inner Mongolia (110°31′–110°35′E, 39°46′–39°48′N)
(Figure 1). The elevation ranges from 1,145 to 1,330 m, with
higher terrain in the north and lower in the south. The main
zonal soil is chestnut-calcium soil, which has low organic matter
content. The study area can be divided based on the type of surface
cover and the degree of bedrock exposure into sand-covered
sandstone areas, soil-covered sandstone areas, and exposed
sandstone areas, with the exposed sandstone area having the
harshest ecological environment. This area has a typical
continental climate, with an average annual temperature of
6–9°C, a large diurnal temperature range, cold and dry winters
with long seasons, and hot summers with short seasons. The average
annual rainfall is 400 mm, and the rainfall is mainly concentrated in
the summer (July-August). The average annual rainfall in summer is
256.4 mm, accounting for 64.1% of the total annual rainfall. Most of
the rainfall is rainstorm (more than 50 mm), and the rainfall
erosivity is high (489.87 MJ mm hm−2 h−1 a−1). The frost-free
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period is 100–140 days, with abundant sunshine and an average
annual wind speed of 2–4 m/s. The main vegetation includes Pinus
tabuliformis Carr., Caragana korshinskii, Hippophae rhamnoides,
Leymus chinensis, Salsola collina, as well as other psammophytes,
swamp meadows, and degraded grasslands.

2.2 Determination of vegetation pattern and
plot layout

Based on ecological principles, three vegetation distribution
patterns are identified: uniform, clustered, and random. Uniform
distribution is typically observed in undisturbed wastelands, where
vegetation is evenly spread across the surface. Random distribution
patterns are often seen in areas with degraded surfaces or sparse
vegetation. Clustered distribution is common in semi-arid or
degraded ecosystems. These three vegetation patterns reflect the
spatial distribution characteristics of vegetation within the study
area. Due to the harsh ecological conditions, high rainfall intensity,
and erosion-prone soils in the region, a comparison of these patterns
reveals their differential impacts on soil and water conservation.
When selecting sampling plots, it is ensured that the soil structure of
the three types of plots is consistent, the vegetation species and
coverage are similar, the slope gradient and aspect are the same, the
slope length is greater than 20 m, and there is no human
interference. At the same time, a slope with natural conditions
identical to the research plots was selected, and all vegetation on the
slope was removed to serve as a control plot (bare ground). After

selecting the slope, adjacent 1 m × 1 m grid plots were delineated on
the slope, for a total of 60 plots, and each plot was surveyed for plant
community characteristics in sequence.

The study uses the variance-to-mean ratio method (Equations 1,
2) (Elias and Schindler, 2015) to determine the vegetation
distribution patterns. This method is based on statistical
principles and reveals the distribution characteristics of a sample
by comparing the degree of dispersion (variance) of the data with its
average level (mean). The ratio of variance to mean is relatively
simple and can quickly identify and explain the distribution pattern
of vegetation in a specific ecological environment. If S2/m = 0, it
indicates a uniform distribution; If S2/m = 1, it indicates a random
distribution; If S2/m is significantly greater than 1, it indicates an
aggregated distribution (Table 1). The calculation formula is:

M � ∑
N

i

Mi/N (1)

S2 � ∑
N

i

Mi − �M( )2/ N − 1( ) (2)

In the formula, N represents the number of basic plots, and Mi

represents the number of individuals in the ith plot.
This experiment is a field runoff plot natural rainfall in-situ

monitoring experiment, preparation began on 30 June 2021, and the
observation period is the three rainy seasons (June-August) from
2021 to 2023. Based on the local topographic conditions, stainless
steel plates were used to establish a runoff plot with dimensions of
10 m (length) × 2 m (width) on the slope (Figure 2). The plot

FIGURE 1
Location map of the study area.
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boundaries are perpendicular to the contour lines and are driven
30 cm into the ground with a rubber mallet, leaving 20 cm above
ground to block external runoff. The soil texture in the runoff plot is
mainly composed of silt particles, accounting for 50.86%, followed
by sand particles at 43.86%, and the smallest proportion is clay
particles at 5.35%. A fixed rainfall monitoring point was set up next
to the runoff plot, using a siphon-type automatic rain gauge to
record atmospheric precipitation, and rain gauges were used for
cross-validation to measure basic data such as rainfall amount,
rainfall intensity, and duration of rainfall (Table 2).

2.3 Determination of soil erosion intensity

The Austrian-made RIGEL-400 3D laser scanner is used. This
instrument uses a near-infrared laser beam with a rapid scanning
mechanism to obtain 3D point cloud data and is characterized by
high speed, non-contact, and high precision. The laser emission
frequency is 300,000 bit/s, and the scanning accuracy (for a single
100 m measurement) is 3 mm (horizontal accuracy) × 2 mm (vertical
accuracy). The instrument’s vertical scanning range is 270°, and the
horizontal range is 360°. Scanning one slope takes about 1 min.

At both the bottom and top of each observed runoff plot, a fixed
concrete stake is placed as a scanning station, and 5 to 8 fixed
reference points are selected as stitching reference points for the
scanned data of each station. Before the rainfall starts, an initial scan
of the runoff plot is conducted to obtain the original slope point
cloud data. After each rainfall, the slope is scanned again after the
water has fully infiltrated, capturing the data on slope morphology
changes. Before each scan, high-definition video equipment is used
to record the process. The instrument is set up at the same position
and tripod height for each scan, and reflective sample markers are
placed along the plot boundaries to facilitate data trimming
and overlay.

After completing data collection before and after rainfall, the
“Camera” function of the 3D laser scanner is first used to inspect the
scanned slope, ensuring that the surface is within the camera’s visible
range and that the laser line’s visibility is optimized. Then, RiCAN
PRO software is used to ensure that the input scan range allows the
laser line’s intensity to fully pass through. The laser scan dataset is
initially filtered through binarization, followed by point cloud
registration and coordinate system transformation using the
“Plane Surface Filter” and “Backsighting Orientation” functions
in the software on the 668,431 scanned points. Since all data

TABLE 1 Vegetation distribution patterns determined by the variance-to-mean ratio method.

Sample
area

Quadrat
number (N)

Variance
(S2)

Mean
value (M)

S2/M Pattern of
vegetation

Coverage of
vegetation

Type of vegetation

1 20 0.15 0.81 0.18 <
1

Uniform
distribution

32.6% Asparagus cochinchinensis, Kali
collinum, Artemisia stechmanniana,
Sophora davidii, Melilotus officinalis

2 20 0.64 0.56 1.14≈1 Random
distribution

30.5% Asparagus cochinchinensis, Kali
collinum, Artemisia stechmanniana,

Sophora davidii

3 20 3.46 0.33 2.6 > 1 Gather distribution 31.1% Asparagus cochinchinensis, Kali
collinum, Artemisia stechmanniana,
Sophora davidii, Melilotus officinali

FIGURE 2
The layout of the runoff plot. Notes: In the figure, the vegetation patterns from left to right are uniform distribution, random distribution, and
aggregated distribution.
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TABLE 2 Statistical table of rainfall characteristics.

Number Rainfall time Duration of rainfall (min) Rainfall amount (mm) I30 (mm/h) Rainfall intensity (mm/h)

R1 2021.08.15 253 22.60 14.20 5.36

R2 2021.08.18 297 23.60 15.20 4.77

R3 2021.08.29 207 16.50 16.20 4.78

R4 2022.06.29 16 5.80 0.80 21.75

R5 2022.07.05 15 10.50 1.20 42.00

R6 2022.07.11 313 17.00 6.80 3.26

R7 2022.07.26 247 15.00 12.40 3.64

R8 2022.08.06 93 18.60 31.60 12.00

R9 2022.08.12 41 15.80 30.40 23.12

R10 2022.08.13 14 7.40 14.40 31.71

R11 2022.08.14 164 36.60 30.00 13.39

R12 2022.08.18 446 96.60 22.00 13.00

R13 2022.08.21 258 30.80 16.80 3.98

R14 2022.09.03 196 12.40 4.40 3.80

R15 2023.07.20 48 3.20 5.20 4.00

R16 2023.07.21 45 4.00 6.40 5.33

R17 2023.07.24 115 10.60 12.00 5.53

R18 2023.07.27 95 22.60 21.60 14.27

R19 2023.07.31 93 10.00 6.00 6.45

R20 2023.08.03 221 17.60 16.00 4.78

R21 2023.08.04 147 21.60 28.80 8.82

R22 2023.08.10 81 16.20 29.20 12.00

FIGURE 3
Schematic diagram of scanning runoff plot.
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captured by the laser line are retained, there may still be non-terrain
noise, such as vegetation, leading to a significant amount of
redundant point cloud data. Therefore, further denoising and
vegetation removal are performed using the “Filtering” and
“Multi-Station Processing” functions in RiCAN PRO software,
while controlling the standard deviation to ensure the quality of
the point cloud data. After collecting elevation point cloud data from
the slope, the point cloud data is converted into raster data using the
“Data Conversion Module” in the ArcGIS software platform.
Ultimately, an M-DEM with a resolution of 2 mm × 2 mm can
be generated (Figure 3).

By subtracting the post-rainfall M-DEM from the pre-rainfall
M-DEM, the difference can quantitatively describe the changes in
the slope’s microtopography. In the ArcGIS spatial analysis module,
spatial overlay analysis combined with the raster calculator is used to
perform raster overlay subtraction and complete the calculation
analysis. If the microtopography model after rainfall (M-DEM after)
minus the microtopography model before erosion (M-DEM before)
results in ΔM-DEM being negative, it indicates that the
corresponding area is an erosion zone; if it is positive, it indicates
that the corresponding area is a deposition zone. Specifically, erosion
zone = (M-DEMafter)—(M-DEMbefore) < 0; deposition zone =
(M-DEMafter)—(M-DEMbefore) > 0. Based on this calculation
rule, the slope erosion intensity is classified according to the
magnitude of ΔM-DEM.There are five levels of classification:
>0 cm is a deposition zone; 0 to (−1) cm is slight erosion; (−1)
to (−2) cm is mild erosion; (−2) to (−3) cm is moderate erosion;
and <(−3) cm is severe erosion (Wan et al., 2022).

2.4 CA-Markov modeling method

CA-Markov modeling was performed using IDRISI Selva
version 18.0. In the Markov model, the system’s state at a given
time is only related to the previous state, and thus the Markov chain
is realized by calculating the transition matrix of soil erosion
intensity type changes over a certain period. This refers to the
area of mutual conversion between soil erosion intensity types or the
state transition probabilities (Zhang et al., 2021). The prediction
formula for the probability of soil erosion intensity type changes is
(Aguejdad, 2021):

St+1 � PijSt (3)

St and St+1 represent the soil erosion intensity types at time t and
t + 1, respectively.

Pij—the transfer probability matrix of soil erosion intensity
types, i.e., the transfer probability of the soil erosion intensity
type i to type j.

Pij was obtained by overlaying data from two consecutive
periods. Since the time interval between the two datasets is
difficult to control, the transition probabilities need to be
adjusted to match the predicted time length, which works well
when simulating relatively uniform spatial changes (Yi et al.,
2021). However, soil erosion is intense and varies greatly across
time scales. If time length is used to adjust the transition
probabilities, it becomes difficult to reflect the characteristics
of soil erosion, resulting in low accuracy in the simulation results.

Soil erosion is caused by hydraulic erosion, with the primary
hydraulic force coming from surface runoff scouring after
rainfall. Therefore, rainfall plays a decisive role in soil erosion.
Therefore, this study uses rainfall to adjust the transition
probabilities, and the formula is as follows:

Pij
′ � 1 − 

R′
R In 1−Pij( ), i ≠ j

Pij
′ � 1 −∑

i≠1

j�1
Pij
′ , i � j (4)

Where Pij
′ stands for the transfer probability after transformation,

(%); R and R′ denote the rainfall before and after transformation,
respectively, (mm).

In Cellular Automata (CA), each variable only takes a finite
number of states, and the rules governing state changes are local in
both time and space (Zhang et al., 2023). Therefore, the CA model
has strong spatial computing capabilities. The expression formula
for the CA model is:

St+1 � f At,N( ) (5)
Where At and At+1—finite and discrete state sets at time t and t + 1,
respectively.

N—size of cellular filter.
f —cellular transformation rule in local space.
The CA-Markov model combines the features of two models,

integrating them to complement each other’s strengths. It fully
utilizes the powerful spatial simulation capabilities of the CA
model and the long-term prediction ability of the Markov model.
In this paper, the specific process of using the CA-Markov model to
simulate and predict the spatial evolution of soil erosion intensity is
as follows (Figure 4):

(1) Create a suitability map set. The paper sets the variation
patterns between vegetation patterns and soil erosion
intensity types as limiting factors based on the variation
rules of soil erosion intensity types on slopes with different
vegetation patterns. Slope, elevation, and the conditional
probability images of various soil erosion intensity
transfers are used as constraints, in combination with the
influence of constraints and limiting factors on the
transformation of soil erosion intensity types. Evolution
rules or standards are defined based on the suitability map
set generated by the MCE and COLLECTION EDITmodules,
and the state of a cell at the next time step is determined based
on the suitability map set.

(2) Define the size of the cells and construct a cell filter. The cell
size is the same as the raster image size, and in this study, the
raster size is set to 2 mm × 2 mm.

(3) Determine the starting time and the number of CA cycles.
The post-rainfall slopes with different vegetation patterns
from the first period are used as the initial data, and the
number of CA cycles is set to 1. Combined with the soil
erosion intensity transfer probability matrix for different
periods, the suitability map set is obtained based on the
transformation rules. This allows the simulation of soil
erosion intensity grade maps for slopes with different
vegetation patterns after the third period of rainfall.
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2.5 Evaluation of simulation accuracy

The Kappa consistency test is a method for verifying the
accuracy of model results. This coefficient is a commonly used
indicator to measure the accuracy of predicted results (Cai and
Wang, 2020), which allows the analysis of simulation results from
both quantitative and spatial perspectives. The formula for
calculating the validation accuracy of simulation results is as follows:

kappa � P0 − Pe

1 − Pe
(6)

Where Kappa—verification accuracy.
pep0— overall simulation accuracy and theoretical

simulation accuracy.
Kappa coefficient = 0-0.20 represents extremely low simulation

accuracy; Kappa coefficient = 0.20–0.40 indicates ordinary
simulation accuracy; Kappa coefficient = 0.40–0.60 denotes
moderate simulation accuracy; Kappa coefficient =
0.60–0.80 stands for high simulation accuracy; Kappa
coefficient = 0.80–1.00 reflects very high simulation accuracy.

2.6 Data processing

Statistical analysis of soil erosion intensity levels on slopes,
under various vegetation patch patterns, was performed using

ArcGIS 10.7.0.10450 software. Spatial overlay analysis of
vegetation pattern and soil erosion intensity maps was conducted
to determine the distribution of soil erosion in vegetation and non-
vegetation areas on each slope. The classified micro-slope map and
soil erosion intensity map were subsequently analyzed through
spatial overlay to identify soil erosion distribution patterns at
different slopes and reveal the micro-slope characteristics of soil
erosion at varying gradients. Finally, the actual results were
compared with the simulated data in ArcGIS to validate the
accuracy of the simulated soil erosion intensity map under
different vegetation patterns.

3 Results

3.1 Change analysis of slope soil
erosion intensity

3.1.1 Analysis of area variation of soil erosion
intensity on slope

As shown in Figure 5, following erosion on slopes with varying
vegetation patch patterns, the eroded area is larger than the
deposition area.

As shown in Figure 6, on the uniformly distributed slope, the
areas of the non-erosive zone and slight erosion area both show an
upward trend. Slight erosion area saw the most significant increase,

FIGURE 4
Flowchart of the soil erosion intensity change simulation method.
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rising from 3.22 m2 in 2011 to 3.76 m2 in 2023, an increase of 0.54 m2

or 3.10%. The areas of the mild erosion, moderate erosion, and
severe erosion are all decreasing. On the randomly distributed slope,
the areas of mild erosion and moderate erosion area both show an
increasing trend. The moderate erosion area saw the most
pronounced increase, rising from 3.08 m2 in 2021 to 4.08 m2 in
2023, an increase of 1.00 m2 or 5.73%. However, the areas of the non-
erosion zone, slight erosion area, and severe erosion area are all
decreasing.

On the aggregate distribution slope, the areas of the non-erosive
zone, moderate erosion area, and severe erosion area all exhibit an
increasing trend. The severe erosion area saw the most significant
growth, increasing from 1.67 m2 in 2021 to 2.16 m2 in 2023, an
increase of 0.49 m2 or 2.81%. However, the areas of the slight erosion
and mild erosion are decreasing. On the bare slope control surface,
the areas of the slight erosion and moderate erosion area both

increased, with slight erosion area showing the most significant
growth, rising from 2.22m2 in 2021 to 4.15m2 in 2023, an increase of
1.93 m2 or 11.08%. However, the areas of the non-erosion zone, mild
erosion area, and severe erosion area are all decreasing.

3.1.2 Analysis of the change of slope soil erosion
intensity transfer direction

Figure 7 illustrates the changes in the transfer directions of soil
erosion intensity on different slopes from 2021 to 2023. It provides a
quantitative explanation of how the types of soil erosion intensity
shift across slopes with varying vegetation patterns.

As shown in Figure 7, on slopes with uniform vegetation
distribution, the non-erosive zone and the mild erosion area can
only transition to slight erosion area or moderate erosion area. Slight
erosion area can transition to any other zone, whereas the moderate
erosion area can only transition to the non-erosive or mild erosion

FIGURE 5
Grade map of slope soil erosion intensity in 2021–2023.
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area. The severe erosion area transitions solely to the mild
erosion area.

On slopes with random vegetation distribution, the non-erosive
zone and the severe erosion area can only transition to slight erosion
area or moderate erosion area. mild erosion area can transition to
any zone, while the mild erosion area transitions only to the non-
erosive, slight erosion area, and moderate erosion area. The
moderate erosion area can only transition to the mild erosion
area and severe erosion area.

On slopes with aggregate vegetation distribution, the non-
erosive zone can only transition to the mild erosion area,
moderate erosion area, or severe erosion area. Slight erosion area
transitions only to the non-erosive, mild erosion area, or moderate
erosion area, whereas the mild erosion area can transition to any
zone. The moderate erosion area and severe erosion area transition
only to slight erosion area or mild erosion area.

On the bare slope control surface, the non-erosive zone, mild
erosion area, and severe erosion area can transition to any other
zone. Slight erosion area can transition only to the non-erosive, mild
erosion area, or moderate erosion area, while the moderate erosion

area can transition only to slight erosion area, mild erosion area, or
severe erosion area.

3.2 Analysis of influencing factors of slope
soil erosion intensity

3.2.1 Superposition analysis of vegetation pattern
and soil erosion intensity

Vegetation patterns can effectively impede sediment movement,
thereby influencing slope soil erosion. Based on the vegetation
distribution characteristics of each slope, areas are classified into
vegetated and non-vegetated zones, and the patterns and
characteristics of soil erosion in these zones are analyzed. As
shown in Figure 8, on the uniformly distributed slope, the non-
erosive zone and slight erosion area have the largest areas within the
vegetated zone, measuring 2.87 m2 and 3.01 m2, respectively. The
mild erosion area, moderate erosion area, and severe erosion area are
largest in the non-vegetated area, at 2.88 m2, 1.79 m2, and 3.04 m2,
respectively. On the randomly distributed slope, the non-erosive

FIGURE 6
Area changes of soil erosion intensity on different slopes from 2021 to 2023. Note: 1, 2, 3, 4 and 5 are respectively non-erosive zones, slight erosion
area, mild erosion area, moderate erosion area and severe erosion.
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zone and slight erosion area have the largest areas in the vegetated
region (2.87 m2, 3.01 m2), while the mild erosion area, moderate
erosion area, and severe erosion area are largest in the non-vegetated
region (2.88 m2, 1.79 m2, 3.04 m2). On the aggregate distribution
slope, the non-erosive zone and the moderate erosion area have the
largest areas in the vegetated region (2.87m2, 3.01m2). Slight erosion
area, mild erosion area, and severe erosion area are largest in the
non-vegetated region (2.88 m2, 1.79 m2, 3.04 m2).

3.2.2 Superposition analysis ofmicro-slope and soil
erosion intensity

As shown in Figure 9, on the uniformly distributed slope, the
largest areas of the non-erosive zone, slight erosion area, mild
erosion area, moderate erosion area, and severe erosion area
occur on micro-slopes of 20°–30°, 0°–10°, 20°–30°, 40°–50°, and
40°–50°, respectively, with areas of 1.20 m2, 1.12 m2, 1.38 m2,

1.23 m2, and 0.87 m2. On the randomly distributed slope, the
largest areas of the non-erosive zone, slight erosion area, mild
erosion area, moderate erosion area, and severe erosion area are
found on micro-slopes of 20°–30°, 30°–40°, 10°–20°, 10°–20°, and
30°–40°, respectively, with areas of 1.25 m2, 1.38 m2, 1.12 m2, 0.96 m2,
and 0.82 m2. On the aggregate distribution slope, the largest areas of
the non-erosive zone, slight erosion area, mild erosion area,
moderate erosion area, and severe erosion area are found on
micro-slopes of 30°–40°, 10°–20°, 20°–30°, 0°–10°, and 40°–50°,
respectively, with areas of 1.52 m2, 1.58 m2, 1.06 m2, 0.60 m2,
and 0.50 m2. On the bare slope control surface, the largest areas
of the non-erosive zone, slight erosion area, mild erosion area,
moderate erosion area, and severe erosion area are on micro-
slopes of 10°–20°, 20°–30°, 0°–10°, 30°–40°, and 40°–50°,
respectively, with areas of 1.18 m2, 0.92 m2, 1.77 m2, 1.58 m2,
and 1.33 m2.

FIGURE 7
Transfer direction of soil erosion intensity.
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3.2.3 Superposition analysis of micro-slope
direction and soil erosion intensity

The micro-slope directions were reclassified into four ranges:
north to northeast (337.5°–22.5°), east to southeast (22.5°–67.5°),
south to southwest (157.5°–202.5°), and west to northwest
(247.5°–337.5°). As shown in Figure 10, on the uniformly
distributed slope, the largest upward distribution areas of the
non-erosive zone, slight erosion area, mild erosion area,
moderate erosion area, and severe erosion area are found in the
north-northeast, east-southeast, east-southeast, west-northwest, and
south-southwest, respectively, with areas of 1.38 m2, 1.05 m2,
1.47 m2, 1.32 m2, and 0.77 m2. On the randomly distributed
slope, the largest upward distribution areas of the non-erosive
zone, slight erosion area, mild erosion area, moderate erosion
area, and severe erosion area are found in the west-northwest,
south-southwest, east-southeast, north-northeast, and south-
southwest, respectively, with areas of 1.25 m2, 1.43 m2, 1.22 m2,
0.99 m2, and 0.91 m2. On the aggregate distribution slope, the largest
upward distribution areas of the non-erosive zone, slight erosion

area, mild erosion area, moderate erosion area, and severe erosion
area are found in the north-northeast, west-northwest, east-
southeast, east-southeast, and south-southwest, respectively, with
areas of 1.36 m2, 1.77 m2, 1.81 m2, 1.00 m2, and 0.72 m2. On the bare
slope control surface, the largest areas of the non-erosive zone, slight
erosion area, mild erosion area, moderate erosion area, and severe
erosion area are found in the east-southeast, south-southwest,
north-northeast, west-northwest, and south-southwest,
respectively, with areas of 1.19 m2, 0.77 m2, 1.63 m2, 1.34 m2,
and 1.37 m2.

3.3 Simulation and precision inspection of
slope soil erosion intensity

3.3.1 Markov transfer probability matrix
In this study, rainfall is very important as an indicator of the

corrected transfer probability. The rainfall corresponding to the 3-
year soil erosion data (29 August 2021–10 August 2023) was

FIGURE 8
Soil erosion distribution in vegetated and non-vegetated areas.
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recorded by a siphon self-counting rain gauge. Firstly, the transfer
probability matrix of 29 August 2021 and 3 September 2022 is
calculated, and the conversion is carried out according to the rainfall
during this period and the rainfall from 3 September 2022 to
10 August 2023. The transfer probability matrix for 29 August
2021 and 3 September 2022 is converted into the transfer probability
matrix for 3 September 2022–10 August 2023, as shown in Table 3
(Equations 3, 4).

3.3.2 Analysis of suitability rules of slope soil
erosion intensity types

Soil erosion intensity types, vegetation distribution areas, micro-
slope, andmicro-aspect are key factors that influence the soil erosion
process. These factors interact according to specific rules and
mechanisms, determining both the intensity and spatial
distribution of soil erosion in different regions. When
formulating suitability rules, it is important to consider the

protective effect of different vegetation types and distribution
patterns on areas with varying erosion intensities. Erosion
intensity types are classified according to slope steepness, while
changes in micro-slope lead to variations in local erosion intensity.
Micro-aspect, referring to the orientation of the slope surface,
directly affects water flow direction, sunlight exposure, and
rainfall distribution. Therefore, variations in micro-aspect must
also be considered when developing soil erosion intensity
suitability rules. Therefore, these factors are treated as
constraints, and to ensure objectivity in evaluation, Boolean
mapping (where areas outside the scope of consideration are
assigned a value of 0, and areas to be considered are assigned a
value of 1) is employed in MCE (Multi-Criteria Evaluation). For
each type of soil erosion intensity, locations where transformation is
not possible are set to 0, while those where transformation is possible
are set to 1. This process involves analyzing the suitability rules for
soil erosion intensity on different slopes and generating suitability

FIGURE 9
Micro slope characteristics of soil erosion distribution.
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maps for different soil erosion intensity types (Figure 11). Taking the
uniform distribution of vegetation pattern as an example:

(1) Rules for the conversion of non-erosive zones.
① Limitations: Restrict conversion to >3 cm erosive zones

(0 for >3 cm, 1 for others).
② The area with a slight slope of 20°–30° is designated as a

suitable development area for non-erosion areas (1 for
this range, 0 otherwise).

③ The area with a micro-slope direction of north to
northeast is designated as a suitable development area
of non-erosion area (1 for these directions, 0 otherwise).

④ The area with vegetation distribution is designated as a
non-erosion area suitable for development (1 for
vegetated, 0 otherwise).

(2) Rule of 0–1 cm erosion zone (slight erosion area) conversion.
① Conversion Flexibility: No restrictions on conversion (all

zones set to 1).

② The area with a slight slope of 0°–10° is designated as the
suitable development area of the erosion area of 0–1 cm
(1 within this range, 0 otherwise).

③ The area with micro-slope direction from east to
southeast is designated as the suitable development
area of slight erosion area (1 within this range,
0 otherwise).

④ The area with vegetation distribution is designated as the
suitable development area of slight erosion area (1 within
this range, 0 otherwise).

(3) Conversion rules of 1–2 cm erosion zone (mild erosion area).
① Limitations: Restrict conversion to >3 cm zones

(0 for >3 cm, 1 for others).
② The area with a slope of 20°–30° is designated as a suitable

development area of mild erosion area (1 within this
range, 0 otherwise).

③ The area with micro-slope direction from east to
southeast is designated as the suitable development

FIGURE 10
Micro-slope characteristics of soil erosion distribution.
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area of mild erosion area (1 within this range,
0 otherwise).

④ The vegetation distribution area is designated as the
suitable development area of mild erosion area
(1 within this range, 0 otherwise).

(4) Conversion rules of 2–3 cm erosion zone (moderate
erosion area).
① Limitations: Restrict conversion to slight erosion area

and >3 cm zones (0 for these, 1 for others).
② The area with a slight slope of 40°–50° is designated as a

suitable development area of moderate erosion area
(1 within this range, 0 otherwise).

③ The area with micro-slope direction from west to
northwest is designated as the suitable development
area of moderate erosion area (1 within this range,
0 otherwise).

④ The non-vegetation distribution area is designated as the
suitable development area of moderate erosion area
(1 within this range, 0 otherwise).

(5) >3 cm erosion zone (severe erosion area) conversion rules.
① Limitations: Restrict conversion to non-erosion, slight

erosion area, and moderate erosion area (0 for these,
1 for others).

② The area with a slight slope of 40°–50° is designated as the
suitable development area of the erosion area of >3 cm
(1 within this range, 0 otherwise).

③ The area with a micro-slope direction of south to
southwest is designated as the suitable development
area of the erosion area of >3 cm (1 within this range,
0 otherwise).

④ The non-vegetation distribution area is designated as the
suitable development area of the erosion area of >3 cm
(1 within this range, 0 otherwise).

3.3.3 Simulation of slope soil erosion intensity
Based on the data preparation outlined above, the simulation of

the 2023 soil erosion intensity grade charts for different slopes was
conducted, with the resulting charts displayed in Figure 12
(Equation 5). As shown in Figure 12, the spatial layout of the
actual soil erosion intensity grade diagram generally aligns with
that of the simulated diagram. The uniformly distributed slope
remains dominated by the mild erosion area, while the randomly
distributed slope primarily transitions from the mild erosion area to
the moderate erosion area. The aggregate slope shifted from the mild
erosion area to slight erosion area, while the bare slope continues to
be dominated by the moderate erosion area.

The simulated results were further compared with the actual
areas of soil erosion intensity types (Figure 13). As shown in
Figure 13, on the uniformly distributed slope, the simulated areas
of slight erosion area, mild erosion area, and severe erosion area all
increased, with the severe erosion area showing the largest increase
(0.71 m2). Conversely, the areas of the non-erosive zone and

TABLE 3 Type transfer probability matrix of slope soil erosion on slopes (m2).

Distribution mode 2021/2022 1 2 3 4 5 2022/2023 1 2 3 4 5

Uniform distribution 1 0.168 0.287 0.159 0.217 0.000 1 0.329 0.226 0.000 0.000 0.154

2 0.290 0.407 0.155 0.116 0.213 2 0.324 0.194 0.242 0.174 0.224

3 0.430 0.336 0.121 0.085 0.000 3 0.257 0.268 0.293 0.215 0.000

4 0.398 0.000 0.119 0.088 0.000 4 0.000 0.256 0.000 0.169 0.127

5 0.000 0.000 0.115 0.000 0.165 5 0.000 0.000 0.319 0.229 0.044

Random distribution 1 0.137 0.193 0.000 0.189 0.000 1 0.089 0.274 0.310 0.238 0.000

2 0.146 0.249 0.279 0.245 0.143 2 0.074 0.150 0.000 0.291 0.188

3 0.148 0.242 0.254 0.252 0.000 3 0.000 0.283 0.254 0.232 0.000

4 0.000 0.000 0.270 0.203 0.263 4 0.174 0.000 0.344 0.131 0.009

5 0.000 0.000 0.217 0.136 0.152 5 0.264 0.386 0.204 0.000 0.021

Gather distribution 1 0.137 0.193 0.261 0.000 0.237 1 0.081 0.234 0.243 0.271 0.000

2 0.146 0.249 0.279 0.245 0.211 2 0.043 0.192 0.280 0.000 0.186

3 0.148 0.242 0.254 0.252 0.269 3 0.182 0.215 0.259 0.295 0.000

4 0.000 0.229 0.270 0.203 0.000 4 0.153 0.234 0.330 0.223 0.144

5 0.151 0.265 0.000 0.000 0.152 5 0.000 0.000 0.306 0.360 0.159

Bare slope control 1 0.261 0.000 0.116 0.372 0.356 1 0.207 0.112 0.314 0.420 0.000

2 0.391 0.331 0.086 0.135 0.000 2 0.000 0.127 0.355 0.390 0.114

3 0.020 0.303 0.107 0.000 0.192 3 0.000 0.280 0.324 0.285 0.175

4 0.017 0.135 0.000 0.269 0.203 4 0.135 0.353 0.324 0.141 0.000

5 0.000 0.000 0.100 0.197 0.687 5 0.145 0.343 0.200 0.000 0.124
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moderate erosion area decreased, with the moderate erosion area
experiencing the most significant decrease (0.9 m2). On the
randomly distributed slope, the simulated areas of the non-
erosive zone, slight erosion area, moderate erosion area, and
severe erosion area all increased, with the moderate erosion area
showing the greatest increase (0.42 m2). Meanwhile, the area of the
mild erosion area decreased by 1.15 m2. On the aggregate
distribution slope, the simulated areas of slight erosion area,
moderate erosion area, and severe erosion area all increased, with
the moderate erosion area experiencing the largest increase
(0.69 m2). In contrast, the areas of the non-erosive zone and the
mild erosion area both decreased significantly (0.72 m2). On the bare
slope control surface, the simulated areas of the non-erosive zone
and severe erosion area increased, with the severe erosion area

showing the greatest increase (0.73 m2). In contrast, the areas of
slight erosion, mild erosion area, and moderate erosion area zone
decreased, with the moderate erosion area experiencing the largest
decrease (0.49 m2).

3.3.4 Simulation accuracy test
The soil erosion intensity grade map of different slopes in

2023 was simulated, and the accuracy of the simulation was
tested by using the measured data of soil erosion intensity of
different slopes in 2023. As shown in Table 4, the Kappa
coefficients for soil erosion intensity simulation (Equation 6) on
the uniformly distributed slope, randomly distributed slope,
aggregate distributed slope, and control slope were 65.24%,
73.62%, 75.88%, and 69.06%, respectively. These values indicate a

FIGURE 11
Suitability atlas of evenly distributed soil erosion intensity types.
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good fit and suggest that the simulated data effectively represents the
mutual transformation trends among various types. This
indicates that the model can predict future changes in soil
erosion intensity.

The accuracy of slight erosion area is high at 92.02%, while the
accuracies of the moderate erosion area and severe erosion area are
lower at 68.42% and 59.89%, respectively. The simulation accuracies
for the non-erosive zone, moderate erosion area, and severe erosion
area were higher, reaching 91.41%, 90.69%, and 96.11%,
respectively. In contrast, the accuracies of slight erosion area and

mild erosion area are lower, at 87.86% and 73.98%, respectively. The
simulation accuracies for the non-erosive zone, slight erosion area,
and severe erosion area are notably high, reaching 99.02%, 98.75%,
and 99.07%, respectively. In contrast, the accuracies of the mild
erosion area and moderate erosion area are lower, at 83.41% and
75.87%, respectively. The simulation accuracies for the non-erosive
zone, slight erosion area, mild erosion area, and moderate erosion
area are higher than those for the bare slope, reaching 91.8%,
96.39%, 92.11%, and 89.83%, respectively. Conversely, the
accuracy of the severe erosion area is lower, at only 56.55%.

FIGURE 12
Simulation of soil erosion intensity levels.
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4 Discussion

4.1 Applicability of MCE-CA-Markov model

Slope is a fundamental component of soil erosion control and
research within a basin or region. The occurrence, development, and
evolution of soil erosion on slopes are complex phenomena, with
vegetation being the primary factor influencing the erosion process.
However, current research on soil erosion on slopes with vegetation
patterns primarily focuses on post-event control measures. Relatively
few studies have been conducted on simulating soil erosion on slopes
with vegetation patch patterns (Chen, 2006). Typically, soil erosion
intensity is simulated using the RUSLE equation as a variable. He et al.
(2014) analyzed the soil erosion status of three experimental plots and
two control plots under three rainfall conditions, applying the CA-
Markov method to simulate soil erosion across five plots (Sun and
Deng, 2015). The results were very close to the observed outcomes. This
approach not only offers a novel idea and method for simulating slope

soil erosion but also serves as a reference for vegetation management in
controlling slope erosion.

The CA-Markov model is empirical, predicting changes in the
subsequent period based on prior changes. This model treats the
simulated ecological process as uniform, with rainfall serving as the
primary driving force for soil erosion, which varies significantly over
time. Consequently, this study employs a method to fit the
characteristics of runoff, sediment yield, and rainfall for different
slopes. The results indicated that rainfall, runoff, and sediment yield
had the most significant effects. Therefore, rainfall was chosen to
replace the time step in the modified transfer probability matrix (Ji
et al., 2019), and the multi-criteria evaluation method in IDRISI was
utilized to integrate various influencing factors, completing the
simulation of the spatial evolution of soil erosion intensity
changes across different vegetation patch patterns on slopes.

The Kappa coefficients for the simulated maps of soil erosion
intensity for uniform distribution, random distribution, aggregate
distribution, and bare slope control were 65.24%, 73.62%, 75.88%,

FIGURE 13
Comparison of simulated area of soil erosion intensity.
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and 69.06%, respectively. These results demonstrate that the MCE-CA-
Markov model is effective for simulating the evolution of soil erosion,
with high simulation accuracy. However, when simulating slopes under
3 years of erosion conditions, themodel assumes that the effects of slope
length and soil erodibility (K value) are uniform across all slopes. It only
considers several factors, including rainfall, soil transformation status,
vegetation patch patterns, micro-slope, and micro-slope orientation.
Among these factors, soil transformation status pertains to the transfer
of various soil erosion intensity types. Internal transfers are frequent,
and the vegetation patch pattern, micro-slope, and micro-slope
direction interact with soil erosion intensity to establish rules based
on the most suitable areas for each type of soil erosion intensity.
Consequently, the naming rules are somewhat subjective,
introducing a degree of instability into the simulation. This leads to
relatively large errors in the simulation results of the CA-Markovmodel
(Sun and Deng, 2015).

Since simulation research on slope soil erosion is still in an
exploratory phase, some theoretical methods remain
underdeveloped. The Pisha sandstone area is characterized by
unique eroded soil and semi-arid climate, providing a unique test
site. However, due to differences in soil erodibility, cohesion and
hydraulic properties, the performance of the model in other
environments (e.g., wet, clay-rich soils or dry sandy land) may vary.

For example, in areas with high clay content, the soil is not easily moved
by rainfall immediately, but may experience slow and continuous
erosion under saturated conditions. Integrating soil composition
factors (such as clay and organic matter content) in the model can
improve adaptability and enable more accurate erosion simulation in
different landscapes. To address these shortcomings, the author plans to
use MCE to spatialize additional data and integrate it into conversion
rules for creating suitability maps in future research. Adjusting the cell
size to the most appropriate grid dimension could significantly enhance
the accuracy of the simulation (Zhao et al., 2013).

4.2 Difference analysis of simulation
accuracy of soil erosion intensity on slopes

The simulation revealed that the erosion area of severe erosion
increased the most on both the uniformly distributed slope (0.71 m2)
and the bare control slope (0.73 m2). In contrast, the simulated
erosion area of moderate erosion increased the most on the
randomly distributed slope (0.42 m2) and the aggregated
distributed slope (0.69 m2). Generally, the simulated areas of
different slopes show the most significant increase in the >2 cm
erosion zone. This trend occurs because, during model simulation,

TABLE 4 Simulation and accuracy test of slope soil erosion intensity on slopes.

Slope Type of soil erosion
intensity

Real Simulation Contrast of area Kappa
coefficient %

Area/
m2

Area/m2 Area
difference/m2

Precision
%

Uniform
distribution

Non-erosive region 4.42 3.64 −0.78 82.35

Slight erosion 3.76 4.06 0.30 92.02

Mild erosion 4.64 5.31 0.67 85.56 65.24

Moderate erosion 2.85 1.95 −0.9 68.42

Severe erosion 1.77 2.48 0.71 59.89

Random
distribution

Non-erosive region 2.91 3.16 0.25 91.41

Slight erosion 3.46 3.88 0.42 87.86

Mild erosion 4.42 3.27 −1.15 73.98 73.62

Moderate erosion 4.08 4.46 0.38 90.69

Severe erosion 2.57 2.67 0.10 96.11

Gather distribution Non-erosive region 4.08 4.04 −0.04 99.02

Slight erosion 4.00 4.05 0.05 98.75

Mild erosion 4.34 3.62 −0.72 83.41 75.88

Moderate erosion 2.86 3.55 0.69 75.87

Severe erosion 2.16 2.18 0.02 99.07

Bare slope control Non-erosive region 2.61 2.85 0.24 91.80

Slight erosion 4.15 4.00 −0.15 96.39

Mild erosion 4.18 3.85 −0.33 92.11 69.06

Moderate erosion 4.82 4.33 −0.49 89.83

Severe erosion 1.68 2.41 0.73 56.55

Frontiers in Environmental Science frontiersin.org18

Sheng et al. 10.3389/fenvs.2024.1512973

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1512973


as rainfall causes erosion, the model tends to simulate a
transformation from lower to higher erosion zones.
Consequently, the simulated area of the higher erosion zone is
much greater than the actual area.

The results indicate significant differences in the simulation
precision of soil erosion intensity across different slopes. In
comparison to other slopes, the Kappa coefficient for the soil
erosion intensity grade simulation map of uniformly distributed
slopes is relatively low at 65.24%. This is attributed to the more
frequent internal transfers occurring on uniformly distributed slopes
during the third phase of rainfall (Nikolaos et al., 2020). This
introduces some instability into the simulation, leading to
reduced accuracy in the simulated soil erosion intensity grade
map. Table 4 shows that the simulation accuracies for slight
erosion area on uniformly distributed, randomly distributed,
clustered distributed, and bare control slopes are 92.02%, 87.86%,
98.7 5%, and 96.39%, respectively. Overall, the simulation accuracy
of slight erosion area across different slopes is generally high. This is
because slight erosion area represents a low-intensity erosion zone,
which typically does not transform into a lower intensity zone after
erosion (Mohamed et al., 2021). As a result, it remains relatively
stable, whereas other zones can simultaneously transform into
erosion zones with varying degrees of intensity after different
erosion levels, leading to scattered cellular state changes and
added uncertainties. Consequently, its interaction with other
erosion areas is more complex, resulting in lower
simulation accuracy.

In addition to the factors considered in the model, there may be
other influences. The accuracy of the model may be affected by root
structure, as plants with deeper roots can significantly reduce erosion,
even on slopes with minimal vegetation coverage (Feng et al., 2018; Yu
et al., 2019). Further investigation into root density and structure as
anti-erosion factors could improve the model, particularly in areas with
more variable root systems, such as aggregated and random vegetation
patterns. Moreover, the Pisha sandstone region exhibits complex soil
dynamics, influenced by the composition of sand and silt, which vary in
their resistance to erosion. Incorporating soil composition parameters,
such as clay content or organic matter, may enhance the accuracy of
simulations for areas with high erosion intensity (Rodrigo-Comino
et al., 2018; Gong et al., 2023). In conclusion, although the MCE-CA-
Markov model successfully simulates erosion trends for different slope
types, addressing the aforementioned factors could improve the
accuracy of predictions for high-erosion intensity areas and provide
a more detailed understanding of soil erosion dynamics under varying
environmental conditions. Future research could integrate these factors
to provide a more comprehensive erosion simulation framework,
applicable to complex landscapes such as the Pisha sandstone region.

4.3 Effects of vegetation patch pattern on
soil erosion on slope

The patch pattern of vegetation has a significant impact on the
soil erosion process on slopes. Different vegetation distribution
patterns regulate soil erosion by altering the flow paths of water
and the movement of sediments. In this study, soil erosion intensity
is lower on slopes with uniformly distributed vegetation patches.
This may be due to the changes in the hydrological connectivity of

the slope surface. The uniform distribution pattern is more evenly
distributed and more dispersed than the aggregated and random
distribution patterns. The hydrological connectivity of vegetation in
this pattern is the weakest, meaning that the uniform distribution of
vegetation fragments the slope more, making it easier for water and
sediment flow to be intercepted by vegetation patches (Tang et al.,
2021). As a result (Figure 5), the effective space for erosion on the
slope is reduced, leading to increased soil accumulation. This results
in a higher soil infiltration rate and a significant reduction in runoff
and sediment production during the erosion process. This effectively
reduces the transport of coarse sediments and obstructs the direct
flow paths of water. In contrast, vegetation patches in random
distribution are more likely to form irregular flow channels,
leading to increased erosion intensity in localized areas. During
heavy rainfall, water flow converges between randomly distributed
vegetation patches, resulting in uneven distribution of erosion
patches and potentially forming localized areas of high erosion
intensity (Huang et al., 2017). Compared to the previous two
vegetation patterns, aggregated vegetation communities typically
consist of larger patches. These larger patches increase water
retention time and promote downward water infiltration, thereby
reducing erosion rates. Therefore, aggregated vegetation patches
effectively trap larger particles, reducing the downslope movement
of sediments (Zhao et al., 2020; Liu et al., 2018). Consequently, this
characteristic makes the optimized layout of aggregated distribution
highly significant for the practical application of soil and water
conservation.

Additionally, this study found that after rainfall, the terrain
factors on uniformly distributed slopes showed the smallest changes,
while the bare slope control surface showed the greatest changes in
micro-topographic factors. However, regardless of the vegetation
patch pattern, individual plants, clusters, or patches of vegetation on
the upslope direction will form raised soil mounds that intercept soil.
Due to the different spatial distribution patterns of plants, there will
still be soil deposition, leading to significant variations in micro-
topographic changes on the slope. Minor variations on the slope,
such as differences in gradient and aspect, influence the convergence
and divergence of water flow, thereby altering the role of vegetation
in blocking or guiding water flow (Tuo et al., 2023). Particularly on
slopes facing south or southwest, where there is sufficient sunlight,
vegetation grows more effectively, and soil erosion is
relatively minimal.

5 Conclusion

This study focuses on three typical vegetation patch patterns
(uniform, aggregated, and random distribution) on slopes and bare
slope control surfaces in the Baojia Gou watershed of the Pisha
sandstone region. The CA-Markov model was used to simulate the
dynamic characteristics of soil erosion conditions on different slopes in
2023, exploring the transfer patterns of soil erosion intensity types on
the side slopes under different vegetation patterns, and simulating the
spatial evolution of soil erosion intensity types. The results show that:
(1) Different vegetation distributions lead to different erosion intensity
patterns. In the uniformly distributed, aggregated, and bare control
slopes, the erosion intensity is predominantly within the mild erosion
area. However, on the side slopes with random distribution, the soil
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erosion intensity shifts from the mild erosion area to slight erosion area.
(2) Rainfall is a key driving factor for soil erosion, influencing runoff and
sediment yield. The erosion dynamics are the result of the combined
effects of vegetation patch patterns, slope gradient, micro-topography,
and slope aspect. The CA-Markov model achieved high simulation
accuracy, with Kappa coefficients for different vegetation patterns
ranging from 65.24% to 75.88%. The spatial layout of the simulated
soil erosion intensity maps for different side slopes closely matched the
actual soil erosion intensity maps, demonstrating the model’s
effectiveness in simulating the soil erosion processes on vegetated
slopes. This study provides new insights into the dynamic
interactions between vegetation patterns and slope soil erosion,
emphasizing the value of optimizing vegetation management to
mitigate erosion risks. Future research may improve the model by
integrating other influencing factors (e.g., soil mechanical composition,
vegetation root density) to enhance simulation accuracy and the
practical relevance of soil and water conservation efforts.
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