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Empirical analysis of the relative effectiveness of the Giant Panda National Park
(GPNP) system can promote the optimization and improvement of its
management level. Normalized Difference Vegetation Index (NDVI) is a key
indicator to measure the health of ecosystems, which can effectively
quantitatively reveal the spatial and temporal changes of ecological protection
effects. This study evaluated the relative effectiveness of Normalized Difference
Vegetation Index (NDVI) protection in the Sichuan area of the GPNP from 2000 to
2020 using the propensity score matching model (PSM). It also explored the
influencing factors and interactions of each period by combining the Optimal
Parameter-based Geographical Detector Model (OPGD). The results showed
that: 1) The study area’s Relative Effectiveness Index (REI) was positive, suggesting
effective ecological protection. The REI fell from 0.044 in 2000 to 0.031 in
2015 and although it then increased to 0.034 in 2020 to a small extent, the REI
showed an overall decreasing trend, and the conservation effect has weakened.
2)The REI change patterns varied in different functional zones of the area, with a
general fluctuation and decline, in which the Minshan and Baishuijiang Core
Protection Area (MBJ-CPA) as a whole first rise and then fall, and it is the area with
the best relative effectiveness of protection. 3) Natural factors such as
temperature and elevation are the main factors affecting NDVI, while the
influence of policy and economic factors such as the level of protected areas
and distance to towns are increasing. The Qionglaishan and Adjacent Areas
General Control Area (QLA-GCA) is dominated by the interaction of landscape
pattern index with its remaining factors, and the rest of the functional areas are
dominated by the interaction of natural factors such as temperature,
evapotranspiration with its remaining factors. Therefore, in future
development, the Qionglaishan Areas need to pay more attention to the
optimization of landscape patterns, while the other areas need to pay more
attention to the impact of climate change on the ecosystem. This study can
provide a reference for the improvement and management of ecological
protection of the GPNP system in the future.
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1 Introduction

As a rare national wildlife in China, giant pandas have long been
subject to the establishment of a large number of protected zones to
try to ensure the originality of their living environment (Ruan et al.,
2021). However, despite increased awareness and efforts to promote
giant panda conservation (Li and Song, 2022; Yang et al., 2021a),
studies have shown that human activities such as resource
development, infrastructure construction, and other socio-
economic activities in and around protected areas continue to
threaten their survival, reducing the vegetation cover of their
habitats (He et al., 2014; Li et al., 2021; Luo et al., 2022).
Recognizing the significant impact of the geographic location of
the giant panda reserves on China’s ecological security and the value
of ecosystem services (Song and Li, 2021), China implemented the
Pilot Program for the Giant Panda National Park System in
December 2016. This program aims to promote habitat
connectivity, reduce human encroachment on vegetation cover
within the reserves, and ensure the ecological security of China’s
vital ecological barrier zones (Ni et al., 2020). The Giant Panda
National Park (GPNP) was officially established in October 2021,
spanning three provinces of Sichuan, Shaanxi, and Gansu, with an
approved area of about 22,000 square kilometers (Shen et al., 2021).
The Sichuan area, comprising 74% of the total GPNP system,
represents its primary region. Therefore, dynamic monitoring
and comparison of vegetation cover inside and outside the
boundaries of the Sichuan area in GPNP to assess its relative
effectiveness is of great significance for the improvement of the
overall ecological quality of the GPNP system.

The geographic location of policies with similar characteristics,
such as protected zones, tends to be in remote areas, and even in the
absence of formal government protection measures, the pressure on
the natural environment is still lower compared to economically
developed zones (Joppa and Pfaff, 2009). Counterfactual thinking
plays a crucial role in policy evaluation and is the theoretical basis for
assessing policy effects. It centers on the construction of an “if.
Then.” scenario, i.e., what might have happened in the absence of the
policy intervention. This mode of thinking allows us to assess the
causal effects of a policy by comparing the actual outcome after the
policy was implemented with the possible outcome if the policy had
not been implemented. Thus, assessing their effectiveness entails
employing counterfactual thinking to compare the phenomena both
within and outside the protection boundary, to assess their relative
effectiveness. The relative effectiveness of protection refers to the
quantitative assessment of the effectiveness of policy
implementation in a certain geospatial area by measuring the
difference between internal and external observation indicators
based on the location of the protection boundary (Geldmann
et al., 2019). Two main methods for assessing relative
effectiveness: one focuses solely on the interior of the border,
excluding the external area, and primarily relies on techniques
like questionnaire surveys and expert assessments, while this
method only observes the environment inside the border, and the
conclusion lacks objectivity (Garces et al., 2013; Harris et al., 2019).
An alternative approach involves directly comparing internal and
external buffers or unaffected zones, typically by establishing buffers
to compare the differences in internal and external indices. The
method is not effective in explaining whether the differences in

indices inside and outside the protected area are due to the
establishment of the protected area or to the geography of the
protected area itself (Gaveau et al., 2009; Hellwig et al., 2019;
Radeloff et al., 2010). Therefore, some scholars began to use the
matching method to overcome the potential problem of sample
selection bias that could not be avoided by relying solely on buffers
in the early stage (Joppa and Pfaff, 2010). This method primarily
relies on combining observed variables, such as temperature and
precipitation, with a propensity score matchingmodel to identify the
most similar internal and external experimental groups and control
groups, and then carry out the assessment of the relative
effectiveness of the protection, which has already been proven to
be objectively valid by scholars (Geldmann et al., 2019). In terms of
the specific evaluation indicators used, the use of indicators such as
ecosystem services (Zhang et al., 2023b), habitat quality (Zhang
et al., 2023a), and an anthropogenic pressure index coupled with
multi-source data (Zhang et al., 2021) have been included to
disprove the relative effectiveness of conservation in nature
reserves. The NDVI is a typical and commonly used
instrumental variable to effectively measure plant growth status
and the density of the spatial distribution of vegetation. Previous
studies have demonstrated the significant role of NDVI in revealing
patterns of surface vegetation cover changes and evaluating the
dynamics of regional ecological environments. Consequently, it
finds extensive application in the assessment and monitoring of
ecological environments (Domingo-Marimon et al., 2024; Yi
et al., 2023).

The conservation effectiveness of ecologically protected areas is
closely related to natural and socio-economic conditions, such as
temperature, topography, population growth, and urban expansion.
The analysis of factors affecting the effectiveness of protected areas is
the foothold of effective management of protected areas, and it is
also of great significance to the improvement of the effectiveness of
protected areas. Currently, in the exploration of influencing factors,
scholars have already employed various models, including panel
regression (Zhang et al., 2021), and random forest analysis (Cao,
2021), to explore the influencing factors of human activity pressure
mitigation and relative effectiveness in China’s nature reserves and
Qinling National Nature Reserve. Although these models can
identify factors affecting relative effectiveness, they tend to ignore
the problem of multicollinearity that may be triggered by
interactions among independent variables (Fan et al., 2021). In
contrast, geographical detector (GD) models exhibit significant
advantages in dealing with spatial correlation and assessing the
weights of non-normally distributed and non-linear factors (Ye
et al., 2023). However, the traditional GD model analyzes the
spatial relationships between geographic phenomena and factors
based on a grid, and it is easy to neglect the effects of scale and
zoning in the study of spatial heterogeneity (Wang et al., 2023). In
this regard, Song (Song et al., 2020) proposed an optimal
parameters-based geographical detector (OPGD) model, which
can identify the optimal combination of spatial scale parameters
and spatial data discretizationmethods, and provide a scientific basis
for accurately revealing the correlation between dependent and
independent variables. Considering the effectiveness of the
OPGD model in exploring the driving factors, it is widely used
in quantitatively exploring the driving factors of a variety of spatial
heterogeneity problems (Cen et al., 2024; Wang et al., 2024).
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Current research on the relative effectiveness of the GPNP
system and the factors influencing it is generally scarce. Existing
studies have focused on evaluating the effectiveness of internal
nature reserve management (Pu et al., 2022; Qin et al., 2023),
analyzing spatial overlap relationships (Xu and Tang, 2024;
Zhuang et al., 2020), and the spatial and temporal evolution of
ecological security (He et al., 2024). When using the PSM model
to evaluate the effectiveness of policy boundary protection, most
studies fail to take into account that differences in the spatial
distance of the samples produce matching errors, which affects
the rationality of the evaluation results. Regarding the
exploration of factors influencing the relative effectiveness of
conservation, favoring the unidirectional effect of the influencing
factors on the results and ignoring the interaction between the
factors. This study focuses on the overall Sichuan Areas inGPNP,
along with its four functional zoning: the Minshan and
Baishuijiang Core Protected Areas (MBJ-CPA), the Minshan
and Baishuijiang General Control Area (MBJ-GCA), the
Qionglaishan and Adjacent Areas Core Protected Areas (QLA-
CPA) and the Qionglaishan and Adjacent Areas General Control
Area (QLA-GCA). Leveraging the ArcGIS platform, this study
integrates spatial coordinates into the observational variables and
employs the PSM model to evaluate the relative effectiveness of
the various functional zones within the Sichuan area in GPNP
from 2000 to 2020. Additionally, the OPGD Model is utilized to
determine the most suitable classification criteria for both
factorial and interaction detection across different functional
zones in the two internal regions (Figure 1). This study aims
to provide important references for the enhancement of the

effectiveness of ecological protection and environment
improvement of the GPNP system.

2 Materials and methods

2.1 Study area

The Sichuan Area in GPNP is situated on the southwestern
border of China, spanning coordinates 102°11′~105°32′E and
28°50′~33°12′N. It spans a total land area of 20,177 km2, which
accounts for approximately 74.36% of the Sichuan Province. It
encompasses 7 cities and 20 counties. The region exhibits
complex topography, characterized by higher elevations in the
north-west and lower elevations in the south-east. Influenced by
the topography, the region has a distinct vertical distribution of
vegetation with increasing elevation. Precipitation is concentrated in
summer with notable spatial variation. The study area is primarily
divided into Minshan-Baishuijiang Areas, as well as the
Qionglaishan Areas. The area consists of two distinct functional
zones, namely the General Control Area (GCA) and the Core
Protection Area (CPA), which account for covering 74.20% and
25.78% of the total land area, respectively. (Figure 2).

2.2 Data sources and processing

The boundary data of the GPNPwas obtained from the Qinghai-
Tibetan Plateau Scientific Expedition-National Parks. (https://www.

FIGURE 1
Technical route.
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travelxj.cn/). NDVI data from NASA (https://www.nasa.gov/) were
originally a 16-day AM product at 500 m resolution, which was
batch processed and value normalized to form an annual synthetic
maximum product.

Of the initial observational variables required for propensity
score matching, the DEM data was obtained from the Data Center
for Resources and Environmental Sciences, Chinese Academy of
Sciences (https://www.REsdc.cn/). DEM extracted slope and slope
direction data in ArcGIS10.2. Average annual precipitation data and
average annual temperature data were obtained from the Data
Center for Resources and Environmental Sciences, Chinese
Academy of Sciences (https://www.REsdc.cn/) and formed by
inverse distance-weighted interpolation.

Among the influencing factors, the protected area boundaries
data were derived from the China Nature Reserve Specimen
Resource Sharing Platform (http://www.papc.cn/). The road data
comes from the National Earth System Science Data Center (http://
www.geodata.cn). The highway, railway, and provincial road are
merged to form the main road, and the Euclidean distance tool is
used to calculate the distance to the main road and the distance to
the urban construction land. Land cover data is derived from the
Data Center for Resources and Environmental Sciences, Chinese
Academy of Sciences (https://www.REsdc.cn/) with a unified
resolution of 500 m. Potential evapotranspiration data, relative

humidity data, maximum air temperature data, and minimum air
temperature data were obtained from the National Geosystem
Science Data Center (http://www.geodata.cn) They are all
monthly data of 1 km. After projection transformation, mean
synthesis, and mask extraction, they are resampled into annual
data products of 500 m. The landscape pattern index (LPI/AI/LSI)
was based on creating a 500 m fishnet grid in the study area, which
was measured using the moving window method in the Fragstats 4.
2 software platform in combination with the land use data of each
period (Table 1).

2.3 Relative effectiveness evaluation

2.3.1 Propensity score matching models
Propensity Score Matching (PSM) refers to the measurement of

the probability of occurrence of sample point i within the
experimental and control groups based on some influence factor
Mi (Rosenbaum and Rubin, 1983) (Formula 1). The method is based
on the propensity scores of the experimental and control groups,
with the practical application of different rules for matching, to
select the experimental and control groups that are the most similar
between the two under the constraints of the observed variables, to
eliminate the sample selectivity bias (Olmuş et al., 2022).

FIGURE 2
Location map of the study area.
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p Mi( ) � pr PAi� 1 |Mi( ) � F f Mi( )( ) (1)
p(Mi) is the propensity score of sample point i; PAi = 0 is the control
group, PAi = 1 is the experimental group; f(Mi) is a linear function,
F(x) is a logical function.

Due to the establishment of protected areas within the study
area after 2000 and the implementation of the “Tianbao Project,”
vegetation protection has been effective to a certain extent.
Therefore, in this study, the year 2000 was chosen as the base
year. Seven natural geographic factors, including DEM, slope,
slope direction, average annual precipitation, average annual
temperature, X coordinate, and Y coordinate, were
preliminarily selected as the observational variables for the
propensity score matching method. The establishment of a
500 m fishnet grid in the study area necessitates sampling
treatment due to the large number of total samples and the
vast amount of data computation involved. Therefore, this
paper draws on the experience of previous researchers (Liu
et al., 2024; Zhang et al., 2022), and selects 10% of the sample
points from the protected area as the experimental group using
ArcGIS’s “Subset” tool. After multiple iterations, slope,
X-coordinate, average annual precipitation, and average
annual temperature were ultimately determined as the
matching observation variables, ensuring maximum similarity
between the matched samples. Due to the late formal
establishment of the GPNP system, and to effectively
represent the reality of the differences in and around the
boundary, this study does not take into account the spillover
effect of the longer establishment of the boundary when using the
PSM. Referring to existing studies (Wu et al., 2022) and
combining with several experiments, this paper finally
determined that the area within 10 km from the boundary of

the protected area would be used as the external buffer zone, from
which the control group was collected. The nearest neighbor rule
in the caliper was selected for 1:2 propensity score matching, and
the final experimental group and control group were determined,
which provided the basis for evaluating the relative effectiveness
of the GPNP in the Sichuan area.

2.3.2 Relative effectiveness index
The relative effectiveness index (REI) is to refer to the research

results of Zhang Han and other scholars (Zhang et al., 2021). It
measures the difference between the mean NDVI value within the
boundary and those of the final matched control group, to positively
argue the relative effectiveness of the protection boundary of the
GPNP system in terms of vegetation cover and other ecological
environmental protection (Formula 2).

REI �
∑
n1

i�1
Δpixeli
n1

−
∑
n0

j�1
Δpointj

n0
(2)

REI refers to the relative effectiveness index comparing the two
functional zones in various regions of the GPNP in Sichuan.
Δpixeli represents the aggregate NDVI value of image element i in
a certain functional area within a region for the years 2000, 2005,
2010, 2015, and 2020; n1 is the number of image elements in a
certain functional area within a region; Δpointj is the sum of
NDVI at sample point j of the matched control group for the
years 2000, 2005, 2010, 2015 and 2020; no is the number of sample
points in the control group following matching. If REI >0, then
NDVI inside the protected area is high, and the ecological
protection effectiveness is positive. If REI <0, the ecological
protection effectiveness of the protected area is negative.

TABLE 1 Details of all data.

Category Data type Year Data type/
Resolution

Data source

Basic data The boundary data of the GPNP 2020 Vector Data Qinghai-Tibetan Plateau Scientific
Expedition-National Parks [https://www.

travelxj.cn/ (accessed on 11 November 2023)]

NDVI 2000–2020 Raster Data/500 m NASA [https://www.nasa.gov/ (accessed on
11 November 2023)]

Data required for propensity
score matching

DEM 2000 Raster Data/30 m Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences
[https://www.REsdc.cn/ (accessed on

3 December 2023)]

Slope/Slope direction data 2000 Raster Data/30 m

Average annual precipitation/Average annual
temperature

2000 Raster Data/1 km

Data required for driver
analysis

Land cover data 2000–2020 Raster Data/30 m

The protected area boundaries data 2020 Vector Data China Nature Reserve Specimen Resource
Sharing Platform [http://www.papc.cn/

(accessed on 18 December 2023)]

The road data (highway/railway/provincial road) 2000–2020 Vector Data National Geosystem Science Data Center
[http://www.geodata.cn (accessed on

11 November 2023)]Potential evapotranspiration/relative humidity/
maximum air temperature/minimum air

temperature

2000–2020 Raster Data/1 km

landscape pattern index (LPI/AI/LSI) 2000–2020 Raster Data/500 m using the moving window method in the
Fragstats 4.2 software platform
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2.4 Major factors of relative effectiveness
indices change

The core of the geodetector is that if the independent variable
significantly impacts the dependent variable, the spatial
arrangement of the two exhibits similarity, it is a novel statistical
method to detect the spatial dissimilarity and reveal the law of the
driving factor, including four sub-tools: factor detection, interaction
detection, ecological detection, and risk detection (Wang and Xu,
2017). The OPGDmodel can optimize the spatial data discretization
process and spatial scale to determine the best combination of
parameters for the geodetector to further extract the geographic
feature information of the spatial explanatory variables (Song et al.,
2020; Xu et al., 2023).

In this study, we mainly used factor detection and interaction
detection. The principles of data relevance, usability, and
comprehensiveness were comprehensively considered. Factors
that may affect the relative effectiveness of protected areas were
selected from multiple levels, such as natural, socioeconomic, etc.,
and the research experience of other scholars was also taken into
account (Liao et al., 2024; Liu et al., 2021; Xu et al., 2024). Finally,
five natural factors (altitude, minimum temperature, maximum
temperature, relative humidity, potential evapotranspiration), four
economic policy factors (distance from the main road, land cover,
distance from urban construction land, and type of nature reserve),
and three landscape pattern indices (largest patch index (LPI),
aggregation index (AI) and landscape shape index (LSI)) were
used as independent variables. The categorization methods and
categories of the different influencing factors are classified
according to the rules in Table 2.

Factor detection reveals the magnitude of the extent to which the
influence factors explain the spatial dissimilarity of the dependent
variable (Formula 3). Interaction detection refers to assessing the
difference in the explanatory strength of two combinations of
influence factors when they act together versus when they act
alone (Li et al., 2022).

q � 1 − 1
Dσ2

∑
m

n�1
Dnσ

2
n (3)

q refers to the strength of the influence factor X in explaining the
spatial variability of the relative validity index, ranging from [0,1],
with larger values indicating a strongX explanation; n = 1,2,3, . . . ,m,
is the number of classifications for factor X; Dn and D is the number
of subregion n and total region samples, respectively; σ2n is the nth
variance of the influence factor X, σ is the total regional variance.

3 Results

3.1 Relative effectiveness analysis

3.1.1 PSM matching results
In this study, 8,679 experimental sites and 70,673 control sites

were initially collected after the fishnet grid was created. After slope,
X-coordinate, average annual precipitation, and average annual
temperature were used as observational variables to match
propensity scores, 8,679 and 14,387 experimental and control
sites were left, respectively. To verify the accuracy of the model,
the matching results are subjected to a common support test and a
balance test.

TABLE 2 Rules for classification of influencing factors.

ID Influence factor units Classification method Category

X1 Protected area grade — Combining the vector data of protected zones in Sichuan Province and dividing the sample
categories

1: outside the boundaries of
protected zones

2: other
3: county and city level

4: provincial level
5: national level

X2 altitude m natural breakpoint method 7

X3 Distance to town m quantile 8

X4 Distance to main road m quantile 7

X5 potential
evapotranspiration

mm natural breakpoint method 8

X6 land cover — Combined with the Chinese Academy of Sciences Resource and Environmental Sciences
and Data Center Land Type Classification Methodology Harmonization of Broad Classes

6

X7 relative humidity % natural breakpoint method 7

X8 minimum temperature °C natural breakpoint method 6

X9 maximum temperature °C natural breakpoint method 8

X10 LPI % natural breakpoint method 5

X11 AI — natural breakpoint method 5

X12 LSI — natural breakpoint method 5
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The common support test is to measure the effect of the model
by the size of the common value range before and after the
propensity score matching. Figure 3 shows that after the initial
experimental group and the control group went through the
propensity score matching model, the lines nearly overlapped
and the common support range became significantly larger,
i.e., the propensity score matching model was more effective.

To further verify the changes in each observation variable before
and after the propensity score matching, the effect of the model was
observed through the balance test. Table 3 shows that after
propensity score matching, the absolute value of the standard
deviation of slope, X coordinate, annual average precipitation,
and annual average temperature is less than 2%, and the absolute
value of t statistic is less than 1.96. There is no significant difference
in the mean value of each variable between the experimental group
and the control group after matching, indicating that the model
passes the balance test.

3.1.2 Relative effectiveness evaluation
The experimental and control groups retained by the propensity

score matching model were derived, and the temporal change
pattern of REI of the Sichuan Area in GPNP from 2000 to
2020 was obtained after the operation according to Equation
2 (Figure 4).

The results showed that the REI of the Sichuan Area in GPNP
from 2000 to 2020 was > 0, indicating that the ecological
protection effect of the study area from 2000 to 2020 was
relatively effective. From the perspective of temporal change,
the overall trend of REI is decreasing. From 2000 to 2015, it
continued to decline to 0.031, with its relative effectiveness
weakening by nearly 29.55% compared to 2005; the REI began
to improve after 2015. To further reveal the spatial differentiation
patterns of the relative effectiveness of GPNP, the REI of different
zones were counted according to functional subdivisions in this
study, and the results are as follows:

FIGURE 3
Nuclear density map. (A) Before matching (B) after matching.

TABLE 3 Results of the balance test.

Variable Mean Bias (%) Reduce
magnitude (%)

t-test

Experimental
group

Control
group

t P>|
t|

Slope Before
Matching

20.734 17.696 31.400 94.800 27.150 0.000

After Matching 20.734 20.891 −1.600 −1.090 0.276

x-coordinate Before
Matching

103.470 103.430 5.000 72.000 4.170 0.000

After Matching 103.470 103.460 1.400 0.890 0.373

average annual
precipitation

Before
Matching

1,224.000 1,179.600 27.800 95.200 23.120 0.000

After Matching 1,224.000 1,226.100 −1.300 −0.870 0.383

annual average
temperature

Before
Matching

7.549 9.897 −48.900 97.700 −39.390 0.000

After Matching 7.549 7.602 −1.100 −0.710 0.480
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Figure 5 shows that the REI of the MBJ-CPA are both greater
than 0 in 2000–2020, but the overall trend is to show a first
increase and then decrease, for the best relative effectiveness
within the two zones. From 2000 to 2005, the REI gradually
increased and reached a high of 0.107 in 2005 for the study
period, and then began to decline until it reached its lowest level
in 2010, the REI as a whole is still smaller than the 2000 level of
relative effectiveness in 2020, although it improves slightly; while
its GCA has an overall downward trend over 2000–2020. The
pattern of REI change in the GCA is consistent with that of the
CPA, with the difference that its REI in 2015 and 2020 is close to
the level of relative effectiveness in the early 2000s. The REI of the
QLA-CPA showed a fluctuating trend from 2000 to 2020, but the
overall decline fell to a minimum of 0.011 in 2015, weakened by
nearly 6.45% compared to the base year; The REI in its GCA has
overall decline, although REI is higher than that of the CPA in
various years during 2000–2020, and the same phenomenon of
REI exists in adjacent years at intervals after 2000.

3.2 Analysis of major influencing factors

After classifying the 12 influencing factors such as the level of the
protected area into categories according to the classification rules,
factor detection was carried out by combining the REI of different
regions in each year, and the results are shown below:

From Figures 6A, 7A, it can be seen that maximum temperature
(q = 0.101), minimum temperature (q = 0.090), and elevation (q =
0.083) were all greater than 0.080 as the main influencing factors in
the MBJ-CPA from 2000 to 2020, and the trends of their changes
were consistent, with a decrease after reaching the maximum in
2005 and then an increase in 2010. The effect of protected area level
on REI showed a trend of increasing; distance to town, distance to
main road, and relative humidity all increased and then decreased,
but their q-values still increased at the end of the study period
relative to the beginning of the period. LPI, AI, LSI, and potential
evapotranspiration show increasing and then decreasing trends. For
the MBJ-GCA (Figure 6B), maximum temperature (q = 0.078),

FIGURE 4
REI changes of GPNP in Sichuan (2000–2020).

FIGURE 5
REI Changes in different regions of GPNP in Sichuan (2000–2020).
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potential evapotranspiration (q = 0.068), and distance to the main
road (q = 0.064) are the main influencing factors, and the other
factors are less than 0.060. According to Figure 7B, the influence of

protected area level on REI showed a trend of increasing first and
then decreasing. The variations of LPI, AI, and LSI were consistent.
The remaining factors increased and then decreased from 2005 to

FIGURE 6
Mean q value of influencing factors in different regions of the Sichuan Area in GPNP. (A) MBJ-CPA (B) MBJ-GCA (C) QLA-CPA (D) QLA-GCA.

FIGURE 7
Variation of q-values of influencing factors in different regions of Sichuan Area in GPNP. (A) MBJ-CPA (B) MBJ-GCA (C) QLA-CPA (D) QLA-GCA.
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2010. The land cover is not significant in the Minshan-Baishuijiang
Areas as a whole.

Figure 6C shows that in the QLA-CPA from 2000 to 2020, the
q-values of maximum temperature, altitude, minimum temperature,
and potential evapotranspiration were 0.172, 0.135, 0.133 and 0.128,
respectively, and the remaining factors such as protected area level
had a weak overall impact. From the perspective of the change trend
(Figure 7C), the force of the protected area level increased as a whole,
and then weakened in the last two periods, but overall increased
compared with the force at the beginning of the period. The q-values
of altitude decreased by 15.75% in 2010 and then increased slightly
in the last two periods. Distance to town had the weakest effect and
was not significant overall during the study period. The q-values of
relative humidity influence were weakened in all five periods. The
q-values of LPI, AI, LSI, minimum and maximum temperatures
have the same pattern of change, and the five periods have
comparable forces on REI; For the QLA-GCA (Figure 6D), the
relatively large q-values of LPI(q = 0.059), AI (q = 0.054), and LSI
(q = 0.066)are the main drivers, in contrast to the other three
functional areas. The minimum temperature showed a fluctuating
trend as a whole (Figure 7D), and the highest influence was 0.037 in
2015; The q-values for maximum temperature show an overall
increasing trend and reach their maximum in 2020, with an
increase of almost 1.25 times compared to 2000. The influence of
the remaining factors was weak overall, and even non-significant
during the study period.

In general, maximum temperature, minimum temperature, and
altitude in the four functional areas have a strong decisive force,
indicating that natural factors have a greater impact on the relative
effectiveness of ecological protection in the Sichuan area in GPNP
than socio-economic factors. Although the socioeconomic factors
showed a fluctuating trend in the five periods, compared with the
beginning of the study period, the decisive power of socio-economic
factors such as distance to town and distance to the main road
increased at the end of the period, indicating that the role of socio-
economic factors was becomingmore andmore obvious. The overall
weak impact of land cover is related to the low level of human
activities and the less obvious change in land types in the
protected area.

3.3 Interactive analysis of influencing factors

The interaction detection results of the OPGD model were
integrated, and the interaction results of the insignificant factors
were eliminated to produce the five-phase heat maps of the different
functional zones of the two districts (Figure 8).

Figure 8 shows that the two-factor enhancement relationship in
the MBJ-CPA accounted for 26.92%, 34.62%, 10.26%, 23.08%, and
24.36% in the five periods from 2000 to 2020. The overall strong
interaction of elevation, minimum temperature, maximum
temperature, and the rest of the factors indicates that the
influence of these three factors is significantly higher after
interacting with the rest of the factors, which is important for the
protection of vegetation in the study area. Among them, the
potential evapotranspiration ∩ LSI was as high as 0.198 in 2000,
with the most significant interaction. The combination of maximum
temperature and distance to the main road had the strongest effect

from 2005 to 2020, with all interaction q-values greater than 0.188.
The MBJ-GCA two-factor augmentation relationship was 15.15%,
6.06%, 14.10%, 12.73%, and 20% in that order, which was slightly
lower than that of the core protection area. The interaction between
potential evapotranspiration and the rest of the factors within the
region was larger in all five periods. The effects of these two
combinations of potential evapotranspiration with distance to
town and potential evapotranspiration with minimum
temperature were the most significant.

The interaction forces of elevation, potential
evapotranspiration, minimum air temperature, maximum air
temperature, and the rest of the factors in the QLA-CPA were
higher in all five periods during the study period, while the
influence of the other factors was weaker. The share of two-
factor enhanced relationships is concentrated in 2000, up to
22.73%. Specifically, the maximum temperature ∩ LPI is a five-
period maximum of 0.253 in 2000. The overall interaction power
in 2020 is the weakest in the five periods, with maximum
temperature ∩ LPI reaching a maximum of 0.203, whereas the
lowest values were concentrated in the two-phase interactions
between LPI and AI and LSI. The proportion of the two-factor
enhancement relationship of QLA-GCA was the smallest in the
four functional zones, with ≤13.9% in all five periods. Overall,
the effects appear to be higher for the interaction of LPI, AI, LSI,
and the remaining factors, and are most pronounced in 2010.

Overall, the synergistic effect of multiple factors jointly
influenced the changes in the relative effectiveness index of the
Sichuan Area in GPNP. The economic policy factor’s interaction
with other elements was markedly less pronounced compared to the
interplay among natural factors. Consequently, during the
restoration of protected areas and the development of ecological
civilization, it is imperative to consider not only the individual
impacts of natural and socioeconomic factors on the conservation’s
relative effectiveness but also to orchestrate the amplifying effects
that arise from the interplay between diverse factors.

4 Discussion

The primary aim of this study is to assess the influence of
regional policies on the efficacy of ecological conservation efforts.
Given that a region’s NDVI is highly responsive to natural elements
like precipitation and temperature, it can be challenging to attribute
changes in NDVI solely to policy impacts. To address this, our
research adopts a spatial analysis approach. By comparing the NDVI
variations between protected and non-protected areas within the
same year, we aim to quantify the protective effects of policies. This
method effectively mitigates the potential confounding effects of
extreme meteorological fluctuations. Our analysis of vegetation
cover discrepancies within and beyond the Sichuan Area in
GPNP offers insights into the comparative effectiveness of
conservation policies. This study not only contributes a scientific
framework for evaluating policy outcomes in protected regions
globally but also informs future ecological conservation
endeavors. The findings possess a degree of universality, guiding
conservation practices in various contexts.

The ecological environment within the impact boundary
includes a variety of factors such as precipitation, temperature,
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transportation accessibility, etc. (Zhao et al., 2019), and it is
difficult to distinguish whether it is the introduction of the
policy or its own geographic environment that affects it, so it is
necessary to clarify whether it is the location difference generated
by the designated policy boundary that contributes to the
effectiveness of its protection (Zhang et al., 2021). Many studies
have been conducted to assess the relative effectiveness of nature
reserves using the PSM method, such as using anthropogenic
pressures (Cao et al., 2019) or ecosystem services (Dähler et al.,
2019) as an indicator of effectiveness. However, most of the
existing studies do not fully consider the influence of spatial
location factors on assessment results. Especially in smaller
study areas, we believe that the inclusion of spatial coordinates
as an observational variable in the analytical framework is essential
to improve the precision and reliability of the study. Therefore, we
incorporated spatial coordinates into the propensity score
matching process to minimize sample selection bias. The results
showed that the REI of the Sichuan Area in the GPNP Area was
positive in all years during 2000–2020, i.e., the NDVI within the
boundary was still higher compared with the outside but decreased
overall. The reason for this is that since 2000, the government has
continuously established additional protected zones within the
GPNP, and taken ecological engineering measures such as natural
forest protection and returning farmland to forests (grasses),
which have contributed to the high vegetation coverage within
its boundaries (Yang X. et al., 2021). Although the maintenance of
livelihoods in and around the conservancy is within the

conservancy’s target setting, there is still a possibility of loss of
regional economic development opportunities, which in turn
generates illegal entry for access to plant and animal resources
in search of alternative livelihoods (Adams et al., 2004), which still
has an impact on the overall NDVI of the study area. In addition, in
this paper, during the propensity score matching process, due to
the microscopic nature of the study area, the inclusion of land use
type in the observed variables would lead to poor balance test
results and thus affect the accuracy of the model, so this study did
not include the use of land use type in the observed variables. The
final matched experimental and control groups appeared to match
woodland and grassland to each other, with close to
1,693 woodland sites within the boundary matching grassland
sites in the buffer, and 1,785 grassland sites matching woodland
sites in the buffer, which affected the REI to a certain extent. REI in
the study area increased slightly after 2015, with the overall trend
changing from a decrease to an increase (Figure 4). The reason for
this is that after 2015, the country comprehensively launched the
pilot work of the GPNP system and formally established the GPNP
in 2021. During this critical development process, the overall
ecological quality of the study area has been emphasized as
never before (Pu et al., 2022), and the increased protection
efforts have contributed to the ability to improve its REI. In
terms of different zones, the REI in the Minshan-Baishuijiang
Areas was higher than that in the Qionglaishan Areas, which was
correlated with the greater number of giant pandas distributed in
this area and the higher density of vegetation cover.

FIGURE 8
Interaction diagram of influential factors in different regions of GPNP in Sichuan (2000–2020) (A)MBJ-CPA; (B)MBJ-GCA; (C)QLA-CPA; (D)QLA-
GCA. Note: Figures are in chronological order from left to right for 2000, 2005, 2010, 2015, and 2020. *Two-factor augmentation, all others are nonlinear
augmentation.
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This study combines the OPGDmodel to complement the study
of the main influences and interactions affecting the relative
effectiveness of the different zones. Overall, the maximum
temperature, minimum temperature, potential evapotranspiration,
and other natural factors have a stronger impact on the Minshan-
Baishuijiang Areas, as well as the QLA-CPA, Which is consistent
with the conclusions of the existing studies (Jiao et al., 2021). The
QLA-GCA had higher REI than the core conservation zones in all
years during 2000–2020, but the difference decreased at the end of
the period. This is mainly due to the local government has long
adopted a large number of maintenance measures for nature
reserves within the CPA, setting up fences or encouraging people
to relocate off-site to minimize the disturbance of human activities
in or around the nature reserves (Kang and Li, 2018). The CPA for a
long time in the protection range, the degree of human interference
in the long term controlled is small, while the GCA in the GPNP
before the establishment of the boundary policy, the control is not
strong enough compared to the CPA. After the region as a whole
significantly emphasized economic development and human
activity intensity control (Xue et al., 2020), the vegetation was
buffered to restore, resulting in the two being closer at the end of
the period. The q-values ranking of its main impact factors during
the study period was LSI > LPI > AI. The reason for this is that the
ecological damage in the study area was severe after the Wenchuan
earthquake and the Lushan earthquake (Duan et al., 2021; Wang
et al., 2022). The local government accelerated ecological restoration
and hazard reduction, reduced the population density in
mountainous zones, and weakened human disturbance (Qin
et al., 2019). At the same time, along with the native advantage
of higher elevation plus high relative humidity, the overall
connectivity in the area increased in the late period, and the
aggregation of patches was enhanced, which was favorable for
vegetation growth and spreading expansion (Huang et al., 2022).
In summary, the study area should strictly implement the
requirements of different functional partitions. The CPA should
strengthen themaintenance of the stability of the natural elements of
the region and reduce the possibility of influencing changes in
natural factors, the GCA should reduce development activities
and control the flow of people in the scenic area, improve the
construction of landscape patterns, and increases the connectivity
and coverage of vegetation.

In terms of interactions, during 2000–2020, the two-factor
enhancement was mainly manifested in the interactions between
elevation, potential evapotranspiration, and maximum air
temperature, minimum air temperature, and landscape pattern
indices, respectively, in the MBJ-CPA, and in the Qionglaishan
Areas. Therefore, in the future, while enhancing the connectivity of
vegetation landscape, different functional zones should pay
attention to the combination of altitude and temperature, and
plant vegetation suitable for temperature growth at different
altitudes to improve its long-term survival rate. The MBJ-GCA
showed a significant two-factor interaction enhancement between
distance to major roads and relative humidity and landscape pattern
indices, in addition to the two-factor interaction enhancement
between natural factors such as temperature and elevation. This
is because the GCA is closer to the main road, resulting in vegetation
by the outside world of the interference degree is stronger, and close
to the main road is mostly low mountainous terrain, its relative

humidity is usually lower will affect the vegetation survival (Li et al.,
2019). In the future, the relative effectiveness of the protection of the
border should be enhanced through the adoption of monitoring
measures in zones closer to the road to reduce the possibility of
human destruction of vegetation in the immediate vicinity, at the
same time, more herbaceous plants will be planted along the line to
improve water conservation capacity, thereby improving the relative
protection effectiveness of the boundary.

Some samples may be lost when using the moving window
method to measure the landscape pattern index in this study, which
may have some impact on the exploration of the influencing factors
of different functional zones. In addition, the study area is a micro-
region, but the influencing factors in this study are mostly selected
from macro-remote sensing data, which should be combined with
the actual research in the future, and the breakpoint regression
model should be used to explore the specific time nodes of the
relative effectiveness of the policy. The PSM method is mainly used
to solve the endogeneity problem caused by observational variables.
However, it is difficult to consider non-observational variables, such
as aboveground biomass and soil texture, which may have an impact
on NDVI. Since the accuracy of the currently available data is not
sufficient for in-depth analyses, future studies should use remote
sensing and soil surveys to obtain more accurate data to
comprehensively assess the effects of observational and non-
observational variables. Finally, the GPNP was formally
established relatively late in the year, and with the expansion of
the period of the study and the enhancement of the depth of the
study, we plan to introduce the double-difference-in-differences
(DID) methodology in our future studies to further quantify the
effects of policy interventions on the effectiveness of protected area
conservation. This will help us assess the specific effects of policy
changes more precisely and provide more solid data support for
protected area management and policy formulation.

5 Conclusion

In this study, we used NDVI data as instrumental variables,
combined with PSM to measure the relative effectiveness of the
whole Sichuan Area of GPNP and different sub-zones in 2000, 2005,
2010, 2015, and 2020, and then analyzed the main influencing
factors of different functional sub-zones and the interactions
among the factors through OPGD model, the results are as follows:

(1) The REI of the Sichuan Area in GPNP was greater than
0 during the period 2000–2020. TheMBJ-CPA rose and then
fell over the 2000–2020 period, and were the most relatively
effective zones within the two zones, the GCA declined overall
during the study period; the QLA-CPA showed a decreasing
trend and dropped to a minimum of 0.011 in 2015, weakening
by nearly 6.45% compared to the base year. Although RE was
higher in the GCA than in the CPA in different years, the
difference between the two diminished later. That is, the
difference in vegetation cover inside and outside the
boundary weakened, but the internal cover remained higher.

(2) The REI of the MBJ-CPA, the MBJ-GCA, and the QLA-CPA
are dominated by natural factors such as temperature,
elevation, and potential evapotranspiration, and the REI of
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the QLA-GCA is more influenced by LSI, AI, and LPI.
However, the impact of policies and socio-economic
factors such as the protected area level and the distance to
town on individual functional zones has been increasing in
recent years.

(3) The REI of the MBJ-CPA, MBJ-GCA, and the QLA-CPA, are
more influenced by the interaction of maximum air
temperature, minimum air temperature, and potential
evapotranspiration, and the rest of the factors, and the
QLA-GCA are dominated by the interactions of LSI, AI,
and LPI with their rest of the factors. In future
development planning, attention must be paid to the
comprehensive consideration of the interaction of natural
factors and policy and economic factors. Through multi-
dimensional considerations, the challenges in ecological
protection can be more accurately identified and
responded to, and the scientific and effective nature of the
protection measures can be ensured, to better maintain
biodiversity and ecological balance.
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