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Achieving synergistic effects in pollution reduction and carbon mitigation is a
major national strategy for China. Given the common origins and processes of air
pollutants and greenhouse gases, this study constructs a theoretical framework
for the study of the synergistic effects of air pollution and carbon emissions.
Based on the coupling coordination degree model and the geographically and
temporally weighted regression model, it identifies significant factors influencing
the synergistic effects of air pollution and carbon emissions and their varying
mechanisms of action. Results are as follows: 1) The spatial and temporal trends
of PM2.5 pollution and carbon emissions in the Wuhan metropolitan area exhibit
homogeneity. The coupling coordination degree between air pollution and
carbon emissions shows an initial increase followed by a decrease over time
and a spatial pattern of “local clustering of areas with medium–high-level
coupling coordination”. 2) Twelve factors significantly impact the synergistic
effects of air pollution and carbon emissions at the county level in the Wuhan
metropolitan area: number of inversion days, precipitation, temperature,
vegetation coverage, number of green patents, total population, regional GDP,
per capita regional GDP, proportion of secondary industry, total nighttime light,
energy consumption efficiency and built-up area. 3) The impact intensity of these
factors on the synergistic effects of air pollution and carbon emissions varies not
only over time but also across different regions within the same year. Regions
with strong impact forces shift over time. This manuscript provides a solid
foundation for theoretical research on and practical strategies for advancing
differentiated pollution reduction and carbon mitigation coordination.
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1 Introduction

Under the guidance of the development goals of the new era,
global and China’s environmental protection strategies are needed.
With the increasingly severe global climate change, countries around
the world face the urgent task of addressing the challenge of carbon
emissions. As a member of the international community, China
actively fulfils its international responsibilities. In September 2020,
China proposed the goal of “striving to peak carbon dioxide
emissions by 2030 and achieving carbon neutrality by 2060”,
making a significant contribution to global climate governance.

The feasibility of coordinated efforts in pollution and carbon
reduction lies in the fact that environmental pollutants and
greenhouse gas emissions essentially originate from the same
processes. They share similar sources, such as fossil fuel
consumption, industrial production, transportation and
residential activities, and exhibit consistency in terms of emission
time and space. Accordingly, pollution and carbon reduction can
target the same control objects, enabling coordinated progress in
many aspects. Reviewing the research achievements in the field of
pollution and carbon reduction, we find that scholars domestically
and internationally have conducted extensive research on PM2.5

pollution and carbon emissions. These studies cover various
dimensions, including spatiotemporal distribution characteristics
(Wang et al., 2013; Guan et al., 2014; Peng et al., 2016; Gregg
et al., 2009; VandeWeghe and Kennedy, 2007; Wang et al., 2017),
influencing factors (Kola and Ganda, 2024; Zhang et al., 2019; Nam
et al., 2014; Cheng et al., 2017; Talukdar and Meisner, 2001; Jiang
et al., 2018), policy research (Andrée et al., 2019; Yue et al., 2020; Luo
et al., 2018; Pal and Mitra, 2017) and source apportionment (Wei
et al., 2021; Thurston et al., 2011; Wu et al., 2018; Geng et al., 2013;
Coelho et al., 2022; Wang et al., 2006). Preliminary theoretical
system and research paradigm have been formed in the field of
PM2.5 and carbon emission research, and practical applications have
been implemented at national, provincial, prefectural and county
levels. These achievements provide a solid theoretical foundation
and practical support for pollution control and the attainment of
carbon neutrality goals in China.

Existing research primarily investigates the spatiotemporal
distribution characteristics of PM2.5 on various scales, including
national, provincial, city, river basin and urban agglomeration levels.
Most studies indicate that PM2.5 pollution is influenced by a
combination of meteorological and socioeconomic factors (Lim
et al., 2020; Ji et al., 2018; Yang et al., 2018; Xu et al., 2020; Ding
et al., 2019;Wu et al., 2020; Lin et al., 2013). In 2021 Guo et al. (2021)
explored the spatial evolution trends and influencing factors of
PM2.5 in the cities of the Yangtze River Delta using methods
such as spatial autocorrelation, standard deviational ellipse and
panel regression models. They found that from 2000 to 2017, the
spatiotemporal heterogeneity of PM2.5 in such cities was the result of
the cumulative effects of various factors, with socioeconomic factors
being the predominant ones. Yun et al. (2019) focused on
meteorological elements and studied the impact of factors such
as wind direction, air pressure, temperature and humidity in the
Yangtze River Delta region on PM2.5.

Most studies analyse the spatiotemporal distribution differences
and influencing factors of carbon emissions, primarily focusing on
national, provincial and city scales. Research on carbon emissions on

a microscale is lacking, mainly due to the difficulty in obtaining data
for smaller administrative regions. The influencing factors of carbon
emissions mainly include socioeconomic factors (population
density, government fiscal expenditure, economic development,
production efficiency, industrial structure, labour force, etc.),
energy factors (energy structure, energy intensity, etc.), land use
factors (land use scale, structure, spatial patterns, etc.), green
technology innovation (green patents, regional innovation index,
etc.) and transportation usage (public transportation, fuel-powered
vehicles, electric vehicle ownership, etc.).

Currently, research on the spatiotemporal distribution and
influencing factors of coordinated pollution and carbon reduction
is still relatively scarce domestically and internationally. Many
studies exploring the common roots and origins of these two
aspects use spatial regression models to examine the influencing
factors of air pollution and carbon emissions separately and then
identify common factors to validate their shared origins empirically.
A few studies have utilised coupling coordination models to assess
the synergistic effects of pollution and carbon reduction. These
studies have found that energy consumption, land use, urbanisation,
economic and industrial structure and transportation networks
significantly influence the coordination effects of pollution and
carbon reduction. Tang et al. (2019) analysed the spatiotemporal
characteristics and influencing mechanisms of the synergistic effects
of pollution and carbon reduction in 30 provinces in China from
2011 to 2019. They used a coupling coordination model to analyse
the spatiotemporal characteristics of these effects in different regions
and a spatiotemporal geographically weighted regression (GWR)
model to analyse the spatial evolution and mechanisms of
influencing factors. The study concluded that total energy
consumption, energy consumption intensity and energy
consumption structure are major influencing factors of the
synergistic effects. Wang et al. (2023), from the perspective of
spatial spillover, found that the spatial clustering and co-
occurrence of carbon emissions and air pollution exhibit
similarities, showing strong spatial lock-in and path dependence.
The clustering of carbon emissions and pollution demonstrates
significant spatial spillover effects, manifesting a “beggar-thy-
neighbor” effect on adjacent regions. Liu et al. (2022) studied the
synergistic effects of pollution and carbon reduction in Tianjin,
finding that the primary sources of air pollution and greenhouse gas
emissions are industrial sources. To achieve a high level of
synergistic effects, Tianjin must reasonably control urbanisation
rates, population size and regional GDP, increase the share of
tertiary and high-tech industries and continuously reduce energy
intensity. Xian et al., (2024) found that the implementation of
China’s current emission reduction policies has significantly
reduced major air pollutants and slowed the growth rate of CO₂
emissions. The synergistic effects of carbon reduction and pollution
reduction policies vary across different sectors, with pollution
reduction policies having a stronger suppressive effect on
controlling air pollution and carbon emissions.

However, in the face of the challenges of air pollution prevention
and control in China and the dual pressure of achieving carbon
peaking and neutrality, the need for synergistic and efficient
governance of pollution and carbon reduction is particularly
urgent. Existing research on the synergy of pollution and carbon
reduction is still insufficient, with most studies focusing on policy
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formulation and pathway exploration (Bai et al., 2022; Dong et al.,
2022; Xian et al., 2024; Nam et al., 2014; Chen X. H. et al., 2023),
lacking comprehensive analysis of the differences and driving factors
of regional air pollution and carbon emissions in spatiotemporal
distribution. Moreover, most studies are conducted at the
agglomeration or provincial levels (Zhu et al., 2023; Chen X.
et al., 2023; Jiang et al., 2023; Chen S. et al., 2023; Xian et al.,
2024), with limited research at the county level. Consequently, the
suggestions put forward are mostly based on macrolevel
coordination and control, which cannot meet the differentiated
and individual requirements of policy implementation at the
county level, thus failing to effectively achieve the synergistic and
efficient governance of pollution and carbon reduction.

Therefore, based on the current state of pollution reduction and
carbonmitigation research, this study aims to explore the synergistic
effects of pollution and carbon within a coupled system framework.
Employing spatiotemporal data mining techniques, coupling
coordination models and the geographically and temporally
weighted regression (GTWR) model, we analyse the
spatiotemporal evolution characteristics and key drivers of these
synergistic effects at a county level within the Wuhan metropolitan
area. Specifically, we aim to identify critical areas and differing
influencing factors, such as meteorology and climate, population
and economic dynamics, land use, nighttime light emissions and
green patents. The findings will provide theoretical support and
practical guidance for implementing differentiated strategies for
pollution reduction and carbon mitigation across the regions
within the Wuhan metropolitan area.

2 Materials and methods

2.1 Study area

The Wuhan metropolitan area (Figure 1) is the largest city
cluster in “central China”, located in its economic hinterland,
focusing on domestic demand. With its exemplary economic
development, the Wuhan metropolitan area serves as an
important carrier for central China to undertake the integrated
development of the Yangtze River Delta and a strategic link for the
delta to drive the upper reaches of the Yangtze River and even the
vast central and western parts of China. Furthermore, as the centre
of the superposition of the Yangtze River Economic Belt and the rise
of the central part of two national strategic regions, it is an important
growth pole of China. Whether from the point of view of economy
or strategic position, the Wuhan metropolitan area has a strong
regional linkage and a national support role and is a key node and an
important pivot point in the construction of a new
development pattern.

From an ecological perspective, the Wuhan metropolitan area is
a core region of the middle Yangtze River urban agglomeration,
bearing significant responsibility for the protection of the Yangtze
River. The Wuhan metropolitan area faces multiple environmental
pressures, including air pollution, water pollution, soil
contamination, and solid waste management, while also being
affected by climate change impacts such as extreme weather and
flooding. Promoting the coordinated and synergistic effects of
pollution reduction and carbon reduction will help improve the

ecological environment quality of the Wuhan metropolitan area,
protect and restore the Yangtze River ecosystem, enhance urban
climate resilience, and create a green, livable environment
for residents.

2.2 Theoretical framework

In the context of global climate change and China’s “carbon
peak and carbon neutrality” goals, this study focuses on the
synergistic effects of pollution reduction and carbon emissions
mitigation at the county level within the Wuhan metropolitan
area (Figure 2). By analyzing the homology and synergy between
pollution and carbon emissions, and drawing on existing research
concerning the spatiotemporal distribution characteristics and
influencing factors (such as climate, economy, land use, and
green technology), this study employs global spatial
autocorrelation tests and the GTWR model to explore the
spatiotemporal evolution and driving factors of synergy within
this region. The research aims to provide a foundation for the
development of differentiated pollution and carbon reduction
strategies for each county, thereby enhancing the practical
application of theoretical insights and the scientific basis of
local policies.

2.3 Research methods

2.3.1 Synergistic effect model
To effectively evaluate the synergistic effects and development

status of the two subsystems of carbon emissions and atmospheric
pollutant emissions, this study employs the coupling coordination
degree model. This model reveals the coordination differences
amongst different regions in terms of CO2 reduction and PM2.5

control. Based on the methodology of Wang et al. (2021), the model
has been further optimised to enhance its predictive accuracy and
practicality. The specific calculation steps of the model are as follows
(Formulas 1–3):

C � 2
�����
U1U2

√
U1 + U2

�
����������������
1 − U2 − U1( )[ ]U1

U2

√
(1)

T � aU1 + bU2 (2)
D � �����

C × T
√

(3)
where U1 represents the level of the atmospheric pollutant system,
expressed by the standardised value of pollutant emission
concentration; U2 indicates the level of the carbon reduction
system, expressed by the standardised value of carbon emissions.
Standardisation is applied to eliminate the impact of different
dimensions. In this model, C represents the coupling degree
between the two systems, and T denotes a comprehensive
coordination index. Parameters a and b are adjustable weight
coefficients. This research assumes that carbon reduction and air
pollution control are equally important processes, so a = b = 0.5 is
set. D represents the degree of coupling coordination between the
two systems, with a value range from 0 to 1. A value of D
approaching 1 indicates good coordination between the carbon
reduction and air pollution control systems, signifying significant
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synergistic effects. Conversely, a value of D approaching 0 suggests
poor coordination between the two systems and weak synergistic
effects. The rating standards for coupling degree C and coupling
coordination degree D are based on the research of Wang
et al. (2021).

2.3.2 Global spatial autocorrelation test
This study aims to verify whether a spatial correlation exists in

the synergistic effects between PM2.5 and carbon emissions. The
global Moran’s index (Moran’s I) is used as the tool for detecting
global spatial autocorrelation. The specific calculation formula is as
follows (Formula 4):

I � N
S0

∑N
i�1

∑N
i�1

W i, j( ) Xj − �X( )
∑N
i�1

Xi − �X( )i2 (4)

where N represents the number of research subjects, Xi denotes
the observation value, �X is the mean of Xi, and
S0 � ∑N

i�1 ∑N
i�1 W(i, j). W(i, j) is the spatial weight matrix

between subjects i and j.

2.3.3 Spatiotemporal GWR model
The GWR model performs localised regression analysis on

spatial cross-sectional data, allowing the identification of spatial
heterogeneity within spatial data. However, this model primarily
focuses on the spatial nonstationarity of sample data and does not
adequately consider the nonstationarity of time series, which may
limit its effectiveness and accuracy in modelling and predicting
actual economic activities. Therefore Huang et al. (2010), introduced
temporal characteristics into the original GWR model, constructing
a spatiotemporal GWR (i.e., GTWR) model that considers temporal
and spatial nonstationarities.

By processing panel data, this model can effectively reduce
model error and parameter estimation error. The formula is as
follows (Formula 5):

yi � β0 ui, vi, ti( ) +∑
k

βk ui, vi, ti( )xik + εi (5)

where yi is the dependent variable at the i-th sample point, xik is
the observed value of the k-th independent variable at the i-th
sample point, n is the number of sample points, (ui, vi, ti) denotes
the spatiotemporal coordinates of the i-th sample point,
βk(ui, vi, ti) is the regression coefficient of the k-th
independent variable at the i-th sample point, β0(ui, vi, ti) is
the spatiotemporal intercept at the i-th sample point, and εi
represents the residual. In the GTWR model, the regression
coefficient βk(ui, vi, ti) of the k-th independent variable at
sample point i is usually estimated using the least squares
method, and its estimated value is as follows (Formula 6):

β̂(ui, vi, ti � XTW ui, vi, ti( )X[ ]−1XTW ui, vi, ti( )y (6)
where β̂(ui, vi, ti) is the estimated value of βk(ui, vi, ti), X is the
matrix composed of independent variables, XT is the transpose
of the matrix, y is the matrix composed of samples, andW(ui, vi, ti)
is the spatiotemporal weight matrix. The Gaussian distance function
is chosen for W, and the spatiotemporal weight matrix is obtained

using the bisquare spatial weight function. The spatiotemporal
distance between samples i and j is (Formula 7):

dij �
�������������������������������
δ Ui − uj( )2 + vi − vj( )2 + μ ti − tj( )2[ ]√

(7)

The selection of bandwidth affects the establishment of
spatiotemporal weights. The corrected Akaike information
criterion (AICc) is used to adopt an adaptive bandwidth.

2.4 Data sources

The data sources for this study are mainly divided into the
following parts (Table 1):

This study uses the PM2.5 dataset shared by the Atmospheric
Composition Analysis Group at Washington University in St. Louis
(Canada Dalhousie University Atmospheric Composition Analysis
Group PM2.5 dataset). It also utilises the county-level carbon
emission data for China from 1997 to 2017 provided by the
China Emission Accounts and Datasets. Specifically, it employs
the carbon emission data for the 48 county-level units in the
Wuhan metropolitan area from 2000 to 2017.

Natural environment data include the number of inversion days,
average precipitation, average temperature and vegetation cover.
Socioeconomic data consist of total population, GDP, per capita
GDP, the proportion of secondary industry, the number of green
patents, total nighttime light, electricity consumption, built-up area,
total energy consumption and energy consumption efficiency. For
administrative boundary data, according to the National
Administrative Division Inquiry Platform of the Ministry of Civil
Affairs, the administrative boundaries of the county-level units in
the Wuhan metropolitan area have not changed since 2000.
Therefore, this research uses the 1:1,000,000-scale public basic
geographic information data (2021) provided by the National
Geographic Information Resources Catalogue Service System as
the source for county-level administrative boundary data.

2.5 Technology roadmap

Existing county-level research is limited, failing to address the
diverse needs of micro-scale policy implementation. The Wuhan
Metropolitan Area, central China’s largest urban cluster, faces
significant environmental pressures, including air, water, and soil
pollution, as well as waste management challenges. Therefore, this
study selects the Wuhan Metropolitan Area as the research object.
By analyzing the homology and synergy between pollution and
carbon emissions, along with their spatiotemporal distribution
characteristics and influencing factors (e.g., climate, economy,
land use, and green technology), this study compares the fitting
performance of multiple regression models. A global spatial
autocorrelation test and a GTWR (Geographically and
Temporally Weighted Regression) model are employed to explore
the spatiotemporal evolution and influencing factors of pollution
and carbon emissions. Finally, the study identifies the trends in
regression coefficients of various influencing factors from 2000 to
2017 and analyzes the spatiotemporal heterogeneity of four part
factors—climate, economy, land use, and technological
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innovation—between 2005 and 2017. Based on these findings, the
study proposes control strategies and policy recommendations
tailored to the county-level scale (Figure 3).

3 Analysis and results

3.1 Spatiotemporal characteristics of the
coupling coordination degree between air
pollution and carbon emissions in the
Wuhan metropolitan area

On the basis of the coupling coordination degree calculation
methods (Formulas 1–3), this study calculates the coupling
coordination index (D), coupling index (C) and coordination
index (T) for PM2.5 pollution and CO2 emissions in the Wuhan
metropolitan area from 2000 to 2017. The coordination coupling
levels are preliminarily classified as follows: 0–0.3 for low, 0.3–0.7 for
moderate and 0.7–1 for high. Here, U1 and U2 represent the
normalised data for PM2.5 concentration and CO2 emissions,
respectively, with a range of [0–1].

According to Figure 4, the temporal variation characteristics of
the coupling coordination degree between air pollution and carbon
emissions (D) in the Wuhan metropolitan area from 2000 to
2017 can be divided into two main phases: an increasing phase
and a decreasing phase.

The first phase, from 2000 to 2011, saw an increase in the
coupling coordination degree between PM2.5 pollution and CO2

emissions. It rose from a low-intensity low-coupling state in 2000 to
a high-intensity high-coupling state in 2011, with the D value
reaching 0.962. During this period, the coupling degree was
consistently higher than the coordination degree, indicating that
the levels of air pollution and carbon emissions were in a state of
coordinated development but with a relatively low intensity.
Specifically, the coupling degree reached 0.948, 0.997 and
0.979 in 2006, 2009 and 2011, respectively, showing that the
coupling coordination degree between air pollution and carbon
emissions was highest in these years, with the two intensities
being closest. Meanwhile, the coordination degree steadily
increased, reaching 0.946 in 2011, indicating an overall rise in
the coordination strength as carbon emissions and PM2.5

concentrations continued to rise.
The second phase spanned from 2013 to 2017, during which the

coupling coordination degree between PM2.5 pollution and CO2

emissions continuously decreased, transitioning from high intensity
and high coupling in 2013 to medium intensity and low coupling in
2017. The coupling coordination index dropped to 0.226, indicating
that during this period, the coordination level was higher than the
coupling level, and the rate of decline in coupling was much greater
than that in coordination. In 2017, the coordination level reached a
moderate level at 0.543, whilst the coupling level dropped to a low
level at 0.094. That is, a significant misalignment in the air pollution
and carbon emission coupling occurred during this time, with a
rapid increase in the disparity between their intensities, specifically
characterised by stable CO2 emissions and a rapid decrease in PM2.5

pollution concentrations.

TABLE 1 Data Sources for Indicators.

Number Data Name Data Source

YP PM2.5 Atmospheric Composition Analysis Group’s PM2.5 Dataset Shared at Washington University in St. Louis (V5.GL.04)

YC Carbon Emissions County-level CO2 Emissions and Sequestration in China from 1997 to 2017 (https://www.ceads.net/user/index.php?id=
1057&lang=en)

X1 Number of Inversion Days MERRA-2 (https://disc.gsfc.nasa.gov/datasets/M2I6NPANA_5.12.4/summary)

X2 Average Precipitation ERA5-Land (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview)

X3 Average Temperature ERA5-Land (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview)

X4 Vegetation Coverage MOD13A3 (https://search.earthdata.nasa.gov/search)

X5 Number of Green Patents China National Intellectual Property Administration

X6 Total Population Regional Statistical Yearbooks, Local Chronicles, etc. (https://www.stats.gov.cn/)

X7 GDP Regional Statistical Yearbooks, Local Chronicles, etc. (https://www.stats.gov.cn/)

X8 Per Capita GDP Regional Statistical Yearbooks, Local Chronicles, etc. (https://www.stats.gov.cn/)

X9 Proportion of Secondary
Sector

Regional Statistical Yearbooks, Local Chronicles, etc. (https://www.stats.gov.cn/)

X10 Total Nighttime Lights Time-series Class DMSP-OLS Data for China from 1992 to 2019 (https://dataverse.harvard.edu/dataset.xhtml?persistentId=
doi:10.7910/DVN/GIYGJU)

X11 Electricity Consumption Nighttime Light Data on a Global Scale from 1992 to 2019 (https://doi.org/10.6084/m9.figshare.17004523.v1)

X12 Total Energy Consumption County-level Spatiotemporal Energy Consumption and Efficiency Datasets for China from 1997 to 2017 Chen et al. 2022

X13 Energy Consumption
Efficiency

Energy Consumption Efficiency = Total Energy Consumption/Gross Regional Product Chen et al. 2022

X14 Built-up Area Annual China Land Cover Dataset (https://essd.copernicus.org/articles/13/3907/2021/)
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3.2 Analysis of the spatiotemporal evolution
characteristics of the air pollution and
carbon emission synergistic effects at a
county level

To investigate the synergistic evolution of air pollution and
carbon emissions at a county level in the Wuhan metropolitan area,
this study refers to the findings of Wang et al. (2021) and performs
detailed rating and grouping of the coupling coordination degree
(with high levels indicating great coupling and coordination
between the air pollution and carbon emission systems, i.e., small
differences and high emission intensity between the systems). The
changes in the coupling coordination degree between PM2.5

pollution and CO2 emissions at the county level from 2000 to
2017 are analysed separately.

From the spatiotemporal distribution of the coupling
coordination degree between PM2.5 pollution and CO2 emissions
for county-level units in the Wuhan metropolitan area from 2000 to
2017 (Figure 5), most counties were at a moderate coupling

coordination level. In 2000, 65% of counties were at this
moderate level, and the proportion decreased to 60% in 2007.

The areas with the highest coupling coordination degree between
PM2.5 pollution and CO2 emissions were primarily concentrated within
the Wuhan urban area. Hongshan District consistently maintained the
highest level of coupling coordination from 2000 to 2017, indicating
that the PM2.5 pollution concentration and carbon emissions in
Hongshan District were not only higher than those in other areas
but also highly synchronised.

The analysis of the coupling coordination degree between PM2.5

pollution and CO2 emissions for county-level units outside Wuhan
reveals that the levels of coordination varied significantly. Counties
with moderate to high coupling coordination levels were
predominantly located in economically developed and densely
populated areas. However, the specific characteristics and
interannual variations of the coupling coordination degree
between air pollution and carbon emissions differed amongst
these units, indicating that the synergistic effects of pollution and
carbon were influenced by various factors.

FIGURE 1
Overview of the study area. (Including 47 counties).
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3.3 Analysis of the influencing factors based
on GTWR

Based on Moran’s I test results from Stata software, the global
Moran’s I index for the synergistic effect of air pollution and
carbon emissions in the Wuhan metropolitan area during the
study period was positive and generally remained around 0.21,
with minimal fluctuations. This result indicates that the spatial
aggregation of the synergistic effect was stable. The normality
statistic Z-values all passed the 0.01 significance level test (P <
0.01), suggesting a significant spatial autocorrelation in the
coupling coordination index of the synergistic effect of air
pollution and carbon emissions in the Wuhan metropolitan
area during the study period.

The previous section provided a preliminary explanation of the
data indicators used in this study. Coupling coordination degree is
employed as the dependent variable, with 14 potential explanatory
variables considered. Variance inflation factor (VIF) is a statistical
measure used to detect multicollinearity in regression analysis.
Multicollinearity occurs when two or more independent variables
in a regressionmodel are highly correlated. After collinear indicators
are excluded, 12 indicators are integrated into the model (Table 2):
temperature inversion days, precipitation, temperature, vegetation
coverage, number of green patents, total population, GDP, per capita
regional GDP, proportion of secondary industry, total nighttime
lights, energy consumption efficiency and built-up area.

3.3.1 Model construction and comparison
Based on the previous spatial correlation analysis results, the

synergistic effects of PM2.5 and CO2 emissions in different regions of
the Wuhan metropolitan area exhibited significant spatial
heterogeneity. Ignoring such spatial differences in subsequent
analyses could compromise the accuracy of the research findings.
Therefore, this study employs the GTWR model to conduct an in-
depth investigation into the factors influencing the intensity of the
synergistic effects of PM2.5 pollution and CO2 emissions in the
Wuhan metropolitan area from 2000 to 2017.

Di represents the intensity of the PM2.5 pollution and CO2

emissions (PM2.5–CO2) synergistic effect at sample point i. XAi,
XBi, XCi, XDi, XEi, XFi, XGi, XHi, XIi, XJi, XMi and XNi

indicate the values of the 12 factors, namely, number of inversion
days, average precipitation, average temperature, vegetation
coverage, number of green patents, total population, GDP, per
capita GDP, proportion of secondary sector, total nighttime
lights, energy consumption efficiency and built-up area, at
sample point i.

On the basis of the above dependent and independent variables,
this research constructs Ordinary Least Squares (OLS) regression,
GWR and GTWR models. The reasonableness of the selected
GTWR model is validated by comparing the estimation results of
the three regression models.

The results of the OLS, GWR and GTWR models for analysing
the factors affecting the PM2.5–CO2 synergistic effect in county-level

FIGURE 2
Theoretical framework.
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units of the Wuhan metropolitan area are shown in Table 3. The
OLS model has an R2 of 0.838 and an adjusted R2 of 0.837, which
indicates the lowest fit amongst the three models. The OLS model
can only represent the variable relationships at a global average level,
ignoring the spatial nonstationarity between different regions, and
thus cannot effectively capture local features. The GWR model,
which accounts for spatial nonstationarity, has an R2 of 0.921 and an

FIGURE 3
Technology Roadmap.

TABLE 2 Test Results After Excluding Collinear Indicators.

Variable VIF 1/VIF Variable VIF 1/VIF

GDP 7.99 0.125165 Vegetation Coverage 3.11 0.321258

Built-up Area 7.26 0.137674 Average Temperature 2.26 0.441823

Total Nighttime Lights 6.5 0.153829 Number of Green Patents 1.87 0.535445

Total Population 6.49 0.154003 Number of Inversion Days 1.6 0.625877

Per Capita GDP 5.29 0.189022 Proportion of Secondary Sector 1.53 0.652312

Energy Consumption Efficiency 4.01 0.249387 Average Precipitation 1.53 0.653531

Mean VIF 4.12

TABLE 3 Statistical Results of Model Testing.

Indicator OLS GWR GTWR

R-squared 0.838 0.921 0.991

Adj R-squared 0.837 0.922 0.991

AICc −2166.503 −3390.79 −3998.44
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adjusted R2 of 0.922, indicating a better fit compared with the OLS
model. The GTWR model, which considers spatial and temporal
nonstationarities, has an R2 of 0.991 and an adjusted R2 of 0.991,
significantly outperforming the OLS and GWR models.
Additionally, the GTWR model has the lowest AICc value
of −3,998.44, further demonstrating that the GTWR model,
which accounts for spatiotemporal nonstationarity, is the optimal
choice. Therefore, this study uses the GTWR model to analyse the
spatiotemporal heterogeneity of factors influencing the air pollution
and carbon emission synergistic effect in county-level units.

3.3.2 GTWR statistical description
Through regression analysis, this research evaluates the impact

of different factors on the strength of the PM2.5 pollution and CO2

emission synergistic effect in various county-level units within the
Wuhan metropolitan area at different times. To provide a detailed
statistical description of the GTWR model coefficients, we use the
following metrics: minimum value, first quartile (Q1), median (Q2),
third quartile (Q3), maximum value and mean value. These metrics
help understand the distribution and central tendencies of the
regression coefficients for different factors affecting the
spatiotemporal coupling and coordination of air pollution and
carbon emissions.

Based on Table 4, various factors, such as temperature inversion
days, average precipitation, average temperature, vegetation
coverage, number of green patents, total population, GDP, per
capita GDP, proportion of secondary sector, total nighttime

lights, energy consumption efficiency and built-up area, exhibited
different effects on the PM2.5 and CO2 emission coupling
coordination strength of the county-level units in the Wuhan
metropolitan area over different periods. For specific single
influencing factors, their impact on the coupling coordination
strength showed significant variability in time and space
dimensions.

Specifically, temperature inversion days, average precipitation,
average temperature, vegetation coverage and number of green
patents had negative average values, suggesting that these five
indicators generally exerted a negative effect on the coupling
coordination strength. Amongst them, vegetation coverage and green
patents had the most significant negative impacts, with average
regression coefficients of −0.045 and −0.031, respectively. By contrast,
total population, GDP, per capita GDP, proportion of secondary sector,
total nighttime lights, energy consumption efficiency and built-up area
demonstrated positive average coefficients. Amongst these factors, total
nighttime lights had the highest coefficient at 0.433, followed by total
population and energy consumption efficiency with coefficients of
0.219 and 0.216, respectively. The proportion of secondary sector had
the lowest positive coefficient of 0.046.

Regarding maximum values, the factors with the most significant
positive effects on the coupling coordination strength were built-up
area, GDP and energy consumption efficiency, with coefficients of
1.781, 1.350 and 1.002, respectively. Conversely, the most significant
negative effects came from green patents, GDP and vegetation coverage,
with regression coefficients of −1.583, −1.255 and −0.557, respectively.

TABLE 4 GTWR Model Parameter Estimates.

Variable Minimum First Quartile Median Third Quartile Maximum Mean

Intercept −0.654 −0.048 0.067 0.213 0.738 0.073

XA −0.134 −0.063 −0.006 0.044 0.222 −0.005

XB −0.177 −0.051 −0.027 −0.004 0.256 −0.026

XC −0.536 −0.121 −0.048 0.092 0.456 −0.022

XD −0.557 −0.120 −0.032 0.024 0.246 −0.045

XE −1.583 −0.175 0.003 0.106 0.907 −0.031

XF −0.269 0.101 0.188 0.357 0.860 0.219

XG −1.255 0.029 0.130 0.300 1.350 0.190

XH −0.264 −0.020 0.050 0.132 0.710 0.066

XI −0.346 0.002 0.037 0.080 0.678 0.046

XJ −0.163 0.324 0.461 0.566 0.952 0.433

XM −0.199 0.090 0.176 0.288 1.002 0.216

XN −0.284 0.016 0.092 0.166 1.781 0.118

R2 0.991

Adjusted R2 0.991

SSR 0.298

AICc −3998.440

Sigma 0.019

Bandwidth 0.115
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These results indicate that different factors could have
positive and negative impacts on the coupling coordination
strength of PM2.5 pollution and CO2 emissions. Additionally,
the effects of these factors varied significantly across different
times and locations. Therefore, this research will adopt a
comprehensive approach that incorporates temporal and
spatial dimensions to systematically explore how these factors
differentially influence the strength of coupling coordination
between air pollution and carbon emissions under varying
conditions.

4 Discussion

4.1 Temporal trends of GTWR regression
coefficients for influencing factors

Figure 6 illustrates the time variation trends of the regression
coefficients for different influencing factors through box plots.

Regarding specific factors, the effect of temperature inversion
days on the strength of PM2.5 pollution and CO2 emission coupling
showed a minimal fluctuation over time. The regression coefficients
were positive and negative with stable dispersion, manifesting that
the differences in the impact of temperature inversion days across
regions were relatively stable and did not change
significantly over time.

The regression coefficients for average precipitation gradually
decreased over time, with the mean coefficient dropping
from −0.001 in 2000 to a minimum of −0.04 in 2016. At the
same time, the dispersion of the coefficients initially decreased
and then increased. That is, the negative impact of average
precipitation on the PM2.5 pollution and CO2 emission coupling

effect gradually intensified, with the spatial differences first
decreasing and then increasing.

The dispersion of the regression coefficients for average
temperature remained relatively stable, but the overall values
decreased year by year, indicating that the negative impact of
average temperature on the air pollution and carbon emission
coupling effect gradually increased. The regression coefficients for
vegetation coverage were primarily negative, with the mean
coefficient continuously decreasing and the dispersion increasing.
This result suggests that the negative impact of vegetation coverage
on the air pollution and carbon emission coupling effect intensified
between county-level units, with increasing regional differences,
possibly due to variations in the predominant vegetation types
across different areas.

The mean regression coefficient for green patents remained
relatively stable, with a balanced distribution of positive and
negative values. Green patents had positive and negative effects
on the coupling effect of PM2.5 pollution and CO2 emissions
across different regions. The dispersion of the coefficients
showed a gradual increase, suggesting that the differences in
the impact of green patents on the coupling across various areas
became pronounced.

Total population and the PM2.5 pollution and CO2 emission
coupling effect is positively correlated, meaning that a high
population typically results in a great level of coupling intensity.
The positive impact of GDP and per capitaGDP on air pollution and
carbon emission coupling continuously increased. The mean
regression coefficient for GDP reached its peak of 0.257 in
2015 before gradually declining, whilst the mean coefficient for
per capita GDP steadily rose from −0.01 in 2000 to 0.196 in 2017.
The dispersion of these coefficients also increased year by year. The
influence of GDP and per capita GDP on PM2.5–CO2 coupling

FIGURE 4
Spatiotemporal characteristics of the coupling coordination degree between air pollution and carbon emissions in the Wuhan metropolitan
area (2000–2017).
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strengthened over time, with the heterogeneity between regions
growing because of varying policies, technological levels and energy
structures.

The average coefficient for the secondary sector proportion
remained relatively stable, but the dispersion of the coefficient
significantly increased. Meanwhile, the negative values increased
annually since 2010, indicating that some regions achieved notable
progress in industrial park renovation and upgrades, as well as the
application of green technologies.

The total amount of nighttime lighting is often closely related to
total energy consumption. The coefficients for nighttime lighting
and energy consumption intensity were positive, indicating a
positive correlation between them and the PM2.5–CO2 coupling
effect. The average coefficient for nighttime lighting attained its peak
of 0.574 in 2004 and then declined annually, reaching 0.261 by 2017.
The average coefficient for energy consumption intensity increased
from 0.136 to 0.270 by 2017. The variation in coefficients for energy
consumption intensity and total energy consumption remained
relatively small, indicating that the impact of total energy
consumption on the PM2.5 pollution and CO2 emission
coordination effect gradually decreased, whilst the influence of
energy consumption intensity increased. The coefficient for built-
up area showed a minimal change with a slight increase in
dispersion, suggesting that regional differences in the impact on

air pollution and carbon emission coordination gradually
intensified.

4.2 Analysis of the spatiotemporal
heterogeneity of meteorological and
climatic factors in air pollution and carbon
emission coordination effects

Figure 7 depicts that the positive effect of temperature inversion
days was primarily concentrated in the northwestern part of the
Wuhan metropolitan area, particularly around Tianxianqian and
Yunmeng counties. The regression coefficients for temperature
inversion days exhibited significant spatiotemporal variability,
showing a clear distribution pattern of “high–low–secondary
high” from northwest to southeast. Temperature inversion
weather conditions can lead to poor atmospheric flow and hinder
air convection, resulting in the accumulation and concentration of
pollutants and carbon emissions in specific areas.

The regression coefficients for precipitation at the county level
were generally negative, indicating that precipitation had a
significant negative effect on the synergy between PM2.5 pollution
and CO2 emissions. Precipitation effectively mitigated the PM2.5

pollution and CO2 emission levels in the Wuhan metropolitan area.

FIGURE 5
Spatial and temporal distribution of coupling coordination degree between air pollution and carbon emissions in county-level units of the Wuhan
metropolitan area in 2000–2017. CCI, the coupling coordination degree between air pollution and carbon emissions. (A–E), from 2000 to 2017.
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The cleaning effect of precipitation was more pronounced under
polluted conditions than that under clean conditions, in which
precipitation helped remove pollutants more effectively.

The impact of temperature on the synergy between PM2.5

pollution and CO2 emissions exhibited a spatial distribution
pattern of ‘high in the northeast, low in the southwest’. In the
southwestern part of the Wuhan metropolitan area, the regression
coefficients for temperature were predominantly negative. This
result reveals that elevated temperatures tended to reduce the
synergy between PM2.5 pollution and CO2 emissions in these
areas. The rationale is that high surface temperatures promote air
convection, which effectively disperses pollutants and lowers
atmospheric pollution levels.

Based on the above conclusions, this study reveals that
climatic and meteorological factors—such as temperature,
inversion, and precipitation—exert a significant influence on
the synergy between pollution mitigation and carbon
reduction. The impacts of temperature and inversion
demonstrate notable spatial heterogeneity, whereas
precipitation exhibits an overall negative spatial effect.
Furthermore, research by Chen et al. (2020) illustrates that the
effects of inversion and temperature on PM2.5 concentrations in
Beijing vary regionally with distinct operative mechanisms.
Negative impacts are primarily attributed to temperature-
induced atmospheric convection and PM2.5 evaporation losses,
while positive impacts arise largely from temperature anomalies

FIGURE 6
Time trend of GTWR regression coefficients by factors in 2000–2017.
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influencing PM2.5 dispersion and temperature effects on
precursor and secondary pollutant generation. This confirms
that temperature and inversion effects on pollution-carbon

synergy are significantly influenced by spatial heterogeneity, a
pattern broadly observed in major Chinese cities like Beijing
and Wuhan.

FIGURE 7
Regression coefficients for meteorological and climatic factors in 2005–2017. IDN, the number of inversion days, (A–D) from 2005 to 2017; AP, the
average precipitation, (E–H), from 2005 to 2017; AT, the average temperature, (I–L), from 2005 to 2017.
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4.3 Temporal and spatial heterogeneity of
land use factors in air pollution and carbon
emission synergy

Figure 8 presents the regression coefficients for vegetation coverage
and built-up area factors at the county level for the years 2005, 2009,
2013 and 2017. The regression coefficients for vegetation coverage
across most counties were predominantly negative, revealing that
vegetation coverage generally contributed to effective PM2.5 pollution
reduction and CO2 emission mitigation. However, the coefficients for
Huangpi District, Xinzhou District, Hannan District and Jiayu County
were positive, ranging from 0.08 to 0.2. That is, the vegetation coverage
in these areas had a positive impact on the PM2.5–CO2 synergy. This
positive effect was likely influenced by local agricultural activities, such
as burning and field machinery operations. Additionally, different types
of vegetation could impact pollution levels through factors such as
carbon sequestration and biogenic volatile organic
compound emissions.

The regression coefficients for built-up area varied between positive
and negative values, but positive values were predominant, indicating
that an increase in built-up area generally had a positive effect on the air
pollution and carbon emission synergy. Specifically, the regression
coefficients for Huangpi, Xinzhou, Huarong and Jiangxia districts
increased each year, rising from a range of 0.04–0.16 in 2005 to
0.30–0.53 in 2017, making them areas with the highest values.
Conversely, the regression coefficients for Chongyang and
Tongcheng decreased from 0.8 in 2005 to −0.1 in 2017. This trend
is attributed to the relatively small annual increase in built-up area in
Chongyang and Tongcheng, coupled with the reduced positive impacts
on the PM2.5 pollution and CO2 emission synergy due to technological
advancements and policy controls. By contrast, areas such as Huangpi
and Xinzhou saw significant increases in built-up areas over the years.
The rapid urbanisation, changes in lifestyles and consumption patterns
and increased emissions from industries and transportation led to a
growing impact on the synergistic effects of PM2.5 pollution and CO2

emissions. This impact was reflected in the annually increasing
regression coefficients.

The findings of this study indicate that land use factors, such as
vegetation coverage and built-up area, play significant roles in affecting
pollution-carbon synergy, with spatial heterogeneity evident in both
factors’ effects. Previous studies by other scholars provide strong support
for these conclusions. For instance, research by Jia et al. (2024) confirms
that NDVI and forest cover (FCR) are crucial in reducing PM2.5 and
CO2 emissions, suggesting that at the county level, vegetation coverage
has varying effects based on plant and crop types. Studies by Feng et al.
(2017) andWang and Shi (2019) validate that the expansion of built-up
and urban areas intensifies PM2.5 and CO2 emissions, with built-up area
often linked to urbanization, thus affirming that urbanization broadly
promotes pollution-carbon synergy.

4.4 Analysis of the spatiotemporal
heterogeneity of socioeconomic factors in
the synergy of air pollution and
carbon emissions

Figure 9 illustrates the regression coefficients for the population
size, GDP and secondary industry proportion across different

counties for the years 2005, 2009, 2013 and 2017. The regression
coefficients for population were generally positive, indicating that
population had a positive effect on the synergy of PM2.5 pollution
and CO2 emissions. Population activities generate substantial
carbon emissions and atmospheric pollutants. A large population
often represents high energy consumption and increased
transportation emissions, leading to an enhanced
pollution–carbon effect.

In general, a noticeable regional variation in the GDP regression
coefficients occurred. In the urban areas of Wuhan and Ezhou, the
regression coefficients decreased annually, transitioning from
positive to negative values. This shift indicates that the effect of
GDP on the PM2.5 pollution and CO2 emission effect changed from
a positive influence on a negative suppression effect in these regions,
suggesting that the developed economies reached the turning point
of the environmental Kuznets curve. By contrast, less developed
areas continued to experience higher levels of PM2.5 pollution and
CO2 emissions, given that they have not yet reached the scale of
agglomeration effects.

The dispersion of the regression coefficients of secondary industry
proportion increased annually, with the minimum value decreasing
from −0.036 in 2005 to −0.346 in 2017 and the maximum value rising
from 0.212 in 2005 to 0.678 in 2017. However, the number of regions
with negative values increased year by year, growing from 5 in 2005 to
25 in 2017, indicating an overall shift towards negative coefficients.
High-value areas weremainly in LuotianCounty andYingshanCounty,
with regression coefficients ranging from 0.2 to 0.6, showing a strong
positive impact of the secondary industry proportion on the regional
PM2.5 pollution and CO2 emission effect in these areas. The next
highest-value areas were primarily in Macheng City, Hong’an County,
Huangpi District and the Xiaogan region, withHuangpiDistrict and the
Xiaogan region showing annual increases in their coefficients, ranging
between 0.07 and 0.2. Because industrial production is often
accompanied with substantial PM2.5 pollution and CO2 emissions,
these areas urgently need to advance industrial structure adjustments
and promote green transformation of their industries.

This study identifies total population, regional GDP, and the
proportion of secondary industry as key factors influencing
pollution-carbon synergy. The effects of regional GDP and the
proportion of secondary industry exhibit spatial heterogeneity,
while total population shows a consistent positive effect across
the study area. Additionally, research by Dong et al. (2019)
uncovers a nonlinear, inverted-U relationship between per capita
GDP and PM2.5 reduction, where economic growth initially
promotes PM2.5 reduction but, at a certain economic level, the
reduction potential declines, resulting in reduced emissions
mitigation. This underscores that the spatial heterogeneity in
regional GDP has a significant and widespread impact on
pollution-carbon synergy.

4.5 Analysis of the spatial and temporal
heterogeneity of urban innovation and
energy consumption in air pollution and
carbon emission synergy

Figure 10 displays the regression coefficients of green patents,
nighttime lighting and energy consumption intensity factors for
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each county-level unit in 2005, 2009, 2013 and 2017. Overall, the
regression coefficients for green patents varied between positive and
negative values. In most areas, green patents had a negative impact

on the PM2.5 pollution and CO2 emission synergy, indicating that
the achievements in green patents effectively promoted the
synergistic improvement of pollution and carbon reduction. The

FIGURE 8
Regression coefficients for land use factors in 2005–2017. VC, the vegetation coverage, (A–D), from 2005 to 2017; BUA, the built-up area, (E–H) is
from 2005 to 2017.

Frontiers in Environmental Science frontiersin.org15

Chen et al. 10.3389/fenvs.2024.1511026

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1511026


inhibitory effect of green patents on the pollution–carbon synergy
was most pronounced in the Huanggang region, followed by the
Ezhou and Tianxianqian regions. These regions were in a period of
economic development, with their main economic activities relying

on the secondary and tertiary industries. During the process of
promoting the green transformation of the industrial structure in
these areas, the innovative technologies introduced by green patents
effectively reduced the PM2.5 pollutant and CO2 emissions in

FIGURE 9
Regression coefficients for socioeconomic factors in 2005–2017. TP, the total population, (A–D), from 2005 to 2017; GDP, Gross Domestic
Product, (E–H), from 2005 to 2017; SSR, the proportion of secondary sector, (I–L), from 2005 to 2017.
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production and daily life, resulting in a high level of inhibition on the
PM2.5–CO2 synergy in these regions. However, a small number of
areas (e.g., Xianning, Tianxianqian, Anlu and Yingcheng) showed
positive regression coefficients, i.e., green patents did not

significantly inhibit PM2.5–CO2 levels. The low quality of
technological resources in these areas during the study period did
not contribute significantly to the suppression of PM2.5 pollution
and CO2 emissions levels. Additionally, urban technological

FIGURE 10
Regression coefficients for urban innovation and energy consumption factors in 2005–2017. GA, the number of green patents, (A–D), from 2005 to
2017; NL, the nighttime lights, (E–H), from 2005 to 2017; ECI, the energy consumption efficiency, (I–L), from 2005 to 2017.
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development is often accompanied with increased economic
activities and enhanced PM2.5–CO2 emissions, leading to a
positive effect of green patents on pollution–carbon levels in
these regions.

The total amount of nighttime lighting is closely related to the
total energy consumption. In the study period, the regression
coefficients were predominantly positive, indicating that
nighttime lighting exerted a positive effect on the PM2.5 pollution
and CO2 emission synergy in most regions. High nighttime lighting
intensity reflects great energy consumption in the area, leading to
high levels of PM2.5–CO2.

The regression coefficients for energy consumption intensity were
predominantly positive, indicating that the energy consumption
intensity had a positive effect on the PM2.5 pollution and CO2

emission synergy. However, significant regional differences occurred.
High-value areas were mainly concentrated in Tianxianqian, Chibi,
Chongyang, Tongshan and Xian’an districts, with the regression
coefficients increasing from 0.38 to 0.64 in 2005 to 0.64–1.0 in 2017.
This finding indicates that the positive impact of energy consumption
intensity on PM2.5–CO2 synergy had been growing annually in these
areas. By contrast, regions such as Dongxihu, Jiangxia and Xiaonan,
despite having high energy consumption intensity, exhibited lower
regression coefficients. Consequently, the effect of energy
consumption intensity on local PM2.5–CO2 synergy was weaker,
potentially due to factors such as energy structure, production
technology and policy controls.

This study highlights that green patents, nighttime light
intensity, and energy intensity significantly influence pollution-
carbon synergy. The innovative inclusion of green patents reveals
spatial heterogeneity in their effect on pollution-carbon synergy,
with predominantly negative impacts and some positive effects.
Similar conclusions are supported by other studies; Dong et al.
(2019) demonstrate that technological innovation generally weakens
pollution-carbon synergy, while Wang et al. (2024) find that
technological innovation increases CO2 emissions but has
heterogeneous effects on PM2.5 pollution, with most instances
reducing pollution and some causing an increase. This confirms
a prevalent trend of significant negative spatial heterogeneity for
green patent effects on pollution-carbon synergy. In contrast,
nighttime light intensity and energy intensity generally exhibit
positive impacts. Research by Dong et al. (2019) further indicates
that improvements in energy efficiency may lower the marginal cost
of energy services, potentially leading to a rebound effect in energy
consumption. Consequently, enhanced energy efficiency may
inadvertently increase energy use, hindering PM2.5 reduction
efforts. This reinforces the widespread negative impact of energy
intensity on pollution-carbon synergy.

4.6 Policies and recommendations

4.6.1 Continuously promote the synergistic
process of “carbon reduction” as the primary goal
and “pollution reduction” in parallel

Based on the interannual trends of PM2.5 pollution and CO2

emissions in the Wuhan Metropolitan Area, it is evident that while
significant progress has been made in PM2.5 pollution control, CO2

emissions remain high. The Wuhan Metropolitan Area needs to

build on existing PM2.5 pollution reduction achievements and
further strengthen governance, fully leveraging the synergistic
effects of air pollution and carbon emissions. Priority should be
given to regions with high carbon emission levels for reduction
efforts, constructing a governance system that emphasizes “carbon
reduction as the primary goal, with pollution reduction in parallel.”
There is a need to enhance regional monitoring capabilities for
pollution and carbon emissions, improve the integrated monitoring
and evaluation system for PM2.5 pollution and CO2 emissions, and
strengthen collaborative management. Coordination between
carbon reduction measures and pollution control policies should
be established, along with unified planning objectives and
assessment systems. Additionally, successful experiences from
various regions in PM2.5 pollution reduction and CO2 emissions
should be actively summarized, and regional exchanges and learning
should be encouraged to continuously advance the synergistic
process of pollution reduction and carbon reduction.

4.6.2 Actively promote regional technological
innovation and energy reform

Research on influencing factors indicates that total energy
consumption and energy efficiency significantly impact the
synergistic level of PM2.5 pollution and CO2 emissions in the
Wuhan Metropolitan Area. As the population grows and the
economy continues to develop, social activities will inevitably
lead to increased energy consumption, resulting in higher levels
of PM2.5 pollution and CO2 emissions. The Wuhan Metropolitan
Area should leverage the population and economic agglomeration
effects to enhance resource sharing while actively adjusting the
energy structure. This includes increasing the use of clean energy,
promoting the development of green low-carbon industries, and
strengthening the supply of green low-carbon technologies to
establish a green low-carbon energy system.

4.6.3 Regional pollution reduction and carbon
reduction governance should adhere to the
principles of “targeted governance and precise
policy implementation”

Exploration of the spatial and temporal heterogeneity of PM2.5

pollution andCO2 emission influencing factors at the county level in the
Wuhan Metropolitan Area indicates that PM2.5 pollution and CO2

governance must deeply analyze the dominant factors and adopt
different approaches to achieve a “one policy for one area” strategy.

In regions like Hongshan and Jiangxia, where population and
economic development factors have a significant impact, it is
essential to actively utilize agglomeration effects by controlling
population growth in a planned manner, optimizing urban planning
and spatial layout, and rationally controlling construction land to
reduce environmental pressure caused by overdevelopment.
Strengthening public transportation systems and promoting green
travel modes, such as subways, buses, and bicycles, can reduce
private car usage and traffic congestion. Additionally, optimizing
transportation structures, accelerating green economic
transformation, improving energy efficiency, and promoting energy-
saving buildings, green construction, and low-carbon communities will
enhance residents’ levels of green consumption and sustainable living.

In regions such as Xinzhou, Huangpi, andCaidian, which aremore
influenced by industrial and technological factors, the following
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measures can be implemented: adjusting industrial structures to
gradually eliminate high-pollution and high-energy-consuming
outdated production capacity, closing or transforming enterprises
that do not meet environmental protection standards, and
encouraging the development of a circular economy to promote the
green upgrading of industrial parks, achieving effective resource
recycling. Support should be provided for the development of low-
carbon, clean, and high-tech industries, such as new energy, new
materials, and information technology. Furthermore, investment in
green technology research and development should be increased,
particularly in areas like energy efficiency improvement, pollutant
treatment, and carbon capture and storage (CCS). Collaboration
between enterprises and research institutions should be promoted
to accelerate the application and industrialization of green
technologies, while providing policy and financial support to help
enterprises upgrade technologies and reduce carbon emissions.

Strengthening environmental management and supervision
involves enhancing the enforcement of environmental regulations
to ensure that all enterprises comply with environmental protection
standards and laws. A comprehensive environmental monitoring
system should be established to monitor pollutant emissions in real
time and address violations promptly. Stricter environmental impact
assessment systems should be implemented for new projects to
conduct scientific assessments and prevent potential future
environmental issues. Optimizing the energy structure means
adjusting energy consumption patterns to reduce reliance on
fossil fuels and increase the proportion of clean energy.
Promoting energy-saving and emission-reduction technologies,
improving energy efficiency, and reducing energy waste are also
essential, alongside supporting the development and utilization of
renewable energy sources such as solar, wind, and biomass energy.

Regional cooperation and collaboration should be strengthened
to jointly address regional environmental issues. Participation in
regional environmental protection projects and initiatives, sharing
green technologies and management experiences, and integrating
resources through regional cooperation can collectively promote the
construction and management of green infrastructure. A diversified
strategy should be adopted, emphasizing both industrial structure
adjustments and technological innovation, as well as strengthening
environmental management and optimizing energy structures, to
collectively tackle the challenges of pollution reduction and
carbon reduction.

5 Conclusion

Based on the PM2.5 pollution and carbon emission data from
county-level units in the Wuhan metropolitan area between
2000 and 2017, this study employs spatial correlation analysis
and standard deviation ellipses to describe the spatiotemporal
distribution and dynamic evolution of air pollution and carbon
emission synergy from multiple perspectives. Furthermore, a
GTWR model is constructed to explore the factors influencing
the intensity of PM2.5–CO2 synergy and its spatiotemporal
heterogeneity. The main conclusions are as follows:

(1) From the perspective of their individual evolutionary
characteristics, PM2.5 pollution and CO2 emissions in the

Wuhan metropolitan area exhibited different trends in
2000–2017. PM2.5 levels initially increased and then
decreased, whilst CO2 emissions increased and then
stabilised, with a turning point around 2013. The PM2.5

pollution in the Wuhan metropolitan area was significantly
higher than national standards. Areas such as Qingshan
District, Dongxihu District and Jiang’an District had the
highest PM2.5 concentrations, whilst Hongshan District,
Jiangxia District and Huangpi District had the highest
carbon emissions. The centroid and standard deviation
ellipse analyses indicate that PM2.5 and carbon emission
centroids were located northwest of the geographic centre
of the Wuhan metropolitan area. PM2.5 pollution showed a
spatial pattern shifting from southeast–northwest to
east–west, whilst carbon emissions demonstrated a
southeast–northwest pattern with a contraction trend.

(2) From the perspective of the coevolutionary characteristics of
pollution and carbon emissions, the whole coupling
coordination degree between PM2.5 pollution and CO2

emissions in the Wuhan metropolitan area displayed two
phases, an increase and a decrease, with a turning point
around 2012. Initially, the synergy level improved as the
coupling degree increased. However, with the reduction in
PM2.5 pollution levels in the later period, the coupling degree
decreased, leading to a decline in overall coordination levels.
Detailed analysis of county-level units reveals that areas such
as Hongshan District, Jiangxia District, Huangpi District and
Caidian District withinWuhan, as well as Daya City, Xiaonan
District, Qianjiang City, Echeng District, Huangmei County,
Huangzhou District, Xianyang City and Tianmen City
outside Wuhan, have higher levels of synergistic
coordination and should be prioritised for collaborative
pollution and carbon reduction efforts.

(3) In terms of the effectiveness of various factors on the
synergistic effects of PM2.5 pollution and CO2 emissions,
the factors including temperature inversion days,
precipitation, temperature, vegetation coverage, green
patents, population, GDP, per capita GDP, secondary
industry ratio, nighttime lights, energy consumption
intensity and built-up area exhibited varying effects on the
PM2.5 pollution and CO2 emission synergy in county-level
units of the Wuhan metropolitan area. Factors such as
population, GDP, secondary industry ratio, nighttime
lights, energy consumption intensity and built-up area
generally had positive effects, leading to increased air
pollution and carbon emission synergy. Conversely,
precipitation and vegetation coverage generally exerted
negative suppressive effects. The effects of temperature
inversion, temperature, green patents and per capita GDP
were mixed. For example, green patents positively influenced
the air pollution and carbon emission synergy in regions such
as Xiaogan and Xianning but showed a suppressive effect in
Huanggang, Tianxianqian and central Wuhan
metropolitan areas.

(4) From the perspective of the spatiotemporal differences in
influencing factors, the impact of various factors on air
pollution and carbon emission synergy showed significant
spatiotemporal heterogeneity. Temperature inversion
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primarily affected the northwest part of the metropolitan area,
with strong effects shifting from Tianxianqian to the vicinity
of Yunmeng. Precipitation had a significant negative effect on
the overall PM2.5 pollution and CO2 emission synergy, with
the most pronounced effects in Xinzhou and Jiangxia.
Temperature effects displayed a northeast–southwest
pattern, with noticeable positive impacts on the
northeastern regions. Vegetation coverage generally showed
a negative suppressive effect on the air pollution and carbon
emission synergy across most regions. Green patents
predominantly exerted a negative effect on pollution levels,
although a few areas showed no suppression. Population
growth showed a positive effect, which was particularly
strong in Huanggang; in regions such as Yingshan and
Xishui, it significantly promoted PM2.5 pollution levels.
GDP effects varied, with negative impacts in Wuhan and
Ezhou and increasing positive impacts in Xiaogan, Xishui and
Wuxue. Per capita GDP showed a pronounced positive effect
in Tianmen and Qianjiang. The secondary industry ratio had
high positive impacts in Luotian County and Yingshan
County. Energy consumption intensity showed a strong
effect, shifting from northwest to southeast over time.
Energy consumption efficiency mainly affected
Tianxianqian, Chibi, Chongyang, Tongshan and Xian’an.
Built-up area effects showed a trend of receding to the
central regions, with high values in Huangpi and Xinzhou.

Owing to limitations in data availability and accessibility, the
influencing factors selected in this study may not be comprehensive.
Future research could incorporate variables related to transportation
and policy to construct a more accurate model and further explore
the mechanisms of influence.
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