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Altitude differentiation has a substantial effect on the synergistic control of PM2.5

and O3 pollution. This study targets the Fenwei Plain, which is affected by
mountain range blockage, divided into different altitude scales, and employs
the methods of correlation analysis and geographical detector to explore the
spatiotemporal heterogeneity of PM2.5 and O3 between different altitude zones
and to identify the key controlling factors of pollutants between different altitude
areas. The results showed that PM2.5 showed a significant decreasing trend from
2014 to 2023, whereas O3 exhibited an opposite trend. The concentrations of
both pollutants decreased with increasing altitude, particularly for PM2.5, which
showed significant altitudinal differentiation under the influence of topography.
PM2.5 was negatively correlated with gross domestic product (GDP) and
precipitation, and positively correlated with SO2. In contrast, the correlation of
O3 with these factors was opposite to that of PM2.5. For spatial differentiation,
NO2 and SO2 were themain factors influencing the spatial differentiation of PM2.5

and O3 at different altitudes. The explanatory power of the spatial divergence of
PM2.5 and O3 was greatly increased by the interactions between the two
precursors and between the precursors and meteorological factors.
Furthermore, the explanatory power of the PM2.5 dominant factor increased
with elevation, while the explanatory power of the O3 dominant factor was
relatively high across low, middle, and high altitudes. This study serves as a
guide for reducing air pollution in the Fenwei Plain and offers a novel perspective
for the study of PM2.5 and O3 influenced by terrain.
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1 Introduction

Atmospheric pollution is currently the greatest barrier to the development of a global
ecological civilization and a focal point for environmental studies (Zhang et al., 2021;
Ioannis et al., 2020). In 2021, the Chinese government issued documents specifically to
provide crucial directives for the management of air pollution. These directives mandate
that amid the fight against O3 pollution, achieve the synergistic control of fine particles and
O3 (Sun and Huang, 2021). In 2023, the Action Plan for Continuous Improvement of Air
Quality similarly emphasizes the need to reduce PM2.5 concentrations as the main line of
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action, with synergistic emission reductions of nitrogen oxides
(NOx) and volatile organic compounds (VOCs), and sets the
target of significantly reducing pollutant concentrations in key
regions such as the Beijing-Tianjin-Hebei region, the Yangtze
River Delta and the Fenwei Plain by 2025 (CPsGotPsRo, 2023).
PM2.5 and O3, as typical air pollutants, have pollution areas that are
both overlapped and differentiated pollution areas. At the same time
that PM2.5 continues to decline, it is essential to effectively halt the
rise in O3. The top priority for air pollution prevention is to achieve
synergistic management of the two types of pollutants (Liu and Liao,
2021; Ji, 2021). Consequently, scientific understanding of the
features of the spatiotemporal variation and influencing factors of
PM2.5 and O3 has evolved into a crucial scientific foundation for the
coordinated management of air pollution (Zhang et al., 2021; Wang
et al., 2022a; Hui et al., 2021).

Scholars from both domestic and foreign countries have conducted
multiple studies on PM2.5 and O3, focusing on the spatiotemporal
characteristics of pollutants, the causes, health and ecological risks of
environmental exposure, and influencing variables of air pollution (Yan
et al., 2016; Bai et al., 2018; Chen et al., 2019; Huang C. et al., 2021; Lu
et al., 2017; Xu et al., 2021a). For the spatiotemporal characteristics of air
pollution, mathematical statistics, spatial autocorrelation analysis,
spatial interpolation, hotspot analysis, and trend analysis were
primarily employed to reflect the spatial-temporal features of
pollutants (Bai et al., 2018; Huang C. et al., 2021; Lei et al., 2022;
Wu et al., 2023; Ali-Taleshi et al., 2022). Research indicates that air
pollution, including PM2.5, O3 and aerosol optical depth (AOD), is
highly heterogeneous in space and time in different areas (Huang et al.,
2024; Su et al., 2024; Dong et al., 2019). For the analysis of the causes of
air pollution, backward trajectory analysis, potential source contribution
function (PSCF) analysis, physical and chemical models, concentration
weight matrices, and other techniques have been extensively used (Xiao
et al., 2022;Ma et al., 2021; Fang et al., 2021;Masiol et al., 2017; Xu et al.,
2021b). For the health and ecological risks of environmental exposure to
pollutants, health risks and ecological risks due to pollutants are mainly
assessed usingmethods such as environmental exposure riskmodelling,
ecological risk assessment and health exposure response functions (Xu
et al., 2018; Zou et al., 2019; Zhao et al., 2022; Wang L. et al., 2022). For
the influencing factors of air pollution, geographically weighted
regression models, multiple linear regression models, geographical
detectors, and other models and methods were primarily used to
investigate the primary influencing factors of pollutants. The
geographic detector, which is not constrained by conditions such as
linearity and non-linearity and is extensively utilized to identify the
spatial distinction between terrestrial objects and the underlying driving
factors (Liu and Liao, 2021; Chen L. et al., 2020; He et al., 2022; Wei
et al., 2019; Shen et al., 2022; Wang et al., 2022c). Additionally, several
studies have shown that the primary contributors to PM2.5 and O3

pollution include precursor pollutants, societal and economic factors,
and meteorological conditions. Meteorological factors impact PM2.5

and O3 through pollutant transport, diffusion, chemical
transformations, and wet and dry deposition (Chen Z. et al., 2020).
Temperature and precipitation play a significant role, but their influence
on PM2.5 and O3 varies spatially (Xia et al., 2022). In addition, socio-
economic factors such as economic development, urbanization, and
population expansion impact PM2.5 and O3. Precursor pollutants like
SO2 and NOx, primarily from burning fuels like industrial coal, are also
essential for preventing and controlling air pollution as they directly

contribute to the development of PM2.5 and O3 (Liu, 2021; Dai et al.,
2021; Duan et al., 2021; Dan et al., 2019; Wu et al., 2021; Bo et al., 2020;
Xiaoyuan et al., 2010).

During the 14th Five-Year Plan period, China optimized and
modified the key areas for air pollution avoidance and governance,
focusing particularly on the three regions of the Fenwei Plain, Yangtze
River Delta, and Beijing-Tanjin-Hebei (Liu and Liao, 2021; Ji, 2021;
Qin et al., 2020; Dai et al., 2022). Numerous studies on air pollution
have been conducted in the latter two economically developed
regions, whereas research on the Fenwei Plain is relatively limited.
Fenwei Plain is the most developed area of industrial and agricultural
agriculture in Shaanxi Province, where transportation is primarily
dependent on roads and the industrial structure is dominated by
chemical industries. The region is primarily characterized by heavy
industries, with coal accounting for more than 90% of energy
consumption and coke production accounting for approximately
15% of the nation (Huang et al., 2019). The Fenhe Plain and the
Weihe Plain, which are connected by the Fenhe River and the Weihe
River, converge in the valley of the Yellow River, creating the
distinctive basin terrain of the Fenwei Plain. This geographical
feature hinders the spread of pollutants, making this area vital for
air pollution control andmanagement in China (Xu D. et al., 2021). In
addition, prior research has demonstrated that topography resulted in
notable geographic differences in PM2.5 and O3 pollution (Zhao et al.,
2020; Huang X. et al., 2021). Various altitudinal regions may have
distinct pollution characteristics and influencing factors. Existing
research on PM2.5 and O3 pollution has mainly focused on a
single scale or pollutant, neglecting spatial variations in elevation
and the interactions between PM2.5 andO3. Additionally, these studies
failed to adequately explore the connection between altitudes and
pollutants under the special topography such as the Fenwei Plain.

In light of this, this study thoroughly examined the impact of
topography on PM2.5 and O3 by focusing on the Fenwei Plain. The
area was categorized into three altitude regions (low, middle, and
high) based on digital elevation model (DEM) data. Firstly, we
showed the spatial and temporal characteristics of PM2.5 and O3,
along with elevation differences from 2014 to 2023. Secondly, the
relationship between pollutants (PM2.5 and O3) and influencing
factors was explored by combining meteorological (temperature and
precipitation), socioeconomic (night light index, population, and
GDP), and precursor factors (NO2 and SO2). Finally, the primary
driving elements and interactions of PM2.5 and O3 at different
altitudes were detected using the geographical detector. This
study also compared the similarities and differences between the
influencing variables of the two pollutants. The study’s findings are
significant for the coordinated management of PM2.5 and O3 in the
Fenwei Plain and offer a fresh outlook on regional PM2.5 and O3

pollution in comparable basin topographies. They also serve as a
crucial foundation for creating tailored air pollution management
strategies at varying altitudes.

2 Materials and methods

2.1 Data sources and processing

The following four segments make up the majority of the
study’s data: (1): ChinaHighAirPollutants dataset (CHAP). The
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data is sourced from https://weijing-rs.github.io/product.html. It
is a high-coverage, high-precision, and near-surface air pollutant
dataset created by combining extensive data from ground-based
observations, atmospheric reanalysis, emission inventories, and
model simulations (Wei et al., 2022; Wei et al., 2023a). It
considers the spatial and temporal heterogeneity of
atmospheric pollution and was developed using artificial
intelligence methods by Wei et al. (2020). The cross-validation
coefficient of determination (CV-R2) is 0.92, and the root mean
square error (RMSE) is 10.76 μg/m3, indicating great accuracy
and suitability for this study (Wei et al., 2023b). This study
obtained the annual average data for PM2.5 and O3 in the Fenwei
Plain from the CHAP dataset for the period from 2014 to 2023, as
well as the annual average raster data for NO2 and SO2 from
2014 to 2020. The spatial resolution was 1 km for the PM2.5

dataset and 10 km for the O3, NO2, and SO2 datasets. (2)
Meteorological data. It primarily consists of temperature and
precipitation raster data from the CRU TS website (https://
crudata.uea.ac.uk/cru/data/hrg/) to provide monthly data
covering the land surface with a spatial resolution of 0.5° for
2014–2020. The dataset was interpolated to a 1 km spatial
resolution using the inverse distance weighted (IDW) method
and processed as annual data in the study. (3) Socioeconomic
data. It is primarily comprised of population, GDP, and night
light data (NLI), which can reflect the economic situation. The
Chinese GDP spatial distribution km grid dataset is maintained
by the Chinese Academy of Sciences’ Institute of Geographic
Sciences and Resources. Demographic data can represent the
region’s population agglomeration degree. The University of
Southampton initiated, developed, and generated the Open
High Resolution Geospatial Dataset (https://hub.worldpop.org/
) on population distribution, demographics, and dynamic data.
The night light data, which can characterize the vitality of cities,
was a raster dataset that calculated the average value of the grid
using the NPP/VIIRS remote sensing light data set of 2014–2020.
(4) DEM data. The information originates from the Resource
Environmental Science and Data Centre (http://www.resdc.cn/).
In order to find out the differences in spatiotemporal features and
impact factors of PM2.5 and O3 between various altitudes, the
Fenwei Plain was divided into low altitude area
(110 km–815 km), middle altitude area (815 km–1,379 km),

and high altitude area (1,379 km–3631 km) by using the
natural breakpoint method in this study. The DEM map and
division results are shown in Figure 1. All the above data were
resampled to 1 km and cropped to the study area and different
elevation scales for analysis. However, due to the limitations of
the impact factor data, the multi-year average of the
2014–2020 data was used for the impact factor analyses in
both the correlation analyses and geographical detector in
this study.

2.2 Methods

2.2.1 Theil-Sen Median and Mann-Kendall
Theil-Sen media trend analysis and Mann-Kendall significance

test are two non-parametric tests. The method does not require the
data to satisfy normal distribution, and is also capable of eliminating
the interference of outliers and reflecting the overall trend of the
time series (Li et al., 2023). In this study, Theil-Sen median trend
analysis and Mann-Kendall test were used to analyze the trends of
PM2.5 and O3. The formula is shown in Equation 1 (Chen and
Zhang, 2024):

β � Median
Xi −Xj

i − j
,∀i> j (1)

where i and j represent time series; Median represents the median
value; β denotes the trend of the pollutant, and the positive or
negative of β denotes the direction of the trend. When β > 0, it is an
upward trend; the opposite is a downward trend.

The Mann-Kendall (MK) significance test used to detect the
significance of data under long time series. The formulas for its
calculation are shown as Equations 2–5:

Z �

S − 1������
Var S( )√ , S> 0

0, S � 0

S + 1������
Var S( )√ , S< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(2)

S � ∑n−1
i�1

∑n
j�i+1

sgn Xi −Xj( ) (3)

FIGURE 1
DEM and altitude classification map of the Fenwei Plain.
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sgn Xi −Xj( ) � 1, Xi −Xj > 0
0, Xi −Xj � 0
−1, Xi −Xj < 0

⎧⎪⎨⎪⎩ (4)

Var S( ) �
n n − 1( ) 2n + 5( ) − ∑m

i�1
ti ti − 1( ) ti + 5( )

18
(5)

where n is the number of time series data; m is the number of knots
(recurring data sets) in the sequence; ti is the width of the knot
(number of data identities). The Z-test value was obtained using the
sign function (sgn) and the variance of the series (Var(S)). The
calculated Z-value was used to determine whether the time
series data was significant or not. If |Z| ≤Z1−α, the trend is
insignificant; if |Z| >Z1−α, the trend is significant.

2.2.2 Spatial autocorrelation analysis
Spatial autocorrelation is a method for determining whether

spatially constant variables are dependent on one another within the
same distribution. This study used the global Moran’s I to calculate
whether pollutants have noticeable spatial agglomeration features.
The formula is shown in Equation 6 (Li et al., 2022):

Moran′s I �
n∑n
i�1

∑n
j�1
Wij Xi − �X( ) Xj − �X( )

∑n
i�1
∑n
j�1
Wij( )∑n

i�1
Xi − �X( )2 (6)

where n represents the total amount of grids; Xi and Xj represents
the pollutant concentrations of grids i and j, where i is not equal to j;
�X represents the average pollution concentration;Wij represents the
spatial weight matrix. The Moran’s I index will be a value
between −1 and 1. The global Moran’s I > 0 represents a positive
correlation, indicating that PM2.5 or O3 similar grids tend to have a
spatially clustered distribution. The global Moran’s I < 0 denotes
negative correlation, which shows that PM2.5 or O3 similar grids
tend to have a spatially discrete distribution. The globalMoran’s I =
0 represents no correlation, indicating that PM2.5 or O3 grids tend to
have a random distribution.

Additionally, this study employed the local Moran’s I to assess
the clustering of pollutants’ local regions, thereby revealing the
similarity or difference between spatial objects and their
surrounding space. The formula is shown in Equation 7 (Yuan
et al., 2022):

LocalMoran′s I �
n Xi − �X( )∑n

j�1
Wij Xj − �X( )

∑n
i�1

Xi − �X( )2 (7)

whereXi is the value of the corresponding attribute of grid i, andXj

is the value of the corresponding attribute of grid j;Wij is the spatial
weight matrix between grid i and j. Four categories can be derived
from the local Moran’s I findings: ‘High-High’ type represents that
pollutant as being relatively high compared with the value of the
adjacent area. ‘High-Low’ type represents that pollutants are
enclosed by low-value areas. ‘Low-High’ type represents that
pollutants are enclosed by high-value areas. ‘Low-Low’ type
represents that pollutant concentration and the value of the
neighboring unit as being relatively low.

2.2.3 Pearson correlation analysis
Pearson correlation analysis reflects the correlation between the

two variables. The correlations between pollutants and influencing
factors were depicted in this study using Pearson correlation analysis
(Yang et al., 2019). The formula is shown in Equation 8:

r �
∑n
i�1

Xi − �X( ) Yi − �Y( )����������∑n
i�1

Xi − �X( )2√ ����������∑n
i�1

Yi − �Y( )2√ (8)

where Xi and Yi are the data of two variables respectively; �Xand �Y
are the average of two variables, respectively; r is the correlation
coefficient, and r range is between −1 and 1. The closer |r| is to 1, and
the stronger the correlation is, the closer |r| is to 0, demonstrating
that the two variables seldom have any link.

2.2.4 Geographical detector
Geographical detector can explain the spatial differentiation of

geographical phenomena and elucidate their underlying causes.
The fundamental idea is that the spatial distributions of X and Y
should tend to be similar if X, the independent variable,
significantly influences Y, the dependent variable (Cao et al.,
2013). Utilizing the factor detector and interaction detector in
the geographical detector, the primary influencing variables and
interactions of the spatial distribution of pollutants were examined
in this paper.

Factor detector involves the detection of the space difference of
Y, the dependent variable, and exploring the extent to which a factor
X explains the spatial differentiation of Y, measured by the value of q
(Wang and Xu, 2017). The specific formula is shown in Equation 9:

q � 1 − 1
Nσ2

∑L
i�1
Niσ i

2 (9)

where q is the explanatory power of the factor to the variable Y; i = 1,
2, 3; L is the stratification of factor X or variable Y; and N are the
number of units in layer i and the whole region, respectively. σ i2 and
σ2 are the variances of layer i and region Y, respectively. The
explanation power of factors X to Y increases with q value,
which has a range of values from 0 to 1.

Interaction detector is the process of finding interactions
between various risk variables, i.e., determining whether Xi and
Xj together will increase or decrease the explaining ability of the
dependent variable Y or whether X is not dependent on Y (Lin et al.,
2021). The interaction results are presented in Table 1.

TABLE 1 Geographic detector interaction results.

Compare Interaction

q(Xi ∩ Xj) < Min[q(Xi),q(Xj)] Nonlinear weakening

Min[q(Xi),q(Xij)]<q(Xi ∩ Xj) < Max
[q(Xi),q(Xj)]

Single factor nonlinear
attenuation

q(Xi ∩ Xj) > Max[q(Xi),q(Xj)] Double factor enhancement

q(Xi ∩ Xj) = q(Xi) + q(Xj) Independent

q(Xi ∩ Xj) > q(Xi) + q(Xj) Nonlinear enhancement
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3 Results

3.1 The temporal variation characteristics of
PM2.5 and O3

Figure 2 depicts the annual variation of PM2.5 and O3

concentrations in Fenwei Plain from 2014 to 2023. The mean
PM2.5 in Fenwei Plain was 41.66 μg/m3, which exceeded the
national secondary concentration limit of 35 μg/m3. The mean
O3 was 98.67 μg/m3, which was lower than the national primary
concentration limit of 100 μg/m3. Figure 2A shows the overall
downward trend of PM2.5 in Fenwei Plains (decline coefficient:
1.4347 μg/m3/a), but it begins to show a slight increasing trend in
2021. In contrast to the tendency for PM2.5 to change over time,
O3 showed an upward trend (upper coefficient: 3.5459 μg/m3/a),
peaking in 2023 after a brief decrease in 2021. Figure 2B
demonstrates that the concentration change trend of the two
pollutants at different altitudes was essentially consistent with
the annual change of the entire region, with an upward trend for
O3 and a downward trend for PM2.5. The concentration level
decreased from high to low as follows: low altitude area > middle
altitude area > high altitude area. The PM2.5 in low altitude areas
was decreasing the most, with a concentration difference of
10–20 μg/m3. Compared to PM2.5, the difference in O3 between
different altitudes is smaller. However, after 2016, the differences
began to gradually increase, especially at middle and
high altitudes.

3.2 The spatial variation characteristics of
PM2.5 and O3

3.2.1 Spatial variation characteristic of PM2.5

Figure 3 depicts the spatial variation of PM2.5 in Fenwei Plain
from 2014 to 2023. From 2014 to 2017, concentrations were
greater than 75 μg/m3 at most low to middle altitudes areas. Over
time, the extent of the high pollution zone is gradually reduced,

with concentrations below 75 μg/m3 throughout the Fenwei
Plain by 2020. It is evident that the Fen Wei Plain’s PM2.5

pollution is steadily getting better. Notably, PM2.5 exhibited a
spatial pattern of high concentration in the middle areas and low
concentration in the surrounding areas. The high pollution areas
are mainly found in the low altitude areas such as Yuncheng,
Xianyang, Weinan, and Linfen, while the PM2.5 concentration in
the high altitude and other marginal areas is low. This
phenomenon may be attributed to topographical factors;
specifically, the terrain of the Fenwei Plain is relatively low in
its center while rising on all sides, which hampers pollutant
dispersion and contributes to significant PM2.5 pollution within
the Fenwei Plain Basin.

To further reflect the trend of PM2.5, this study used Theil-Sen
trend analysis andMann-Kendall significance to explore the trend of
PM2.5 from 2014 to 2023. The results are displayed in Figure 4. In the
majority of areas, the PM2.5 slope was smaller than 0, suggesting a
general downward trend in PM2.5. The type of declining trend is
dominated by significant declines, with a few areas of slight declines
concentrated in high altitude areas of the Fenwei Plain. Moreover, in
contrast to the spatial distribution pattern of PM2.5, the slope of
PM2.5 overall decreased as elevation decreased, and the more
significant the declining tendency, the lower the height. Even if
the PM2.5 concentrations were higher at lower elevations, it was
evident that these areas have been remarkably treated, particularly in
Xianyang, Yuncheng, and Weinan.

3.2.2 Spatial variation characteristic of O3

Figure 5 depicts the O3 spatial variation from 2014 to 2023.
From 2014 to 2016, O3 in the majority of the Fenwei Plain was below
the national concentration limit of 100 μg/m3. In 2017, O3 in the
Fenwei Plain increased significantly, with the most notable increases
in Yuncheng and Linfen. Between 2017 and 2023, O3 pollution
progressively spread from the central to the eastern regions, leading
to an overall distribution of O3 that was east-high and west-low. By
2023, O3 level in the Fenwei Plain exceeded 110 μg/m

3 in the east and
100 μg/m3 in the west. By 2023, the concentration of O3 in the

FIGURE 2
Annual change of PM2.5 and O3 in Fenwei Plain from 2014 to 2023 [The red area in (A) is the PM2.5 error band; the blue area is the O3 error band]. (A)
The entire area, (B) The different altitudes.
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eastern region of the Fenwei Plain was higher than 110 μg/m3, and
the concentration in the western region was also more than
100 μg/m3.

The O3 trend analysis and significance test findings from
2014 to 2023 are shown in Figure 6. Over the whole region, the O3

slope were more than 0. The O3 concentration exhibited a
noteworthy increase in the majority of the regions,
particularly in the central regions of Jinzhong, Linfen, and
Taiyuan, where the upward trend was particularly
considerable and the slopes were greater. Moreover, although
it was less noticeable than that of PM2.5, the trend of O3 also
displayed an altitude differentiation feature.

3.2.3 Spatial distribution characteristics of PM2.5

and O3 at different altitudes
Figure 7 depicts the multi-year average values of PM2.5 and O3

at different altitudes. The PM2.5 concentrations varied
significantly at low, middle, and high altitudes, followed by:
low altitude area 50.97 μg/m3 > middle altitude area 38.28 μg/m3

> high altitude area 31.22 μg/m3. The concentration
difference of O3 is not obvious, followed by: low altitude area
100.07 μg/m3 > middle altitude area 99.11 μg/m3 > high altitude
area 95.92 μg/m3. In low altitude area, PM2.5 was greater than
45 μg/m3, whereas the concentration in the majority of regions
was between 45–60 μg/m3. The highest concentration of O3 was

FIGURE 3
Annual change of PM2.5 spatial variation in the Fenwei Plain from 2014 to 2023 (A–J).

FIGURE 4
Annual change trends (A) and significance test (B) of PM2.5 from 2014 to 2023.
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in the central region, while the concentration was substantially
higher in the northern region than the southern region. In the
middle altitude area, the range of PM2.5 in most areas was
20–60 μg/m3, and the range of O3 was 90–100 μg/m3. In high
altitude area, the PM2.5 range was 0–35 μg/m3, and the O3 range
was 80–95 μg/m3. Combining the spatiotemporal distribution of
PM2.5 and O3 at different altitudes revealed that the two
pollutants had similar changes as a result of the terrain, as
concentrations for both were as follows: low altitude area >
middle altitude area > high altitude area. This phenomenon may
be attributable to the influence of social and economic factors
such as vehicles, factories, and other pollutants in low-altitude

regions, which result in high pollutant concentrations, while less
artificial pollution in high-altitude regions results in low
concentrations. In addition, compared to the change in O3,
the elevation gradient of PM2.5 was significantly greater,
indicating that terrain significantly affected PM2.5 but had a
smaller impact on O3.

3.2.4 Spatial clustering characteristics of PM2.5

and O3

The analysis of the global spatial autocorrelation of PM2.5 and
O3 in Fenwei Plain revealed that the global Moran’s I of PM2.5 and
O3 was greater than 0.9, indicating significant spatial autocorrelation

FIGURE 5
Annual change of O3 spatial variation in the Fenwei Plain from 2014 to 2023 (A–J).

FIGURE 6
Annual change trends (A) and significance test (B) of O3 from 2014 to 2023.
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and spatial agglomeration. Figure 8A shows that the ‘High-High’
clustering of PM2.5 was primarily found in low altitude areas of
Linfen, Yuncheng, Xianyang, Luoyang,Weinan, and Xi’an, as well as
at the junction of Lvliang, Taiyuan, and Jinzhong. These areas and
their surroundings exhibited high levels of PM2.5 pollution, making
them the regions with significant PM2.5 pollution in Fenwei Plain.
The “low-low” clustering of PM2.5 was primarily found in high
altitude areas like the west side of Taiyuan, the central part of
Lvliang, the southeastern part of Jinzhong, and the southern edge of
the Fenwei Plain. This suggests that these areas and their
surroundings have generally low levels of PM2.5 and are less
polluted. As shown in Figure 8B, the clustering of high levels of
O3 was predominantly found in middle and low altitude areas, such

as Yuncheng, Weinan, the northern part of Luoyang, the estern part
of Linfen, northern part of Jinzhong, and the northwestern fringe
region. This suggests that O3 levels are generally elevated in these
areas and their vicinity. The “low-low” clustering of O3 was seen in
the middle and high altitude areas of Xi’an, and Baoji, suggesting
that O3 is low in these areas and their surroundings. PM2.5 and O3

exhibited spatial concentration overlap. Overall, the overlapping
areas of PM2.5 and O3 high pollution centers were mostly found in
the low altitude areas of Yuncheng, Weinan, Linfen, and Luoyang.
The low pollution overlap areas were mainly found in the middle
and high altitude areas, such as Baoji, and Xi’an. PM2.5 and O3

exhibited local spatial synergies, indicating a necessity for
coordinated treatment of both pollutants.

FIGURE 7
Spatial characteristics of PM2.5 and O3 in Fenwei Plain at different altitudes (A–F).

FIGURE 8
Spatial autocorrelation of PM2.5 (A) and O3 (B) in the Fenwei Plain from 2014 to 2023.
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3.3 Analysis of influencing factors on PM2.5
and O3

3.3.1 Correlation analysis
This study uses Pearson correlation analysis to study the linear

relationship between PM2.5, O3, and three types of influential
factors. Table 2 shows the results of the correlation analysis of
PM2.5 and O3 with the three categories of influencing factors at
various altitude scales. For the entire Fenwei Plain, the correlated
coefficients between the main influential factors and PM2.5 were as
follows: SO2 (0.8638) >GDP (−0.824) > precipitation (−0.5779), and
for O3, GDP (0.8896) > SO2 (−0.8555) > precipitation (0.6385). The
two pollutants had comparable primary influence factors, but their
coefficients were opposite. This could be a significant inverse
correlation between PM2.5 and O3. For the low, middle, and high
altitude areas, the relevant PM2.5 and O3 coefficients were extremely
similar throughout the entire region. The correlated coefficients
between PM2.5 and the three main influence factors (precipitation,
GDP, and SO2) decreased progressively with increasing altitude,
whereas the correlation coefficient between O3 and the three most
influential factors was not significantly correlated with altitude.

3.3.2 Analysis of the drivers of PM2.5 and O3 spatial
divergence

Correlation analysis does not imply causation. PM2.5 and O3

spatial pollution characteristics are the result of numerous complex
factors, such as meteorology, social economy, and precursor
pollutants, and are not only a single linear relationship or
influenced by a single pollutant. Therefore, this paper further
identified the driving factors of PM2.5 and O3 spatial
differentiation at low, middle, and high altitudes in the Fenwei
Plain by using the detector and interaction detector of the
geographic detector.

3.3.2.1 Analysis of driving factors in low altitude area
Tables 3, 4 demonstrate the results of factor detection and

interaction detection of PM2.5 and O3 in low altitude area of the
Fenwei Plain. Table 3 shows that the sig for all the influences was
less than 0.05, indicating that all passed the test of significance.
NO2 (0.2930) and SO2 (0.5413) were the main drivers of PM2.5

and O3, respectively. Table 4 shows that the results of the

interaction detection of the two pollutants are double factor
enhancement and non-linearly enhanced. NO2 and
precipitation (0.3849) and NO2 and temperature (0.387) were
the predominant interaction factors of PM2.5. Nevertheless, the
explanatory power of the interaction of the remaining influencing
factors on the spatial differentiation of PM2.5 differed less from
that of the dominant factors. This may be due to the fact that the
mechanisms affecting PM2.5 at low altitudes are more complex
and susceptible to a combination of meteorological, precursor
and socio-economic factors. The q values between SO2 and other
influencing factors were all greater than 0.5793, which was the
most important interaction center. It can be seen in Table 4 that
the interaction increased the two pollutants’ spatial
differentiation’s explanatory power. NO2 and precipitation
(0.3849) and NO2 and temperature (0.387) were the
predominant interaction factors of PM2.5, but each factor’s
ability to explain the spatial difference of PM2.5 was still
modest. The dominant interaction factors of O3 were SO2 and
precipitation (0.8383), SO2 and NO2 (0.7233), and precipitation
and temperature (0.7043), all of which have high explanatory
power. It indicates that O3 in low altitude area was primarily
influenced by the interaction of precursor contaminants and
meteorological factors. And the spatial differentiation of PM2.5

and O3 in low altitude area was formed by a variety of influencing
factors. Furthermore, precipitation and temperature (0.7043),
and NO2 and temperature (0.5778) also had high explanatory
power for O3.

3.3.2.2 Analysis of driving factors in middle altitude area
Tables 5, 6 demonstrate the results of factor detection and

interaction detection of PM2.5 and O3 in the middle altitude area
of the Fenwei Plain. According to Table 5, NO2 (0.3149) and SO2

(0.3661) were, respectively, the primary drivers of PM2.5 and O3

levels. As can be seen from Table 5, the results of the two pollutant
interaction detectors at mid-altitude remain of two types: two-factor
enhancement and non-linear enhancement. Table 6 demonstrated
that there are still two types of outcomes from the two pollutant
interaction detectors at mid-altitude: non-linear enhancement and
two-factor enhancement. NO2 and temperature (0.4486), NO2 and
precipitation (0.4051), SO2 and temperature (0.03717), NO2 and
people (0.3571) were the primary interaction factors for PM2.5. For

TABLE 2 PM2.5 and O3 correlation coefficients in Fenwei Plain from 2014 to 2020.

Influencing factors PM2.5 O3

All
area

Low
altitude

Middle
altitude

High
altitude

All
area

Low
altitude

Middle
altitude

High
altitude

Socioeconomic
factors

GDP −0.824 −0.8383 −0.8023 −0.7671 0.8896 0.8875 0.8935 0.8914

NLI −0.0961 −0.0732 −0.1171 −0.0921 0.4193 0.0508 0.357 0.0444

Population −0.1867 −0.0778 −0.2182 −0.3269 0.1968 0.0495 0.2319 0.4038

Precursor
contaminant factors

NO2 0.1328 0.2223 0.0832 0.0709 0.2631 0.2207 0.3187 0.2211

SO2 0.8638 0.8846 0.8537 0.8467 −0.8555 −0.8478 −0.8572 −0.8659

Meteorological
factors

Temperatures −0.0027 −0.0996 0.0861 −0.0196 0.4651 0.6097 0.3872 0.3645

Precipitation −0.5778 −0.6629 −0.5595 −0.4533 0.6385 0.6453 0.6338 0.6358
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O3, SO2 remained the most significant interactive center, with q
values between SO2 and other influencing factors all having
exceeded 0.4184. Notably, the q values for the interactions
between SO2 and precipitation, as well as between SO2 and
temperature, were both greater than 0.6. In addition, NO2 and
precipitation (0.5216) also had high explanatory power for O3. The
dominant interaction factors had a high degree of consistency in low
and middle altitude areas. Among these, the interpretation of the
main driving factors and interactor factors for PM2.5 had improved,
whereas the interpreting power for O3 had been slightly diminished.

3.3.2.3 Analysis of driving factors in high altitude area
Tables 7, 8 demonstrate the results of factor detection and

interaction detection of PM2.5 and O3 in high altitude area of the
Fenwei Plain. According to Table 7, the factors with the highest
explanatory power for PM2.5 in this region were SO2 (0.6151) and
NO2 (0.5571), whereas the factors with the highest explanatory power
for O3 were SO2 (0.6616) and precipitation (0.6081). Table 8 shows that
for PM2.5, the q values of the interactions between NO2 and SO2 and
the other influenceswere all higher than 0.5833, particularly for SO2 and
temperature (0.7423), SO2 and precipitation (0.7107), and NO2 and

TABLE 3 Results of PM2.5 and O3 factor detectors at low altitude in Fenwei Plain.

Factor type (low altitude area) Detection factor PM2.5 O3

q sig q sig

Precursor contaminant factors SO2 0.0941 6.14E-10 0.5413 7.44E-10

NO2 0.2930 4.66E-10 0.2955 8.41E-10

Socioeconomic Factors GDP 0.1703 1.39E-10 0.1216 6.02E-11

Population 0.1395 2.53E-10 0.0777 3.92E-10

NLI 0.1589 9.86E-10 0.0863 8.29E-10

Meteorological factors Precipitation 0.1463 5.97E-10 0.2632 1.50E-10

Temperatures 0.1798 3.39E-10 0.1061 7.28E-10

q represents explanatory power; sig represents significance; if sig <0.05, it means significant; if sig = 0.05, it means standard; if sig >0.05, it means not significant.

TABLE 4 Results of PM2.5 and O3 interaction detectors at low altitude in Fenwei Plain.

PM2.5

Detection factor (low altitude area) SO2 NO2 GDP Precipitation Temperatures NLI Population

SO2 — — — — — — —

NO2 0.3677a NA — — — — —

GDP 0.2428a 0.358a — — — — —

Precipitation 0.307b 0.3849a 0.2839a — — — —

Temperatures 0.3674b 0.3847a 0.2992a 0.3753b — — —

NLI 0.2257a 0.3578a 0.1883a 0.2755a 0.3138b — —

Population 0.2125a 0.3219a 0.188a 0.2616a 0.2724a 0.1947b —

O3

Detection factor (low altitude area) SO2 NO2 GDP Precipitation Temperatures NLI Population

SO2 — — — — — — —

NO2 0.7233a — — — — — —

GDP 0.5971a 0.3358a — — — — —

Precipitation 0.8383b 0.4804b 0.3892b — — — —

Temperatures 0.6807b 0.5778b 0.2683b 0.7043b — — —

NLI 0.6224a 0.3188a 0.1549a 0.3585b 0.2319a — —

Population 0.5793a 0.3239a 0.1388a 0.3527b 0.2181b 0.1204a —

aRepresents double factor enhancement.
bRepresents nonlinear enhancement.
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temperature (0.7035). These interactions had a very significant
explanatory power for the spatial differentiation of PM2.5. For O3,
SO2 and NO2 were also at the center of the interaction, with SO2 and
precipitation (0.8717) and NO2 and precipitation (0.831) having the
highest explanatory power for O3. However, the explanatory power of
NO2 interacting with the rest of the influences on the spatial
differentiation of O3 decreased compared to the q value of PM2.5.
Compared to low and middle altitudes, the explanatory power of the
dominant interaction factors for both pollutants was significantly
higher, particularly for the socio-economic factors.

4 Discussion

4.1 Spatial heterogeneity of PM2.5 and O3
and their causes

This study revealed the spatial heterogeneity and influencing factors
of PM2.5 and O3 in the Fenwei Plain from the perspective of the impact
of altitude on air pollutants. From 2014 to 2023, an overall decrease in
PM2.5 was observed in the Fenwei Plain. This reduction is primarily
attributed to the Chinese government’s strategic air pollution

TABLE 5 Results of PM2.5 and O3 factor detectors at middle altitude in Fenwei Plain.

Factor type (middle altitude area) Detection factor PM2.5 O3

q sig q sig

Precursor contaminant factors SO2 0.1996 7.71E-10 0.3661 9.45E-10

NO2 0.3149 5.39E-10 0.2362 9.15E-10

Socioeconomic Factors GDP 0.1070 5.09E-10 0.0118 7.01E-01

Population 0.1056 2.88E-10 0.0051 1.00E+00

NLI 0.0977 2.10E-10 0.0343 4.22E-01

Meteorological factors Precipitation 0.1179 3.09E-10 0.2703 9.75E-10

Temperatures 0.1469 6.47E-10 0.0496 8.08E-10

q represents explanatory power; sig represents significance; if sig <0.05, it means significant; if sig = 0.05, it means standard; if sig >0.05, it means not significant.

TABLE 6 Results of PM2.5 and O3 interaction detectors at middle altitude in Fenwei Plain.

PM2.5

Detection factor (middle altitude area) SO2 NO2 GDP Precipitation Temperatures NLI Population

SO2 — — — — — — —

NO2 0.3697a — — — — — —

GDP 0.2804a 0.3586a — — — — —

Precipitation 0.3467b 0.4051a 0.2281b — — — —

Temperatures 0.3717b 0.4486b 0.2952b 0.383b — — —

NLI 0.2603a 0.3458a 0.1208a 0.2234a 0.3038b — —

Population 0.3007a 0.3571a 0.1394a 0.2299a 0.2556b 0.1393a —

O3

Detection factor (middle altitude area) SO2 NO2 GDP Precipitation Temperatures NLI Population

SO2 — — — — — — —

NO2 0.5403a — — — — — —

GDP 0.4536b 0.2785b — — — — —

Precipitation 0.6964b 0.5216b 0.3064b — — — —

Temperatures 0.6162b 0.3912b 0.0922b 0.5889b — — —

NLI 0.4762a 0.2995a 0.0542a 0.3228b 0.1062a — —

Population 0.4184b 0.2533a 0.0198a 0.2867b 0.0768a 0.053a —

aRepresents double factor enhancement.
bRepresents nonlinear enhancement.
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prevention initiatives, including the promotion of clean heating
solutions and stringent regulation of coal consumption. Notably, the
enforcement of the ‘Three-Year Action Plan to Win the Blue Sky
DefenseWar’ in 2018, along with the ‘Autumn andWinter Action Plan
for Comprehensive Air Pollution Control in the Fenwei Plain for
2018–2019,’ led to a marked decrease in PM2.5. Concurrently, these
measures also effectively mitigated the escalating trend in O3 (Zhou
et al., 2023). The distribution of PM2.5 and O3 in the area was greatly
influenced by topography, resulting in the formation of pollution
concentration areas in topography characterized by a “trumpet

mouth” and basin, featuring low elevation surrounded by
mountains, as well as in some plain areas. This pattern aligns well
with research on comparable topographical features (Shu et al., 2023).
This phenomenon occurred because the topography in the low-altitude
areas of the Fenwei Plain results in low average yearly wind speeds,
leading to stagnant airflow zones that hinder the spread of pollutants
(Shu et al., 2022). However, the terrain had a varying effect on PM2.5

and O3. PM2.5 pollution was more influenced by terrain compared to
O3. It exhibited a notable elevation pattern, particularly in the northwest
to southeast high pollution area, which aligns with the terrain. This is

TABLE 7 Results of PM2.5 and O3 factor detectors at high altitude in Fenwei Plain.

Factor type (high altitude area) Detection factor PM2.5 O3

q sig q sig

Precursor contaminant factors SO2 0.6151 8.92E-10 0.6616 8.08E-10

NO2 0.5571 7.00E-10 0.4361 9.78E-10

Socioeconomic Factors GDP 0.1111 7.55E-10 0.0331 1.00E+00

Population 0.1613 7.53E-11 0.1407 2.79E-10

NLI 0.1418 5.11E-10 0.0767 2.12E-10

Meteorological factors Precipitation 0.3081 8.30E-10 0.6083 8.22E-10

Temperatures 0.1617 7.51E-10 0.0831 9.04E-10

q represents explanatory power; sig represents significance; if sig <0.05, it means significant; if sig = 0.05, it means standard; if sig >0.05, it means not significant.

TABLE 8 Results of PM2.5 and O3 interaction detectors at high altitude in Fenwei Plain.

PM2.5

Detection factor (high altitude area) SO2 NO2 GDP Precipitation Temperatures NLI Population

SO2 — — — — — — —

NO2 0.6839a — — — — — —

GDP 0.6414a 0.5833a — — — — —

Precipitation 0.7107a 0.6794a 0.384b — — — —

Temperatures 0.7423a 0.7035b 0.3011b 0.6439b — — —

NLI 0.6402a 0.584a 0.1639a 0.412a 0.3215a — —

Population 0.6467a 0.6055a 0.2166a 0.4409b 0.3495b 0.2378a —

O3

Detection factor (high altitude area) SO2 NO2 GDP Precipitation Temperatures NLI Population

SO2 — — — — — — —

NO2 0.7249a — — — — — —

GDP 0.6833a 0.4553a — — — — —

Precipitation 0.8717b 0.831b 0.6279b — — — —

Temperatures 0.7439b 0.6274b 0.1254b 0.7775b — — —

NLI 0.6942a 0.4605a 0.0903a 0.6521a 0.1627a — —

Population 0.7097a 0.5432b 0.1482b 0.6526b 0.2583b 0.1831a —

aRepresents double factor enhancement.
bRepresents nonlinear enhancement.
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mainly due to the fact that O3 was mostly influenced by regional air
transport, had a wide pollution diffusion range, was less affected by
terrain, and showed slight variations in concentration at different
elevations (Shu et al., 2024). Therefore, PM2.5 and O3 showed a
notable difference in distribution between middle and high altitude
areas in the Fenwei Plain due to its unique topography. However, their
pollution levels exhibited homology in low-altitude regions, forming a
coordinated control zone that included Yuncheng, Linfen, Weinan,
Luoyang, and other low-altitude and border areas.

PM2.5 and O3 are formed in complicated atmospheric processes that
are impacted by a range of causes, both anthropogenic and natural, under
the influence of topography (Zhang et al., 2019; Gong et al., 2022). This
study also revealed the correlation between PM2.5 and O3 and their
influencing factors. We found that SO2, a precursor of PM2.5, undergoes
gas-phase reactions in the atmosphere with a significant positive
correlation with PM2.5 (Xue et al., 2023). In addition, GDP and PM2.5

had a negative relationship due to the fact that, with air pollution
abatement policies, which realized a parallel between GDP growth
and PM2.5 abatement, making it possible to control PM2.5 pollution at
the same time as economic growth, and economic development is no
longer dependent on air pollution. Precipitation can efficiently eliminate
PM2.5 particles by scouring them, effectively reducing PM2.5 pollution.
This results in a negative relationship between rainfall andPM2.5 (ChenZ.
et al., 2020). In addition, precipitation, SO2, and GDP also had significant
effects on O3, but in the opposite direction to PM2.5. This could be
because PM2.5 emission reduction primarily depends on sulfur and one-
time PM2.5 but NOx and VOC emissions are still very high. When NOx

and VOCs are in a certain ratio, O3 is produced through a chemical
reaction, which causes O3 pollution to continue to intensify while
PM2.5 pollution is under control (Committee CSfESOPC, 2020).
Ultimately, this leads to a negative correlation between the two
pollutants and opposite correlation coefficients for the influencing
factors. Correlations can only reflect linear relationships between
pollutants and influencing factors, and geographic detector results
provide a good probe for the reasons for the spatial divergence of
PM2.5 and O3. The geographical detector results showed that PM2.5

and O3 at various altitudes were primarily affected by the combined
impact of meteorological and precursor factors, with minimal influence
from socio-economic factors. The correlation between PM2.5 and O3 was
due to their partial homology and interconnectedness, resulting in their
influencing factors being in high agreement at various altitude scales (Sun
et al., 2023).We also discovered that differences in the explanatory power
of primary effects within the same altitude range were minimal, but
significant disparities existed between altitudes, further confirming the
significant impact of elevation. The correlation between PM2.5 and O3

was due to their partial homology and interconnectedness, resulting in
their influencing factors being in high agreement at various altitude scales.
This may be due to complex humanitarian factors such as population,
industry, and altitude in the low andmiddle altitude regions, whereas the
influence of the high altitude areawasmore singular, resulting in a greater
overall interpretation of the driving factors in this area.

4.2 Recommendations to control PM2.5 and
O3 pollution

Based on these findings, this study proposes the following
recommendations for PM2.5 and O3 pollution in the Fenwei Plain

and similar places with basin topography and “trumpet mouth”
topography: (Zhang et al., 2021): The topography laid down the
basic spatial pattern of PM2.5 and O3 pollution, making them
homogenous, consistent, and related. In this context, synergistic
PM2.5 and O3 management zones should be delineated by taking
topographical factors into account, so as to manage PM2.5 and O3

from their sources. In particular, it is crucial to enhance cooperation
between regional administrations and encourage synergistic
management in extremely polluted low-altitude areas near the
border of the two counties. In addition, it is essential to deal with
the issue of spatial aggregation of PM2.5 and O3 resulting from an
irrational industrial structure and energy layout. This can be achieved
by accelerating industrial upgrading, transformation, and restructuring
the industrial sector. (Ioannis et al., 2020). Meteorological and
predecessor variables influenced the regional heterogeneity of PM2.5

and O3 distributions. On the basis of regional coordination, non-
topographic factors should be comprehensively considered to ensure
accurate governance in these regions. Meteorological influences are
unpredictable and challenging to control accurately, but focusing on the
underlying socioeconomic causes of precursors is crucial. Thus,
enhancing regulation of industrial pollutant discharges, advancing
high-quality projects for ultra-low carbon emissions in the steel,
cement, and coking sectors, focusing on industrial transformation in
the Fenwei Plain and innovative city development, implement clean
heating, and address air pollution from PM2.5 and O3 at its core.

4.3 Research limitations and
future prospects

This study offers insights for implementing targeted strategies to
minimize air pollution. However, it does have certain constraints.
The study picked a limited range of data on pollutants, socio-
economic characteristics, and meteorological factors, despite the
numerous influencing factors of PM2.5 and O3 and the
interconnections between pollutants. This study did not consider
the intricate relationship between air pollutant transport and
topography, namely, the transport characteristics of air pollutant
movement. In future studies, we will utilize more accurate and
relevant data and methodologies to enhance the analysis of factors
influencing PM2.5 and O3 pollution. This will involve integrating
distinct viewpoints and environmental elements and thoroughly
examining the interaction between topography and air pollutant
dispersion to more precisely identify the transfer and synergistic
mechanisms of PM2.5 and O3 under the influence of complex
topography.

5 Conclusion

(1) Based on the characteristics of temporal change, PM2.5 in the
Fenwei Plain decreased from 2014 to 2023, with a decrease
coefficient of −2.9318 μg/m3/a; O3 increased, with an increase
coefficient of 5.2922 μg/m3/a. PM2.5 and O3 at all altitudes
aligned with the general trend. From 2014 to 2023, PM2.5 and
O3 decreased as altitude increased, with low altitude having
the highest levels and high altitude having the lowest levels.
The difference of PM2.5 between various altitude areas ranged
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from 10 to 20 μg/m3, but the variance of O3 at different
elevations was minimal.

(2) For the characteristics of spatial change, the range of high
PM2.5 pollution gradually decreased from 2014 to 2023,
mainly concentrated in low altitude areas. However, O3

pollution gradually spreaded from the central region to the
east in the Fenwei Plain.

(3) According to the results of the correlation analysis, PM2.5 and O3

showed strong correlations with GDP, SO2, and precipitation
across the whole Fenwei Plain, as well as at different altitudes.
Specifically, PM2.5 was negatively associated with GDP and
precipitation, and positively related to SO2; O3 was positively
related to GDP, and precipitation was negatively related to SO2.
Owing to the opposite trends of PM2.5 and O3, the correlations
between these two pollutants and their main influencing factors
were contradictory.

(4) The geographical detector findings reveal that NO2 and SO2 were
the primary influencers of PM2.5 and O3 across various altitudes.
The spatial variations of PM2.5 and O3 within the Fenwei Plain
stemmed from a complex interplay of factors, with precursor
pollutants at the epicenter of these interactions. The hierarchy of
significance was as follows: interactions among precursor
pollutants, interactions between precursor pollutants and
meteorological factors, and interactions between precursor
pollutants and socio-economic factors. The explanatory power
of the interaction factors for O3 was notably high across low,
middle, and high altitude regions. Furthermore, the explanatory
power of these interactions for spatial differentiation of PM2.5

increased significantly with rising altitude.
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