
Dynamic evolution and
influencing factors of green total
factor productivity in the Yangtze
River Economic Belt: a study
based on the three-stage SBM-ML
index model

Fei Chen, Liling Zhu and Yi Li*

School of Economics and Management, Hunan Institute of Science and Technology, Yueyang, China

Achieving sustainable development that harmonizes environmental protection
with economic growth in the Yangtze River Economic Belt (YREB) remains a
critical area of research. Examining green total factor productivity (GTFP) aids in
pinpointing the key factors and pathways essential for fostering green economic
development. On the basis of 108 prefecture-level cities in the YREB, a three-
stage SBM-ML index model was constructed to measure the GTFP level from
2009 to 2022. ArcGIS software was used to analyze the spatiotemporal evolution
of GTFP dynamically. Finally, the multidimensional factors affecting GTFP were
systematically analyzed via the Tobit model. The study revealed that (1) GTFP
exhibits notable spatial disparities among the upper, middle, and lower reaches of
the YREB, with the downstream areas showing higher levels than the upstream
and midstream areas do. (2) After excluding environmental factors and random
errors, the true GTFP level significantly decreases, indicating a notable
environmental masking effect, with a masking effect of up to 63.9%. (3) The
spatial distribution of GTFP overall shows a “low-high-low-high” pattern from
west to east, forming an “N”-shaped spatial pattern. (4) The Tobit model
regression results show that government governance enhances GTFP, while
economic growth and intergovernmental fiscal decentralization hinder real
GTFP. Although urbanization was initially insignificant, it significantly boosted
real GTFP post-COVID-19. Finally, policy recommendations to promote green
development in river basins are proposed.
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1 Introduction

The rapid growth of the global economy has intensified environmental pollution,
making the balance between economic development and ecological protection a pressing
challenge. Extensive research has demonstrated that pollution significantly affects various
health and socioeconomic indicators, such as mortality (Greenstone and Hanna, 2014), life
expectancy (Ebenstein et al., 2015), happiness (Ahumada and Iturra, 2021), labor
productivity (He et al., 2019), housing prices (Chay and Greenstone, 2005), and income
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levels (Wan and Zhang, 2023). The United Nations Environment
Programme (UNEP) warns that without swift action, environmental
degradation will deepen global socioeconomic crises. Transitioning
to a green economy has thus become an urgent necessity, requiring
policies that effectively balance economic growth with ecological
sustainability. Accurate development indicators are essential for
designing and implementing such policies, as measures such as
ecological redline delineation rely on them. Thus, precisely
calculating green development indices is crucial.

As one of the largest developing countries, China, like other
nations, faces significant challenges from environmental pressures
and green transition demands. However, these challenges are
particularly severe because of China’s unique development stage
and resource constraints. Since the global financial crisis and the
enactment of the Circular Economy Promotion Law (2009), China
has pursued policies to balance economic and ecological
development. However, with economic growth slowing,
particularly after the COVID-19 pandemic, economic vitality
gradually weakened, making green transformation even more
challenging. This is particularly evident in the Yangtze River
Economic Belt (YREB), as depicted in Figure 1, which
contributes 46.5% of GDP but accounts for more than 40% of
industrial pollution emissions (YREB Development Report 2023),
underscoring the acute tension between economic development and
ecological sustainability. Achieving a balance in this region is vital

for sustainable growth. The incorporation of energy and
environmental factors into traditional economic models while
addressing both desirable and undesirable outputs provides a
precise measure of green economic efficiency. The green total
factor productivity (GTFP) index has become a critical
benchmark for evaluating regional economic development quality
(Xia and Xu, 2020; Zheng et al., 2023; Wang et al., 2018).

Research on GTFP is well established, with a broad consensus
that, amid growing resource and environmental pressures,
economies of scale alone can no longer sustain urban economic
development (Li and Cheng, 2022). Most studies approach this from
a multi-input, multi-output perspective, considering both desirable
and undesirable outputs (Li and Cheng, 2022). However, in GTFP
measurement, many scholars include only labor and capital as input
variables (Liu and Xin, 2019; Xia and Xu, 2020; Du et al., 2024;Wang
and Tao, 2021), often overlooking energy, a key element in modern
economies that plays a critical role in industrialization, low-carbon
transition, and sustainable development (Yuan et al., 2024; Jing et al.,
2024; Cheng and Kong, 2022). Additionally, the selection of
desirable and undesirable outputs has limitations. For example,
some scholars have used average nighttime light intensity to
represent desirable outputs (Yuan et al., 2024), whereas
undesirable outputs include carbon emission intensity and PM2.5
(Yuan et al., 2024), industrial SO2 and PM2.5 (Zhou et al., 2024),
industrial SO2 and CO2 (Cheng and Kong, 2022), and industrial

FIGURE 1
Study Area.
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wastewater and PM2.5 (Zhao et al., 2022). Although SO2 and COD
emissions have long been used as indicators of pollution, they are
increasingly inaccurate because of policy adjustments and changes
in pollutant types with economic development. Therefore, more
recent analyses favor industrial waste as a more comprehensive and
objective measure of undesirable output, offering a clearer
assessment of regional pollution (Xia and Xu, 2020; Wang
et al., 2021).

Most scholars agree that GTFP measurement results reflect the
key drivers of coordinating high-quality economic development
with ecological protection, aiming to maximize economic growth
while minimizing pollution (Song et al., 2018; Zhao et al., 2022; Wu
et al., 2020; Ma and Zhu, 2022). However, various environmental
factors can distort these results, making accurate assessment of
regional development levels difficult. More importantly, if
governments use these measurements as benchmarks for policy
implementation—such as ecological red lines or regulatory
standards—significant discrepancies may undermine policy
effectiveness or even have negative effects. In this context,
developing scientifically sound policies to drive core economic
growth has become a critical issue. To fill this gap, this study
uses a three-stage DEA model to eliminate influencing factors
and random disturbances, providing a precise measurement of
the true levels and dynamic trends of GTFP in cities along the
YREB. It also examines spatiotemporal variations and key influences
on GTFP, offering valuable academic and practical insights for green
low-carbon development and sustainable regional economic growth.

The contributions of this study are as follows: First, a three-stage
DEA model is used to eliminate environmental factors and random
disturbances, accurately measuring the YREB-GTFP, which is then
decomposed into technological progress change (TC) and efficiency
change (EC). A comparison of the dynamic changes in GTFP, TC,
and EC in the first and third stages enriches the understanding of
true YREB-GTFP. Second, the Tobit model is applied to analyze the
key factors driving YREB-GTFP changes on the basis of the true
GTFP after random disturbances are removed, revealing the main
influences on its variation.

2 Literature review

With rapid global economic growth and escalating
environmental issues, traditional growth models face challenges,
and the sustainability of resources and the environment has become
central to sustainable development (Jing et al., 2024). In response,
the concept of GTFP was introduced to address the limitations of
total factor productivity (TFP) by incorporating environmental
costs. GTFP, defined as the input‒output efficiency of
undesirable outputs, has become a key indicator for measuring
green economic development (Xia and Xu, 2020; Zhou et al.,
2008). A review of the literature reveals that GTFP research has
focused primarily onmeasurement methods and influencing factors.

First, GTFP measurement methods are primarily divided into
parametric and non-parametric approaches. Scholars often use the
parametric method, particularly stochastic frontier analysis (SFA),
Specifically, they incorporate pollution emissions and energy
consumption as input factors into the SFA framework to
estimate GTFP. However, the treatment of undesirable outputs as

inputs is often considered unreasonable. Some scholars have applied
SFA to estimate regional GTFP and suggest policy
recommendations (Gong, 2020), but its reliance on idealized
production function assumptions overlooks environmental
heterogeneity and dynamic changes, limiting the reliability of the
results. In contrast, non-parametric methods, such as data
envelopment analysis (DEA), are widely favored because they do
not require assumptions about the form of the production function.
While the traditional DEA model, first proposed by Färe et al.
(1994), improves measurement accuracy, it struggles to account for
external environmental factors and random errors, which affects the
assessment of actual efficiency. To address this, Fried et al. (2002)
introduced the three-stage DEA model, which eliminates
environmental interference and provides a more accurate
measure of managerial efficiency. In recent years, the three-stage
DEA model has been widely applied in the efficiency analysis of
areas such as innovation (Li et al., 2019), healthcare services (Liu H.
et al., 2022), water pollution control (Chen et al., 2022), and banking
systems (Zhou et al., 2019). Some studies have also applied the three-
stage DEA-ML model to GTFP analysis, including agricultural
GTFP (Liu S. et al., 2022), urban GTFP (Liu and Zhu, 2022;
Huang and Chen, 2024), and provincial-level GTFP (Tang and
Qin, 2022; Wang et al., 2024; Jing et al., 2024).

Second, research on the factors influencing YREB-GTFP
remains limited, though several studies have examined it from
environmental, economic, and technological perspectives. From
an environmental perspective, Pan et al. (2022), utilizing the
three-stage DEA model, emphasized the significant impact of
environmental factors on GTFP. Government interventions
through environmental regulations are also highlighted as pivotal
for improving GTFP performance (Zheng et al., 2024; Luo et al.,
2024; Liu et al., 2024). Economically, studies underscore the roles of
economic development, foreign direct investment (FDI), and green
finance in shaping GTFP (Lee and Lee, 2022). High concentrations
of FDI have been shown to enhance GTFP through technology
spillovers, facilitating upgrades in both local and neighboring cities
(Yu et al., 2021). Meanwhile, green finance has emerged as a critical
driver of GTFP, especially in regions with advanced economies but
significant environmental challenges. By fostering low-energy, low-
pollution industries and restricting high-emission activities, green
finance optimizes energy structures and promotes environmental
performance through technological innovation (Meng et al., 2024;
Sun et al., 2023). Technological progress is another key factor, with
innovation driving green development as economies grow (Ding
et al., 2024). However, some researchers caution that technological
advancements can increase energy and resource consumption,
potentially undermining environmental quality (Herring and Roy,
2007; Fan et al., 2023). Additionally, human capital significantly
affects GTFP, but its heterogeneous impacts and mechanisms for
sustainable development require further exploration (Xiao and You,
2021). These findings collectively highlight the diverse factors
influencing GTFP in the YREB region.

Some scholars have used the Tobit model to explore the factors
influencing GTFP, revealing impact mechanisms and regional
differences. For example, Sun et al. (2023) reported that
economic growth targets suppress GTFP, particularly in
provinces with high incentives and strict constraints where goals
are met. Liu Y. et al. (2022) reported that the digital economy
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significantly boosts China’s GTFP, with the effect becoming more
pronounced as GTFP levels rise. Debbarma et al. (2022) reported
that product innovation improved the GTFP of export firms (by
0.61%) and enhanced the human capital quality of non-export firms
(by 0.57%). However, a key limitation of these studies is their focus
on first-stage GTFP, which often overlooks the analysis of true GTFP
after removing environmental factors and random errors. Given that
true GTFP is a core driver of sustainable urban development,
analyzing its influencing factors is crucial. An in-depth analysis
of the factors influencing true GTFP enhances our understanding of
its driving factors and provides crucial theoretical support for
promoting urban green and sustainable development.

In summary, this study identifies the following research gaps. First,
existing GTFP measurements suffer from biases in input and output
indicators, leading to discrepancies in capturing the true level of GTFP.
Second, most studies focus on GTFP without accounting for
environmental factors and random errors, and a systematic analysis
of the dynamic characteristics and spatiotemporal evolution of true
GTFP and its components (EC and TC) is lacking. Third, there is
limited research on the factors influencing true GTFP, with existing
studies failing to explore regional differences and underlying
mechanisms in depth. These gaps highlight the need for further
exploration of the dynamic changes and driving factors of true GTFP.

This study makes three key innovations. First, using data from
2009 to 2022, a three-stage DEA model is applied to eliminate
environmental factors and random errors, providing an accurate
measurement of the YREB’s true GTFP, which is then decomposed

into TC and EC indices to reveal its dynamic characteristics and
spatiotemporal evolution. Second, by comparing GTFP, TC, and EC
in the first and third stages, the first-stage results significantly
overestimate GTFP, TC, and EC, emphasizing the importance of
removing disturbances for precise measurement. Third, the Tobit
model is used to analyze the factors driving true GTFP, uncovering
the key mechanisms behind YREB-GTFP changes and offering
theoretical support and policy recommendations for green
sustainable development.

3 Methods and data

3.1 Three-stage DEA-Malmquist‒
Luenberger model

The three-stage DEA-Malmquist‒Luenberger (DEA-ML)
model is an innovative approach built on the traditional three-
stage DEA method by Fried et al. (2002), combined with the
theoretical contributions of Chung et al. (1997) and Tone (2003).
This new approach incorporates environmental variables and
corrects for random errors, offering a more comprehensive
assessment than traditional models do. Unlike conventional
models, the three-stage SBM-ML model not only accounts for
desirable and undesirable outputs but also integrates TC and EC.
This allows for a more dynamic and holistic evaluation of the true
level of GTFP. The calculation process is illustrated in Figure 2.

FIGURE 2
Diagram of the Three-Stage DEA Model.
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3.1.1 Stage 1: traditional SBM-ML model
In the first stage, the undesired SBM model, which is based on

the research of Tone et al., is used to handle input redundancy and
nonradial data envelopment analysis (DEA). This model defines a
production possibility set (PS) that includes both desirable and
undesirable outputs. Each city is considered a decision-making unit
(DMU), and an optimal production technology frontier is
established to evaluate efficiency. The PS can be expressed as
shown in Equation 1:

P x( ) � y, b( ): x → y, b( ){ } (1)
where x represents the input vector, indicating the amount of
resources used; y is the desirable output vector, reflecting
favorable production outcomes; and b represents the undesirable
output vector, indicating unfavorable results such as environmental
pollution. Assuming that there are n decision-making units
(DMUs), each with m inputs, s desirable outputs, and q
undesirable outputs, the production possibility set P(x) represents
all achievable combinations of these outputs given the input x.

Below are the objective function and constraints of the Un-SBM-
VRS (variable returns to scale) model:

ρ � min

1 − 1
m
∑m
i�1

sxi
xi0

1 + 1
s + q

∑s
k�1

syk
yk0

+∑q
l�1

szl
yl0

⎛⎝ ⎞⎠
s.t.

xi0 � ∑n
j�1
λjxj + sxi ,∀i;

yk0 � ∑n
j�1
λjyj − syk ,∀k;

zl0 � ∑n
j�1
λjzj + szl ,∀l;

sxi ≥ 0, syk ≥ 0, szl ≥ 0, λj ≥ 0,∑n
j�1
λj � 1,∀i, k, l;

(2)

In Equation 2, ρ represents the efficiency value of the decision-
making unit, whereas sx, sz, and sy denote the slack variables for
inputs, undesirable outputs, and desirable outputs, respectively.

The ML productivity index evaluates productivity changes by
considering the combined effects of TC and EC. The strength of the
ML index is its capacity to account for changes in both desirable and
undesirable outputs, offering a more comprehensive dynamic
measurement of GTFP. This index measures changes in the
production efficiency of DMUs over time and highlights the
contributions of technological progress and efficiency
improvements to productivity. The formula for the ML
productivity index is shown as in Equation 3.

MLt+1
t � ECt × TCt (3)

The detailed decomposition formulas are presented as in
Equations 4, 5.

EC � Et+1 xt+1, yt+1, zt+1( )
E xt, yt, zt( ) (4)

TC � Et xt+1, yt+1, zt+1( )
Et+1 xt+1, yt+1, zt+1( ) · Et xt, yt, zt( )

Et+1 xt, yt, zt( )[ ]1
2

(5)

Efficiency change (EC) reflects improvements in technical
efficiency, whereas technological progress change (TC) captures
shifts in the production frontier. ML > 1 indicates increased
productivity, ML < 1 signifies a decline, and ML = 1 suggests no
change in productivity.

3.1.2 Stage 2: SFA regression modeling
In the second stage, the SFA model decomposes the slack

variables from the first stage into managerial inefficiency,
environmental factors, and random disturbances. The model is as
shown in Equation 6.

Sij � f Zj, β
i( ) + ]ij + μij (6)

where Sij represents the slack variable of decision-making unit i for
input j, Zj denotes the environmental variables, βi represents the
coefficients of the environmental variables, and ]ij + μij is the
composite error term, with vi and ui representing the random
disturbance term and the managerial inefficiency term, respectively.

Furthermore, by separating the random disturbance term from
managerial inefficiency, this study draws on relevant research to
calculate managerial inefficiency via Equation 7 (Zhou et al., 2010;
Zhang et al., 2004):

E μ
∣∣∣∣ε( ) � σ*

f λ ε
σ( )

φ λ ε
σ( ) + λ

ε

σ
⎡⎢⎣ ⎤⎥⎦, σ* � σμσ]

σ
, σ �

��������
σμ2 + σ]2

√
, λ � σμ

σ]
(7)

where ε represents the composite disturbance term. The formulas
for the random disturbance term and input adjustment are as shown
in Equations 8, 9.

E ]ij
∣∣∣∣∣]ij + μij( ) � Sij − f Zij, β

i( ) − E ]ij
∣∣∣∣∣]ij + μij( ) (8)

Xit
* � Xit + max j f Zj, β̂( ){ } − f Zj, β̂

i( )[ ] + max j ]̂ij{ } − ]̂ij[ ]
(9)

The term Xit
* represents the adjusted input, Xit represents the

original input, max j f(Zj, β̂){ } − f(Zj, β̂
i) represents the

environmental variable adjustment, and max j ]̂ij{ } − ]̂ij
represents the adjustment for the random disturbance term.

3.1.3 Stage 3: adjusted DEA model
The adjusted input variables and the original output data are

used to recalculate the SBM-ML index model to obtain a more
accurate efficiency value. In this way, environmental factors and
random interference items can be eliminated to ensure the
authenticity and reliability of the efficiency measurement results.

3.2 Variable selection

GTFP integrates production inputs, economic development, and
environmental pollution to assess regional performance. Capital and
labor, as traditional factors, drive industrialization and efficiency
through accumulation and innovation, whereas energy, a modern
economic cornerstone, propels industrialization, low-carbon
transitions, and sustainability. Desirable output, measured by
economic development, reflects improved societal wellbeing,
whereas undesirable output, assessed through pollutant emissions,
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highlights environmental stress, with lower emissions benefiting
both ecological balance and human health. This paper selects
relevant indicator variables that reflect the GTFP of the YREB on
the basis of the approaches of Zhou et al. (2010) and Cheng
et al. (2022).

3.2.1 Input variables
This study uses three key input variables: (1) Capital input,

measured by capital stock, which is estimated via the perpetual
inventory method based on Zhang et al. (2004), with 2006 as the base
year. (2) Labor input, represented by the number of employees at the
end of the period. (3) Energy input, which is estimated on the basis
of the well-established linear correlation between nighttime light
data and energy consumption (Shi and Li, 2020). Following this
approach, this correlation is first calculated at the provincial level
and then applied to city-level data to estimate energy consumption
on the basis of nighttime light intensity.

3.2.2 Desirable and undesirable outputs
The desirable output is quantified via real GDP. In this paper,

the actual GDP level is calculated using 2000 as the base year. The
undesirable output is calculated via regional data on industrial
wastewater, sulfur dioxide (SO₂) and industrial smoke and dust
emissions (Song et al., 2020).

3.2.3 Environmental variables
On the basis of the literature review and relevant studies, seven

environmental variables are selected: (1) Foreign capital dependence
reflects the impact of foreign capital inflows across Chinese regions
and is quantified by the ratio of foreign direct investment to GDP
(Hawkins, 2010). (2) Industrial structure: measured by the ratio of
added value in the secondary industry to that in the tertiary industry,
reflecting the focus of regional economic activities and structural
development (Ma and Zhu, 2022). (3) Government intervention:
represents the economic intervention capacity of municipal
governments, typically measured by the ratio of fiscal
expenditure to GDP (Yuan et al., 2024). (4) Fiscal autonomy is
measured by the ratio of budgetary revenue to budgetary
expenditure at the prefecture level, indicating the extent to which
local governments rely on local revenues to support their
expenditures, reflecting their financial independence. (5) Human
capital refers to talent reserves, represented by the proportion of
students enrolled in higher education relative to the total population.
(6) Technology expenditure: measured by its proportion of regional
GDP, reflecting investment intensity in technology. (7) Green
finance index: This index is calculated via the entropy method
and includes green credit, investment, insurance, bonds, support,
funds, and equity, reflecting the financial system’s role in enhancing
resource efficiency, advancing environmental objectives, and
redirecting resources from high-pollution, high-energy sectors to
clean technology industries.

3.3 Data sources

This study analyzes data from 108 cities within the YREB from
2009 to 2022. The starting year, 2009, was chosen because of data
availability and its alignment with key historical events: it followed

the 2008 financial crisis, which spurred China’s implementation of
the Circular Economy Promotion Law (2009), signaling a strategic
shift toward resource efficiency and environmental protection,
particularly in the YREB. Data were sourced from the China City
Statistical Yearbook, China Environment Statistical Yearbook,
China Science and Technology Statistical Yearbook, and local
statistical bulletins. Missing values were imputed via linear
interpolation. Descriptive statistics are provided in Table 1.

4 Empirical results

4.1 Initial stage results and GTFP
decomposition

This study calculates GTFP levels via input‒output data from the
YREB region, employing the undesirable output SBM-ML indexmodel.
The first-stage results, shown in Table 2, reveal significant fluctuations
in GTFP with marked regional differences. The overall average GTFP is
1.7676, indicating generally good green development, especially in the
downstream regions, where the average GTFP is 1.9834, reflecting
higher levels of green development. However, the COVID-19 pandemic
severely impacted economic and environmental indicators in 2020,
causing a sharp decline in GTFP. Despite this, the YREB region
demonstrated strong economic resilience and adaptability, with
rapid recovery from 2021 to 2022.

GTFP fluctuations are driven primarily by changes in TC and
EC, as presented in Table 3, which shows the TC and EC values from
the first stage. For instance, the implementation of innovation pilot
cities in 2010 significantly boosted technological progress, leading to
a substantial rise in GTFP. Specifically, TC surged from 0.3293 in
2009 to 2.4692 in 2010, with the downstream region reaching 2.7840,
highlighting the crucial role of technological progress in driving
green production. Furthermore, EC also played an important role in
specific years. Between 2018 and 2019, while TC remained relatively
stable, EC declined in the upstream, downstream, and overall
regions, but increased in the midstream region. Consequently,
GTFP decreased in all regions except the midstream.

The data highlight the complex relationship between EC and
TC. According to the 2019 Energy Efficiency Report, the increase in
industrial production scale and efficiency led to an improvement in
EC, reaching 5.006 in 2017. Despite this, GTFP declined due to TC
being only 0.4755, indicating that without sufficient technological
progress, improvements in technical efficiency alone cannot
effectively drive green productivity. Similarly, in 2013, although
the overall EC increased to 3.0031, the TC decreased to 0.3283,
causing the GTFP to decrease to 0.7937.While EC partially offset the
decline in TC, only the downstream region, with an EC of 5.4776,
was able to compensate for the lack of TC and prevent a major
decrease in GTFP. In other regions, EC could not fully offset the TC
decline, leading to a GTFP reduction. This finding reinforces that
technological efficiency cannot replace technological progress,
highlighting the essential role of TC in driving GTFP growth.

Overall, the YREB-GTFP fluctuations reflect the dynamic
interplay between TC and EC. High EC often accompanies low
TC, suggesting that while firms focus on improving efficiency, they
may neglect technological progress, leading to stagnation or decline
in innovation and limiting green productivity growth. In contrast,
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TABLE 1 Descriptive statistics of the variables.

Type Variable Sources N Mean Std. Dev. Min Max

Input indicator Labor Employed persons at period end (10,000 people) 1,620 65.81 110.49 3.21 1,531.59

Capital the perpetual inventory method (10,000 yuan) 1,620 1939.87 2,223.17 54.44 22,598.97

Energy Total social electricity consumption (10,000 tons of standard coal) 1,620 144.58 223.16 1.69 1,574.29

Desirable Output Economic Growth Actual GDP (100 million yuan) 1,620 1991.23 2,905.18 75.69 29,315.90

Undesirable Output Environmental Pollution Industrial wastewater discharge (10,000 tons) 1,620 7,066.26 9,300.35 60.00 80,466.80

Industrial sulfur dioxide emissions (10,000 tons) 1,620 3.88 7.52 0.01 135.82

Industrial smoke (dust) emissions (10,000 tons) 1,620 2.04 4.67 0.01 134.74

Environmental Variables Foreign Capital Dependence FDI/GDP 1,620 0.02 0.02 0.00 0.16

Industrial Structure Ratio of secondary to tertiary industry added value. 1,620 1.23 0.49 0.18 3.67

Government Regulation Fiscal expenditure/GDP 1,620 0.19 0.08 0.07 0.69

Fiscal Decentralization Budgetary revenue/budgetary expenditure 1,620 0.47 0.23 0.06 1.11

Human Capital The ratio of higher education enrollment to total population 1,620 0.02 0.03 0.00 0.15

Science and Technology Expenditure Technology expenditure/GDP 1,620 0.002 0.001 0.001 0.007

Green Finance Index Calculated using entropy weight method 1,620 0.46 1.13 0.000 10.71
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when TC is high and EC remains moderate, it indicates a balanced
approach that drives both technological progress and efficiency.
Thus, sustained GTFP growth depends on advancing technological
progress, with efficiency improvements providing essential support.

4.2 Second stage SFA findings

The findings in Table 4 show that the coefficients of the
environmental variables on the input slack variables have

TABLE 2 GTFP values of the first stage.

GTFP Overall Upper reaches Middle reaches Lower reaches

2009 0.8403 0.7500 0.7752 1.0876

2010 2.5775 2.2009 1.9947 4.2565

2011 0.5797 0.5731 0.5795 0.5885

2012 1.7412 1.7608 2.0936 0.9839

2013 0.7937 0.6925 0.7810 0.9457

2014 2.1682 1.8102 1.9363 3.0947

2015 2.1213 2.3273 1.7844 2.5665

2016 2.7425 3.0558 2.9268 1.9709

2017 1.1946 1.0784 1.2559 1.2112

2018 1.8589 2.2239 1.4833 2.1875

2019 1.3927 1.0822 1.6178 1.3095

2020 0.9103 0.9163 0.9176 0.8876

2021 1.4005 1.2996 1.4153 1.4947

2022 2.6581 2.2883 2.6182 3.1994

Mean 1.7676 1.6969 1.7061 1.9834

TABLE 3 First-stage TC and EC values.

Year Overall Upper reaches Middle reaches Lower reaches

TC EC TC EC TC EC TC EC

2009 0.3293 2.9341 0.3140 3.4999 0.3357 2.4816 0.3350 3.1739

2010 2.4692 1.0881 2.6843 0.8190 2.1896 0.8970 2.7840 1.8192

2011 0.4653 1.3121 0.4108 1.6058 0.4618 1.2455 0.5402 1.0864

2012 1.6413 1.0892 1.6160 1.1321 1.7100 1.2728 1.5300 0.6538

2013 0.3283 3.0031 0.3511 2.3594 0.3226 2.1973 0.3117 5.4776

2014 1.6940 1.4000 1.5780 1.2853 1.6013 1.2417 2.0307 1.8718

2015 1.8222 1.1093 1.7802 1.2826 1.6257 1.1185 2.2829 0.8754

2016 2.5808 1.1279 2.5936 1.3794 2.5659 1.1901 2.5960 0.6869

2017 0.4755 5.0060 0.5261 3.2084 0.4913 6.7895 0.3801 3.5255

2018 0.9255 2.2639 0.9431 2.8324 0.9354 1.8173 0.8832 2.4879

2019 0.9733 1.8705 1.0864 1.0344 0.9915 2.2455 0.7954 2.1273

2020 0.6628 1.3967 0.6366 1.4918 0.6652 1.3510 0.6903 1.3736

2021 1.2904 1.0240 1.2161 1.0216 1.2519 1.0758 1.4629 0.9193

2022 1.7061 1.6665 1.6894 1.3895 1.7461 1.6605 1.6437 2.0227

Mean 1.3357 2.0224 1.3404 1.8724 1.2995 2.0449 1.4051 2.1617
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significant impacts. Both γ and the LR one-sided test are significant
at the 1% level, confirming the reliability of the results.

(1) Foreign capital dependence. The coefficients for foreign
capital dependence on capital and energy slack are
negative and statistically significant at the 5% level,
whereas the coefficient on labor slack is negative but not
significant. This finding suggests that foreign enterprises with
advanced technology and management expertise help
optimize resource allocation, improve capital efficiency,
and reduce capital and energy demand (Lei et al., 2024;
Jing et al., 2024). These enterprises also use energy more
efficiently, leading to lower consumption per unit of output.
Although the impact on labor slack is not significantly
negative, it suggests a possible improvement in labor
productivity, indirectly reducing labor input slack. Overall,
a higher degree of foreign capital dependence can enhance the
efficiency of capital and energy use, improving overall
resource utilization and fostering economic resilience
(Mahmood et al., 2024).

(2) Industrial structure. The industrial structure negatively affects
capital slack and positively affects labor slack, although

neither is statistically significant. However, its effect on
energy slack is significant at the 5% level. A higher
secondary industry share indicates greater reliance on
capital-intensive inputs, improving capital efficiency and
reducing capital slack, whereas increased labor demand
increases labor slack. Despite the high energy demand in
industrial production, adopting efficient technologies can
notably reduce energy slack (Lin et al., 2024).

(3) Government intervention: Government intervention
significantly reduces capital, labor, and energy slack at the
1% level, indicating improved input efficiency. This highlights
the effectiveness of government intervention in optimizing
resource allocation, reducing waste, and fostering sustainable
growth, ultimately enhancing overall efficiency and driving
higher-quality economic outcomes (Yan et al., 2024).

(4) Fiscal autonomy: Fiscal autonomy positively affects capital,
labor, and energy slack, significantly increasing capital slack
(1% level) and energy slack (10% level), which reduces capital
and energy efficiency. This may result from local government
competition, leading to market segmentation, local
protectionism, increased costs, redundant construction, and
resource waste. Additionally, local protectionism may hinder

TABLE 4 Results of the second-stage SFA.

Variable Capital slack Labor slack Energy slack

Constant −334.50*** −12.63 −34.65***

(−2.61) (−1.38) (−2.66)

Foreign Capital Dependence −2,182.10** −38.49 −205.14**

(−2.36) (−0.46) (−1.96)

Industrial Structure −35.25 0.99 −8.68**

(−0.91) (0.34) (−2.34)

Government Regulation −2,993.97*** −171.92*** −335.24***

(−10.29) (−7.99) (−12.27)

Fiscal autonomy 465.72*** 0.90 22.08*

(4.35) (0.10) (1.95)

Human Capital −3,191.59*** −29.52 −306.67***

(−20.75) (−0.45) (−3.75)

Science and Technology Expenditure 369,014.32*** 17,720.81*** 32,849.88***

(80,240.40) (10,892.17) (23,256.99)

Green Finance Index −22.36 1.98 −3.25**

(−1.29) (1.59) (−2.03)

σ2 10,357,049.00*** 24,206.25*** 107,862.24***

(8,196,058.20) (10,393.83) (64,745.21)

γ 0.95*** 0.89*** 0.96***

(860.49) (213.31) (660.27)

log-likelihood −13180.793 −8,879.245 −9,308.417

LR one-sided Test 3,096.387*** 1884.403*** 3,375.591***

Note: The superscripts ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. The values in parentheses are the t values of the variables.
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advanced technology adoption, maintaining outdated
practices and reducing economic efficiency. The positive
but insignificant effect on labor slack suggests that fiscal
autonomy-driven public investment does not always
improve labor efficiency, causing some labor waste.

(5) Human capital. Human capital, as a talent reserve, also
enhances citizens’ skills and work capabilities. The results
show that human capital significantly reduces capital, labor,
and energy slack at the 1% level. This is likely because high-
quality human capital possesses greater skills and efficiency in
resource management and utilization. Specifically, skilled
human capital can make more informed investment
decisions and manage capital better, reducing waste and
redundancy. In terms of labor, a higher-quality workforce
increases productivity and minimizes labor waste. For energy,
human capital can adopt advanced technologies and
optimized management practices, reducing energy waste
and enhancing efficiency (Goldin, 2024).

(6) Technology expenditure. At the 1% significance level,
technology expenditure has a positive effect on the
redundancy of capital, labor, and energy, indicating that
increased technology spending effectively reduces the usage
of input endowments. As technology expenditure increases,
production technology improves, enhancing productivity.
This improvement means that more output is generated
per unit of input, while social demand has not kept pace,
leading to an increase in surplus capital, labor, and energy
(Takayabu et al., 2019). Additionally, the rapid application of
artificial intelligence has increased the demand for skilled
labor, but a large portion of low-skilled labor is underutilized
(Xu et al., 2024).

(7) Green finance index. The Green Finance Index has varying
impacts on resource slack.While its effects on capital (−22.36)

and labor slack (1.98) are not significant, it notably reduces
energy slack (−3.25) at the 5% level, showing that green
finance enhances energy efficiency and reduces redundancy
(Sun et al., 2024). By promoting green technologies and
optimizing energy consumption through credit, investment,
insurance, bonds, and policy support, green finance plays a
vital role (Zhang et al., 2024). Although its short-term impact
on capital and labor is limited, green finance is expected to
gradually improve resource allocation in the long term by
fostering green industry development, thus promoting
sustainable economic growth (Zhao et al., 2024).

4.3 Real measurement and decomposition
of adjusted GTFP

Table 5 presents the adjusted real GTFP levels for the YREB.
Specifically, (1) overall, real GTFP fluctuates with economic
development. Compared with those in the first stage, the GTFP
values significantly decreased by 63.9%, with reductions of 70.3%,
65.8%, and 53.7% in the upstream, midstream, and downstream
regions, respectively. This indicates a substantial overestimation of
GTFP in the first stage, with environmental factors having a
significant masking effect on GTFP. (2) Over time, the enactment
of the 2009 Circular Economy Promotion Law facilitated structural
adjustments and promoted the coordinated development of the
economy and ecology, but the effects were delayed. From 2009 to
2010, influenced by the GDP-only policy, rapid GDP growth and the
expansion of high-pollution industries increased GTFP values. From
2011 to 2013, the effects of economic‒eco-ecological coordination
began to emerge as the economy entered a structural adjustment
phase, leading to a significant decline in GTFP. Between 2014 and
2019, as the economy gradually transformed, the GTFP slowly grew

TABLE 5 Real GTFP values.

Year Overall Upper reaches Middle reaches Lower reaches

2009 0.898 0.836 0.813 1.153

2010 1.307 1.088 1.082 2.044

2011 0.646 0.609 0.528 0.938

2012 0.438 0.341 0.413 0.611

2013 0.295 0.223 0.258 0.462

2014 0.376 0.293 0.290 0.658

2015 0.486 0.349 0.312 1.017

2016 0.522 0.403 0.486 0.744

2017 0.535 0.430 0.538 0.659

2018 0.683 0.526 0.573 1.108

2019 0.604 0.352 0.645 0.833

2020 0.537 0.318 0.615 0.644

2021 0.521 0.360 0.590 0.578

2022 0.449 0.418 0.444 0.496

Mean 0.638 0.504 0.584 0.919
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(Long et al., 2023). However, from 2020 to 2022, GTFP continued to
decline slowly due to the impact of COVID-19. (3) From a regional
perspective, the average real GTFP in the downstream region is
0.919, which is significantly greater than 0.584 in the midstream
region and 0.504 in the upstream region, highlighting significant
regional disparities in green development levels.

Table 6 presents the TC and EC results for the YREB regions,
showing overall small differences. First, compared with those in the
first stage, both TC and EC in the third stage are more stable but
significantly lower, indicating the substantial impact of
environmental factors on technological progress and efficiency
change. In most years, the EC remains above 1, suggesting that
efficiency generally remains at a normal level. However, the TC
exhibited significant fluctuations, with notable technological
setbacks occurring in 2009, 2011, and 2013. Second, from
2009 to 2022, TC and real GTFP moved in the same direction
(Long et al., 2023; Chen et al., 2021), whereas no clear correlation
was found between EC and real GTFP. Despite the continued decline
in GTFP from 2020 to 2022, the fluctuations in TC and EC were
minimal, indicating that YREB cities demonstrated strong resilience
to the economic shocks caused by the COVID-19 pandemic.

4.4 Spatial‒temporal evolution of real GTFP

To highlight spatial and temporal GTFP variations, this study
uses ArcGIS to visualize changes in the YREB from 2009 to 2022, as
shown in Figure 3.

Figures 3–5 show the following: (1) Overall trends: Over the past
14 years, the real GTFP levels of the YREB have exhibited cyclical
fluctuations and significant spatial differences. These fluctuations may

be attributed to the shift from a “GDP-only” approach to green
development from 2013 to 2014, as well as external shocks such as
the economic slowdown from the COVID-19 pandemic in 2019. (2)
Regional differences in green development are evident among the
upper, middle, and lower reaches of the Yangtze River. The
downstream regions, including Shanghai, Jiangsu, and Zhejiang,
presented relatively high GTFP levels, with cities such as Shanghai,
Ningbo, Suizhou, Nanchang, Nanjing, and Zhoushan averaging above
1.3. In contrast, cities in the middle and upper reaches, such as
Ma’anshan and Mianyang, have much lower GTFP levels, 0.07 and
0.10, respectively. This indicates an imbalance in green development
across the Yangtze River Basin, possibly due to the better infrastructure,
advanced environmental technologies, and stricter environmental
regulations of upstream regions, whereas the middle reaches face
challenges in terms of industrial pollution control, resource
efficiency, and green technology promotion. (3) Fastest-growing
cities, such as Yueyang, Changsha, Ningbo, Huai’an, and Hefei, have
shown the fastest increases in real GTFP, with growth rates exceeding 2.
These cities, mostly positioned in key and port areas of the Yangtze
River Basin, benefit from greater environmental protection investments,
green technology adoption, and industrial upgrades. Additionally, the
development of green logistics and clean energy driven by port
economies has shown significant growth potential and adaptability
in the context of a green economic transition. (4) Spatial distribution:
The overall spatial distribution of real GTFP levels shows a “low-high-
low-high” pattern from west to east, forming an “N-shaped” spatial
structure. High-value areas cluster in the core regions of the Yangtze
River Basin, forming a ring around major cities and provincial capitals.
This emphasizes their leading roles in green development, particularly
in policy formulation, technological innovation, and financial
investment.

TABLE 6 TC and EC values.

Year Overall Upper reaches Middle reaches Lower reaches

TC3 EC3 TC3 EC3 TC3 EC3 TC3 EC3

2009 0.479 2.001 0.458 2.147 0.482 1.770 0.499 2.302

2010 1.485 1.144 1.458 1.079 1.369 1.093 1.761 1.330

2011 0.578 1.068 0.578 1.099 0.582 1.056 0.571 1.054

2012 0.743 1.056 0.785 1.016 0.697 1.180 0.786 0.848

2013 0.491 1.493 0.480 1.541 0.499 1.331 0.488 1.771

2014 1.395 1.125 1.341 1.172 1.351 1.097 1.554 1.127

2015 1.427 0.940 1.336 1.115 1.384 0.923 1.631 0.758

2016 1.827 1.408 1.600 1.353 1.897 1.706 1.963 0.858

2017 1.008 1.654 1.023 1.506 1.118 1.709 0.759 1.723

2018 0.784 2.278 0.796 2.259 0.781 1.979 0.773 2.924

2019 0.954 1.436 0.965 1.239 1.072 1.576 0.694 1.388

2020 1.033 1.069 1.016 1.194 1.032 1.075 1.056 0.903

2021 1.223 0.963 1.124 1.047 1.227 0.952 1.339 0.881

2022 0.817 1.372 0.943 1.399 0.747 1.264 0.808 1.561

Mean 1.096 1.462 1.069 1.474 1.095 1.439 1.129 1.495
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5 Analysis of influencing factors

To explore the factors influencing green economy levels, this paper
examines prefecture-level city characteristics and selects six key
indicators: (1) economic development level (Pgdp), measured by
GDP per capital; (2) capital‒labor ratio (Fest), calculated as the ratio
of invested capital to labor; (3) urbanization level (Civz), measured
primarily by the proportion of the permanent urban population to the
total population and, in some areas, by the year-end proportion of the
non-agricultural population to the total population; (4) government
governance intensity (Gore), measured by the amount of investment in
environmental pollution control (100million yuan); (5) entrepreneurial
activity (Enac), quantified by the number of new businesses per
100 people; and (6) intergovernmental expenditure decentralization
(Iede), defined as the ratio of prefecture-level expenditure to the total
expenditure across city, provincial, and central governments, used to
investigate structural changes in government spending systems. Because
the Tobit model can address the problem of truncated dependent
variables, it is suitable for continuous data with boundary effects (Shuai
and Fan, 2020; Jiang et al., 2024). Therefore, we construct the Tobit
model as shown in Equation 10.

yi � α0 +∑ βiZi + εi (10)

where yi is the real adjusted GTFP level in the third stage, Zi

represents each influencing factor, α0 denotes the constant term, βi

denotes the influence coefficient, and εi denotes the random
disturbance term.

Table 7 presents the Tobit model results, showing the impact of
various variables on GTFP. The analysis reveals that (1)
urbanization (Civz) has a significant positive effect at the 5%
level, indicating that it increases GTFP by driving population
agglomeration, improving resource efficiency, and accelerating
infrastructure optimization and green industrial transformation.
(2) Government governance intensity (Gore) has a significant
positive effect at the 10% level, indicating that government
actions, such as environmental expenditures, directly drive the
green transformation of enterprises, promote cleaner
technologies, enhance resource efficiency, reduce emissions, and
support sustainable economic growth. (3) The negative effect of
intergovernmental expenditure decentralization (Iede) on GTFP
suggests that increased fiscal autonomy in prefecture-level cities
can lead to the neglect of green development goals in favor of short-
term political gains, adversely affecting GTFP. (4) The negative
significance of per capital gross product (Pgdp) indicates that despite
the progress of economic restructuring and green transformation,
the dependence on high-polluting industries has not been
eliminated, and the pressure on resources and the environment is
still high, resulting in a continuous decline in GTFP, which
highlights the need to pay attention to green transformation in
economic growth. (5) The impact of the capital‒labor ratio (Fest)
and entrepreneurial activity (Enac) on GTFP is not significant,

FIGURE 3
Changes in GTFP in the First Stage.
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which may be attributed to the relatively limited direct impact of
capital and labor inputs and new enterprise founding activities on
GTFP at the current stage, which fails to effectively improve resource
utilization efficiency or environmental performance.

Owing to the COVID-19 pandemic, China has significantly
scaled down economic activities. A Tobit regression excluding
the 2020–2022 data, shown in Table 8, reveals that urbanization
is no longer significant. This is likely due to lock-downs restricting
mobility, weakening population agglomeration, and slowing
infrastructure optimization and green industrial transformation.
The short-term shocks reduced the impact of urbanization on
green total factor productivity, whereas the other results remain
consistent with those in Table 7.

6 Conclusion and recommendations

Green development is a crucial indicator of China’s shift from a
speed-driven economy to a quality-focused economy, directly
influencing sustainable growth and environmental protection.
GTFP serves as a key index for assessing regional resource
efficiency and environmental effects. Accurately measuring GTFP
levels helps reveal hidden environmental costs, prevent an
overemphasis on economic growth, pinpoint green development
challenges, and aid in achieving “dual carbon” and ecological
civilization goals. This study employs a three-stage SBM-ML
index to assess true GTFP levels in the YREB from 2009 to
2022 and explores spatial and temporal patterns of green

development via ArcGIS. The Tobit model is applied to examine
the factors influencing GTFP. The main conclusions are as follows:

(1) The first-stage GTFP values for the upper, middle, and lower
reaches all exceed 1, indicating rapid green development
across the YREB. While regional differences are minimal,
the downstream region shows a slight advantage in terms of
green development. Moreover, the continued growth of GTFP
is driven primarily by technological progress, with efficiency
also contributing to its enhancement to some extent.

(2) Compared with the first-stage GTFP, the mean real GTFP for the
YREB, which is calculated after excluding environmental factors
and random errors, is less than 1, with the real GTFP being
overestimated by 63.9%.Notably, the realGTFP is still significantly
higher in the downstream regions than in the middle and upper
reaches. Furthermore, while TC fluctuates significantly, EC
remains relatively stable, with the real GTFP closely following
the trend of TC and showing no significant correlation with EC.

(3) Over the past 14 years, the real GTFP levels of the YREB have
exhibited cyclical fluctuations and significant spatial disparities.
The downstream regions (e.g., Shanghai, Jiangsu, Zhejiang) show
greater green development, whereas the middle and upper
reaches (e.g., Ma’anshan, Mianyang) lag behind. Cities such
as Yueyang, Changsha, Ningbo, Huai’an, and Hefei have the
fastest GTFP growth, with rates exceeding 2, and are mainly
concentrated in core and port areas. Overall, real GTFP follows a
“low-high-low-high” N-shaped pattern from west to east, with
high-value areas clustered around core regions and major cities.

FIGURE 4
The Growth Rate of the First Stage GTFP.
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(4) The Tobit model regression results reveal the complex influence
of multidimensional factors on real GTFP. Positive factors such
as urbanization and government environmental expenditure
highlight agglomeration effects, infrastructure enhancement,
and policy-driven increases in GTFP. In contrast, negative
factors such as per capita GDP and intergovernmental
expenditure decentralization underscore economic growth’s
reliance on high-pollution, high-energy consumption
pathways and potential distortions in green incentives under
fiscal decentralization. The nonsignificance of the capital‒labor
ratio and entrepreneurial activity suggests limited marginal gains
from traditional factor allocation and initial innovation efforts.

On the basis of these conclusions, the recommended actions are
as follows:

(1) To achieve sustained green development, policies should
prioritize technological progress, supported by efficiency
improvements, to optimize GTFP. First, increasing
investment in technological innovation, particularly high-
tech and environmental technologies, ensures that
technology drives green development. Simultaneously, this
can enhance resource efficiency, optimize industrial
structures, reduce energy consumption and pollution, and
increase overall productivity. Second, successful downstream

FIGURE 5
The Growth Rate of the First Stage GTFP.

TABLE 7 Tobit regression results.

GTFP Coef Std. err. Z P-value

Fest −0.000012 0.00006 −0.19 0.848

Pgdp −0.000006*** 1.24E-06 −5.09 0.000

Civz 0.842** 0.339 2.48 0.013

Iede −1.059** 0.415 −2.55 0.011

Gore 0.0006* 0.0003 2.49 0.013

Enac 0.012 0.021 0.6 0.55

Cons 0.506*** 0.150 3.37 0.001

Note: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

TABLE 8 Tobit robust regression results were obtained.

GTFP Coef Std. err. Z P值

Fest 0.0005 0.0005 1.01 0.311

Pgdp −7.31E-06*** 2.03E-06 −3.61 0.000

Civz 0.666 0.440 1.51 0.130

Iede −1.239** 0.575 −2.16 0.031

Gore 0.0009*** 0.0003 2.81 0.005

Enac 0.074 0.047 1.56 0.118

cons 0.949*** 0.264 3.59 0.000

Note: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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practices in infrastructure and environmental technology
should be extended to the middle and upper reaches to
reduce regional disparities and promote balanced green
development across the YREB. Finally, policies should be
tailored to each region’s economic and resource conditions to
achieve comprehensive green development goals.

(2) Green development should also be evaluated via real GTFP to
avoid superficial overestimations. In the middle and upper
reaches, real GTFP can be enhanced by promoting
technological progress through R&D investment, green
technology incentives, and infrastructure improvements, with
a focus on ecological restoration and industrial optimization. In
the economically advanced downstream region, high-tech
industry advancement through innovation subsidies, industry-
academia collaboration, and green technology incubators should
be prioritized to reduce reliance on energy-intensive sectors and
foster low-carbon growth.

(3) To sustain and enhance real GTFP growth in rapidly developing
cities, policies should prioritize technological innovation and
green practices. Increase R&D investment in clean technologies
and production efficiency. Foster green industry clusters to create
synergies and economies of scale. The infrastructure for green
logistics and clean energy adoption should be strengthened.
These cities are designed as pilot zones for innovative policies,
enabling them to lead and drive growth in other cities across the
YREB by testing and scaling successful approaches to ensure
broader sustained development and resilience.

(4) To drive sustainable development, start by strengthening
foreign capital management and green financial support,
prioritizing green-aligned foreign enterprises. Next,
enhance green finance and invest in green projects to
accelerate enterprise transformation. Establish special green
funds to promote clean technology adoption, reduce
pollution, and improve efficiency. Finally, ensure robust
policy implementation by reinforcing incentive systems,
maintaining accountability, and incentivizing green
innovation with targeted rewards and penalties, creating a
cohesive and impactful transition to green development.

This study has several limitations that point to promising avenues
for future research. First, its analysis is limited to the YREB and could be
expanded to include cities across the country, enabling a more
comprehensive and comparative perspective. Second, the dataset
used in this study covers the period from 2009 to 2022; updating
the data to include the most recent years would provide a more current
and relevant understanding of GTFP trends and their driving factors.
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