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Introduction: As an important part of terrestrial ecosystem, vegetation plays a
vital role in the terrestrial carbon cycle. As one of China’s three major urban
clusters, the Beijing-Tianjin-Hebei region has experienced significant changes in
vegetation due to climate change and large-scale ecological restoration efforts.
Climate change and human activities are two factors that have important effects
on the carbon cycles of terrestrial ecosystems. Quantitative assessment of the
relative effects of climate change and human activities on vegetation dynamics is
of paramount importance for regional sustainable development and
ecological security.

Methods: In this study, based on groundmeteorological data and remote sensing
data includingNDVI, an improvedCarnegie-Ames-Stanford Approachmodel was
employed to estimate the net primary productivity (NPP) of vegetation in the
region from 2000 to 2020. Utilizing methods such as trend analysis, Mann-
Kendall significance test, and correlation analysis, we investigated the
spatiotemporal patterns of vegetation NPP and its correlations with
precipitation, temperature, and solar radiation. Furthermore, the partial
derivative trend residuals method was adopted to separate and quantify the
impacts of climate change and human activities on vegetation NPP in
different years.

Results: The results show that: (1) from 2000 to 2020, the overall trend of
vegetation NPP in the Beijing-Tianjin-Hebei region exhibited an increasing trend,
with a spatial distribution pattern showing a step-like distribution from low to high
to low from northwest to southeast. The multi-year average NPP was
384.90 g Cm−2, with an annual average growth rate of 3.00 g Cm−2. The NPP
values of different vegetation types from large to small were: forests
(578.40 g C m−2), shrubland (386.57 g C m−2), grassland (380.17 g C m−2), and
cropland (324.91 g Cm−2). (2) The proportion of regionswith a positive correlation
coefficient between average temperature and vegetation NPP in the Beijing-
Tianjin-Hebei region from 2000 to 2020 was 69.85%, while the proportions of
regions with positive correlations between precipitation and solar radiation with
vegetation NPP were 92.1% and 89.19%, respectively. This indicates that
vegetation NPP in most regions is positively correlated with precipitation, solar
radiation, and temperature, with precipitation exerting a greater influence on
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vegetation NPP than temperature and solar radiation. (3) Vegetation improvement
in the Beijing-Tianjin-Hebei region is mainly driven by both climatic factors and
human activities, while vegetation degradation is primarily caused by human
factors. The relative contributions of climate change and human activities to
changes in vegetation NPP in the study area are 45.11% and 54.89%,
respectively. The areas where they positively contribute account for 48.64% and
73.95% of the total study area, respectively, with the proportions of areas with
relative contribution rates >60% being 45.86% and 28.86%, respectively.

Discussion: The findings of this study can provide scientific basis for vegetation
restoration, low-carbon development, and ecosystem management decision-
making in the Beijing-Tianjin-Hebei region.

KEYWORDS

climate change, human activities, vegetation NPP, Beijing-Tianjin-Hebei region,
residual method

1 Introduction

As an important part of terrestrial ecosystem, vegetation plays
an important role in climate regulation and maifntenance of
terrestrial carbon balance (Peng et al., 2012; Bai et al., 2023;
Beltrán-Sanz et al., 2022). Net primary productivity (NPP) of
vegetation refers to the portion of the total organic matter
produced by plants through photosynthesis in a given unit of
time and area, after subtracting the amount lost through
autotrophic respiration (Field et al., 1995). Its magnitude not
only directly reflects the productive capacity of vegetation under
natural environmental conditions but also effectively indicates the
vegetation’s response to its surrounding environment and
environmental changes (Running et al., 2004; Gao et al., 2022).
Quantifying and assessing the relative impacts of climate change and
human activities on NPP is crucial for evaluating the carbon sink
function of ecosystems and maintaining the stability of regional
ecosystems.

Although numerous quantitative studies have assessed changes
in NPP globally, the relative impact of climate change and human
activities on vegetation remains uncertain, particularly at regional
scale. Typically, changes in vegetation NPP within a region are often
influenced by both climate factors, particularly temperature and
precipitation (Zhu et al., 2017), and human activities such as
reforestation and grassland restoration (Hong et al., 2021),
ecological engineering (Liu et al., 2019; Yang et al., 2014),
changes in land use practices (Haberl et al., 2005), and
overgrazing (Yang et al., 2023). Existing studies indicate that the
primary factor contributing to the increase in NPP in southwest
China is the implementation of ecological projects such as
reforestation and grassland restoration (Hong et al., 2021). In
contrast, in North China, human activities play a dominant role
in both vegetation improvement and degradation.

In recent years, studies aimed at identifying the causes of
vegetation changes due to climate change and human activities
have primarily utilized methods such as the coefficient of variation
(Li et al., 2016), geographical detector (Zhao et al., 2020; Zuo and
Gap, 2020), regression analysis (Xie et al., 2014), and the residual
trend method (Tong et al., 2019). These approaches are used to
spatially quantify and distinguish the impacts of human activities
and climate change on NPP. The residual trend method

quantitatively assesses the relative impact of human activities by
calculating the difference between actual and potential vegetation
productivity (Zhou et al., 2015). Potential vegetation productivity
refers to the NPP of vegetation influenced solely by natural
conditions (such as temperature and precipitation), representing
the highest possible state of vegetation succession in the absence of
human interference. In contrast, actual vegetation productivity
reflects the combined effects of climate change and human
activities on NPP. The difference between potential and actual
productivity is defined as the impact value of human activities.
This method, due to its clear biological significance and simple
calculation process, has become a primary approach for
quantitatively studying the driving forces behind changes in
vegetation NPP (Yin et al., 2020; Tong et al., 2020; Li et al.,
2014). However, when deriving potential NPP through the
regression of meteorological factors and NPP, the influence of
human activities can easily be confounded (Wessels et al., 2012).
This is because long-term changes in meteorological factors
themselves can be influenced by human activities, such as
increased atmospheric CO2 concentrations due to human
activities. Therefore, to improve the accuracy of assessments of
the impacts of climate change and human activities on NPP, it is
essential to minimize the influence of human activities on climate
change as much as possible.

As one of the world’s most densely populated and highly
urbanized regions, Beijing-Tianjin-Hebei region holds a
significant position in China’s economic development. In recent
years, with the accelerating pace of industrialization and the
continuous increase in urbanization, this region has garnered
widespread attention from scholars due to its susceptibility to
ecological and environmental issues. These issues include
vegetation degradation, frequent heavy pollution events, and
water shortages, which are exacerbated by the combined impacts
of climate change and human activities (Xin et al., 2024; Wu et al.,
2023). At the same time, the spatial distribution of NPP in this
region is strongly correlated with climate change (Zhang et al.,
2018). The spatial patterns of NPP degradation are often influenced
by factors such as urban sprawl, the density of transportation
networks, regional economic development strategies, and
industrial layout (Lv et al., 2017). Currently, there has been a
lack of in-depth quantitative research on the relative
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contributions and spatial heterogeneity of vegetation NPP changes
in the Beijing-Tianjin-Hebei region. This is particularly crucial given
the intensifying interactions between climate change and human
activities. Therefore, this study aims to conduct a scientific
evaluation of the driving mechanisms behind vegetation NPP
changes in this region. Based on the spatiotemporal
characteristics of NPP simulated by the CASA model, this
research employs the Partial Derivative Residual Trend method
to separate and quantify the impacts of climate change and human
activities on vegetation NPP. Investigating the spatial heterogeneity
of these impacts is essential for uncovering the driving mechanisms
of vegetation changes in the region. Additionally, the findings will
contribute to promoting coordinated economic and social
development in the Beijing-Tianjin-Hebei region and improving
ecological management and protection measures.

2 Materials and methods

2.1 Study area

The Beijing-Tianjin-Hebei region (including Hebei Province,
Beijing, and Tianjin) is located in the northern heartland of China,

spanning longitudes 113°04′to 119°53′E and latitudes 36°01′to
42°37′N (Figure 1). The region covers a total area of
217,300 km2, accounting for 2.2% of the nation’s total land area.
It serves as the country’s political, cultural, international exchange,
and technological innovation center (Ren et al., 2023). The region
features a varied topography, with high terrain in the northwest and
low terrain in the southeast. The northern part is dominated by the
Yanshan Mountains, while the southern part is part of the North
China Plain, with the Taihang Mountains to the west and the Bohai
Bay to the east. This diverse landscape is the only area in the country
that encompasses plateaus, mountains, hills, basins, plains, and
coastal regions, exhibiting a typical semi-circular stepped
topography. The climate is a typical warm temperate semi-humid
continental monsoon climate (Xu et al., 2021), with high
temperatures and abundant rainfall from June to September,
influenced by Pacific moisture. From November to January, the
region experiences cold and dry conditions due to the Mongolian-
Siberian cold front. The annual average temperature is 15°C–16°C,
with annual sunshine hours ranging from 2,500 to 2,900 h and total
annual radiation between 5,000 and 5,800 MJ/m2. The annual
average precipitation ranges from 304 to 750 mm, with a
distribution pattern of more rainfall in the southeast and less in
the northwest. The frost-free period lasts from 20 to 200 days. The

FIGURE 1
Distribution of vegetation cover types in Beijing-Tianjin-Hebei.
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region is rich in ecological resources and diverse plant species.
Urbanization is low in the northern towns and high in the
central cities, although ecological degradation is severe. There is a
significant regional variation in vegetation, with a gradual decrease
in natural vegetation from north to south (Wu et al., 2023). The
northern plateau region is primarily grassland and forest, including
white pine forests, huashan pine forests, liaodong oak forests, and
shrublands of thorny bushes and jujube trees. The central and
southern regions are characterized by temperate deciduous
broadleaf forests, while the southern plains are mainly used for
crop cultivation.

2.2 Data description

The foundational data required for this study includes remote
sensing data, land use data, and meteorological data. The NDVI data
used to estimate vegetation NPP was sourced from the MODIS
product MOD13A3 dataset provided by NASA/EOS LPDAAC
(https://lpdaac.usgs.gov/), with a temporal resolution of 1 month
and a spatial resolution of 250 m. Preprocessing, including image
mosaicking, clipping, and maximum value compositing, was
conducted using the MODIS Reprojection Tools (MRT) and
ArcGIS software. NDVI data were filtered to remove anomalies,
resulting in monthly NDVI data for the study area from 2000 to
2020. The land use data was obtained from the CLCD (China Land
Cover Dataset) (https://cds.climate.copernicus.eu; Yang and Huang,
2021). This dataset is based on all available Landsat data on Google
Earth Engine (GEE), combined with stable samples extracted from
the China Land Use/Cover Dataset (CLUD) and visually interpreted
samples from Google Earth. Using a random forest classifier, annual
land use data from 2000 to 2020 with a spatial resolution of 30mwas
generated, achieving an overall accuracy of 80%.The meteorological
data were sourced from the China Meteorological Data Center
(http://data.cma.cn/site/index.html), including average
temperature (TEM) (°C), total precipitation (PRE) (mm), and
sunshine duration (SUN) (h) data. Data from 69 meteorological
stations within and around the Beijing-Tianjin-Hebei region were
interpolated monthly from 2000 to 2020 into griddedmeteorological
data at a 250 m resolution using kriging. The administrative
boundary data for the Beijing-Tianjin-Hebei region was obtained
from the National Basic Geographic Information Center (http://
ngcc.sbsm.gov.cn).The above datasets were all resampled to raster
data with a spatial resolution of 250 m, consistent with the
projection information of the NDVI data.

2.3 Methodology

2.3.1 NPP estimation
In this study, the CASA (Carnegie-Ames-Stanford Approach)

model established by Potter in 1993 (Potter et al., 1993) was used to
estimate the actual productivity of vegetation. The main input
parameters for the model are the absorbed photosynthetically
active radiation (APAR) and the light use efficiency (ε) (Equation
1). The calculation formula is as follows:

NPP x, t( ) � APAR x, t( ) × ε x, t( ) (1)

In the equation, x represents the position of the pixel; t represents
time; NPP(x, t) represents the monthly net primary productivity (g
C·m−2) of the pixel; APAR(x, t) represents the absorbed
photosynthetically active radiation (MJ m−2 d−1) of the pixel in the
month; ε(x, t) represents the actual light use efficiency (g CMJ−1) of the
pixel in the month. The absorbed photosynthetically active radiation
(APAR) by vegetation is determined by the proportion of total solar
radiation and the absorption of vegetation to photosynthetically active
radiation (Zhu et al., 2007) (Equation 2). The calculation formula is
as follows:

APAR x, t( ) � SOL x, t( ) × FPAR x, t( ) × 0.5 (2)

In the equation, SOL(x, t) represents the total solar radiation of
the pixel in the month (MJ m−2 d−1), FPAR(x, t) represents the
proportion of absorbed photosynthetically active radiation by the
vegetation layer. The constant 0.5 represents the proportion of total
solar radiation that is useable by vegetation as photosynthetically
active radiation. The calculation methods for FPAR and light
use efficiency (ε) can be found in the references Xiao et al.
(2024), Gu et al. (2013).

2.3.2 Theil-sen slope trend analysis
The Theil-Sen slope trend analysis is a robust non-parametric

statistical method used to detect trends, widely applied in
meteorological and vegetation data analysis. One of the main
advantages of this method is that it does not require the data to
follow a specific distribution (Thiel, 1950). Additionally, the Mann-
Kendall significance test is employed to robustly quantify long-term
trends in meteorological and vegetation data (Hamed and Rao, 1998;
Zhang et al., 2012). Based on the significance difference test’s p-values
(p = 0.10, p = 0.05, p = 0.01) and combined with the trend of NPP
changes, the results are categorized into eight situations: extremely
significant increase, significant increase, slightly significant increase,
non-significant increase, extremely significant decrease, significant
decrease, slightly significant decrease, and non-significant decrease.

2.3.3 Stability analysis
The coefficient of variation (CV) is a statistical measure that

assesses the degree of variability in the observed sequence values and
can effectively reflect the differences in spatial data over time series,
as well as evaluate the stability of data time series (Mou et al., 2023).
In this study, the stability of NPP was assessed using the coefficient
of variation method, with stability grading criteria based on
references (Equation 3) Liu et al. (2019) and Sun et al. (2019).
The calculation formula is as follows:

CV � SD

NPP
(3)

In the equation, CV represents the coefficient of variation, SD
denotes the standard deviation of corresponding pixel values within
the time series, and NPP indicates the mean NPP within the time
series. A smaller CV value indicates less fluctuation during the study
period, suggesting greater stability of NPP.

2.3.4 Correlation analysis
The variation of NPP is influenced by multiple factors such as

climate, leading to a complex coupling process (Yan et al., 2021). In
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this study, Pearson correlation coefficient was employed to calculate
the correlation between NPP and meteorological factors including
temperature, precipitation, and total solar radiation, and to analyze
their relationships (Equation 4). The calculation formula is
as follows:

Rxy �
∑n
i�1

xi − �x( ) yi − �y( )[ ]�������������������∑n
i�1

xi − �x( )2∑n
i�1

yi − �y( )2√ (4)

In the equation, n represents the length of the time series; xi and yi

represent the values of NPP and themeteorological factors (temperature,
precipitation, and solar radiation) for the ith year, respectively; �x and �y
represent the mean values of NPP and the meteorological factors over
the n-year period, respectively; Rxy is the correlation coefficient between
NPP and the meteorological factors. A value of Rxy > 0 indicates a
positive correlation between the meteorological factor and NPP, while
Rxy < 0 indicates a negative correlation.

2.3.5 Separation and quantification of climate
change and human activities influence

This study employs the partial trends residual method to
separate and quantify the influence of climate change and human
activities on vegetation NPP variation (Zhang et al., 2022). The
contributions of climate change and human activities to vegetation
NPP variation are denoted as Ccon and Hcon (Equations 5, 6). Thus,
the impact of vegetation NPP variation (NPPslope) can be
simplified as:

NPPslope ≈ Ccon +Hcon (5)
Ccon � TMPcon + PREcon + RADcon

� ∂NPP
∂TMP

×
dTMP
dt

+ ∂NPP
∂PRE

×
dPRE
dt

+ ∂NPP
∂RAD

×
dRAD
dt

(6)

In the equations, TMPcon, PREcon, and RADcon represent the
contributions of temperature, precipitation, and solar radiation to
vegetation NPP, respectively. ∂NPP

∂TMP,
∂NPP
∂PRE, and

∂NPP
∂RAD are the partial

correlation coefficients between vegetation NPP and temperature,
precipitation, and solar radiation, respectively. dTMP

dt , dPREdt , and
dRAD
dt

denote the interannual variation rates of temperature, precipitation,
and solar radiation, respectively.

By performing subtractive calculations between NPPslope and
Ccon, the resulting values indicate the relative contribution of human
activities to vegetation NPP(Hcon). The relative contributions of
climate change and human activities to vegetation NPP are denoted
as Kc and Kh respectively, with the calculation methods outlined as
follows (Equations 7, 8):

Kc � Ccon| |
Ccon| | + Hcon| | × 100% (7)

Kh � Hcon| |
Ccon| | + Hcon| | × 100% (8)

Finally, based on NPPslope、 Ccon and Hcon, the impacts of
climate change and human activities on vegetation NPP are
categorized into six scenarios, as shown in Table 1 (Zhou
et al., 2019).

3 Results

3.1 Spatiotemporal characteristics of NPP in
Beijing-Tianjin-Hebei region in 2000–2020

The overall trend of vegetation NPP in the Beijing-Tianjin-Hebei
region from 2000 to 2020 showed a fluctuating increase (Figure 2). The
annual mean of NPP ranged between 341.62 and 443.62 g Cm−2, with a
multi-year average of 384.90 g Cm−2. The highest value was recorded in
2020, reaching 443.62 g C m−2, while the lowest occurred in 2006, at
341.62 g C m−2. The linear trend rate was 3.00 g C m−2 (p < 0.01),
indicating a significant recovery in vegetation productivity in the region.
Similarly, the 21-year average NPP of four vegetation cover
types—cropland, forests, grassland, and shrubland—also showed a
fluctuating growth trend. The NPP values of different vegetation
types, from highest to lowest, were forests (578.40 g C m−2),
shrubland (386.57 g C m−2), grassland (380.17 g C m−2), and
cropland (324.91 g C m−2). Among these, forests showed the highest
linear trend rate of 3.88 g C m−2 (p < 0.01), suggesting that the most
pronounced recovery in vegetation potential occurred in forested areas.

TABLE 1 Methods for assessing the relative contributions of climate change and human activities to vegetation change under different scenarios.

Situation NPPslope Ccon Hcon Relative contribution of
climate change

Relative contribution of
human activities

Mean

Vegetation
improvement area

>0 >0 >0 Kc Kh Vegetation improvement
promoted by CC&HA

>0 <0 100 0 Vegetation improvement
promoted by CC

<0 >0 0 100 Vegetation improvement
promoted by HA

Vegetation degraded
area

<0 <0 <0 Kc Kh Vegetation degradation
leaded by CC&HA

<0 >0 100 0 Vegetation degradation
leaded by CC

>0 <0 0 100 Vegetation degradation
leaded by HA

*CC, is climate change; HA, is human activities.

Frontiers in Environmental Science frontiersin.org05

Zhao and Qie 10.3389/fenvs.2024.1508433

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1508433


The spatial distribution of average vegetation NPP in the Beijing-
Tianjin-Hebei region from 2000 to 2020 is showed in Figure 3A. It is
evident from the figure that therewas significant spatial heterogeneity in
the distribution of vegetation NPP across the region. Apart from the
northwest corner, the overall trend showed a stepwise distribution
pattern of low-high-low from northwest to southeast. Over the past
21 years, the regional average NPP ranged between 0 and
854.44 g C m−2, predominantly concentrated between 200 and
600 g C m−2, covering 83.41% of the total study area. Areas with
NPP < 200 g C m−2 accounted for 5.02% of the total area, mainly
distributed in the central areas of each county in the study area and
southwestern Zhangjiakou. Areas with NPP > 600 g C m−2 accounted
for 10.07% of the total area, mainly distributed throughout Chengde
city, northern parts of Beijing, Qinhuangdao, Baoding, and eastern parts
of Zhangjiakou. These areas exhibit higher vegetation coverage and
higher NDVI values, leading to higher NPP values.

The spatiotemporal trends of NPP in the Beijing-Tianjin-Hebei
region from 2000 to 2020 are depicted in Figure 3B, while the results of
the Mann-Kendall (MK) test are shown in Figure 3C. It is evident from
the figures that the regional averageNPP has generally improved during
the period from 2000 to 2020. Areas with improved NPP cover
approximately 79.32% of the total study area, with significantly
improved areas accounting for 54.13%. These significant
improvements are mainly observed in Zhangjiakou, Chengde,
northern parts of Beijing and Tianjin, and northern parts of
Qinhuangdao. The significant improvement in vegetation coverage
in these areas is attributed to large-scale implementation of key
ecological projects at the national, provincial, and municipal levels,
such as the control of sand sources in Beijing and Tianjin, returning
farmland to forests, ecological water source protection forests in the
Beijing-Tianjin region, and national reserve forests (Zhang et al., 2016).
Areas experiencing vegetation degradation cover approximately 20.68%
of the total study area, with significantly degraded areas accounting for
6.99%. These degraded areas are mainly distributed in Shijiazhuang,
Handan, Tangshan, and eastern parts of Baoding. The low vegetation
coverage in these areas is primarily due to the significant impact of

urban development and construction activities, resulting in a noticeable
decrease in NPP.

Figure 3D illustrated the spatial distribution of the coefficient of
variation of NPP in the study area over the 21-year period. It is
observed that the vegetation NPP in the Beijing-Tianjin-Hebei
region remained stable during this period. Areas characterized by
high stability and low variability cover approximately 65.10% of the
total area. Regions with moderate variability cover 32.45% of the
total study area, mainly distributed in Zhangjiakou, Beijing, Tianjin,
central parts of Cangzhou, and western parts of Xingtai andHandan.
Among these, fluctuations in NPP in Zhangjiakou, Beijing, and
Tianjin are influenced by the implementation of ecological
protection projects, while the relatively flat terrain and lower
elevation in the eastern parts of Cangzhou and western parts of
Xingtai and Handan, where the primary vegetation type is grassland,
are prone to fluctuations due to external environmental factors.
Areas with high variability cover 2.45% of the total area of the
Beijing-Tianjin-Hebei region, mainly distributed in Tangshan,
southern parts of Tianjin and Beijing, and eastern parts of
Cangzhou. The significant fluctuations in vegetation in these
areas are attributed to urban expansion and human activities.

3.2 Relationship between NPP and
meteorological factors in Beijing-Tianjin-
Hebei region

The spatial and temporal variation of temperature, precipitation,
and solar radiation, along with their spatial correlation with
vegetation NPP, were shown in Figure 4. The overall spatial
distribution of temperature in the Beijing-Tianjin-Hebei region
displayed a pattern of higher temperatures in the southeast and
lower temperatures in the northwest (Figure 4A). The annual
average temperature ranged from 3.73°C to 14.23°C, with the
lowest temperatures observed in northern Zhangjiakou and
Chengde, while the highest temperatures were concentrated in

FIGURE 2
Inter-annual variation of NPP of different vegetation types in Beijing-Tianjin-Hebei from 2000 to 2020 computed using CASA model.
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the southeastern plains. In terms of trends, the region showed a
significant warming trend overall (Figure 4B), with the most
pronounced increases occurring in the southeastern part of the
region and southern Chengde, where the warming rate exceeded
0.04°C per year in some areas. There were also regions where
temperatures decreased, particularly in eastern Baoding, western
Langfang, and northern Chengde, though the areas affected were
small, and the decrease was not significant. Temperature plays a
crucial role in plant growth, with suitable temperatures promoting
the accumulation of NPP. The analysis of the correlation between
temperature and NPP in the study area (Figure 4C) reveals that,
overall, NPP in the Beijing-Tianjin-Hebei region shows a positive
correlation with temperature. Regions with an insignificant positive
correlation account for 61.00% of the study area, primarily located in

northern areas such as Zhangjiakou, Chengde, Beijing, Tangshan,
and Tianjin. Areas with an insignificant negative correlation account
for 28.41%, mainly distributed in the southern part of the study area.
Regions where the correlation passed the significance test cover
10.59% of the total area, indicating that the relationship between
temperature and NPP in the region is not very strong. Areas with
significant and highly significant positive correlations account for
8.85% of the study area, mostly located in the eastern regions where
adequate moisture and favorable hydrothermal conditions support
robust vegetation growth. Meanwhile, areas with significant and
highly significant negative correlations are smaller, covering 1.74%
of the region, concentrated in eastern Handan, Xingtai, Hengshui,
and central Cangzhou. In these areas, higher temperatures increase
plant transpiration, with most of the organic matter produced being

FIGURE 3
Spatial distribution (A), change trend (B), significance test (C) and stability analysis (D) of mean NPP in Beijing-Tianjin-Hebei Region from
2000 to 2020.
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consumed for autotrophic respiration, limiting nutrient storage in
the plants.

The spatial distribution of precipitation in the Beijing-Tianjin-
Hebei region was similar to that of temperature, generally showing a

decreasing trend from the coastal areas to the inland regions
(Figure 4D). The annual precipitation ranged from 346.27 to
608.89 mm, with the highest values concentrated in Qinhuangdao,
Tangshan, Tianjin, and Cangzhou, and the lowest values in northern

FIGURE 4
Spatial distribution (A, D, G) and change trend (B, E, H) of air temperature, precipitation and solar radiation in Beijing-Tianjin-Hebei region from
2000 to 2020 and their correlation with NPP (C, F, I).
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Zhangjiakou and Chengde. These low-precipitation areas were located
in the Bashang grasslands, where monsoonal climate and topographic
factors contributed to lower precipitation levels. In terms of trends,
precipitation in the study area also exhibited a clear increasing trend
(Figure 4E), particularly in the northern part of the region, with the
most significant increase observed in Beijing, where the upward trend
exceeded 5 mm per year. However, some areas, such as Handan,
western Cangzhou, and northern Hengshui, experienced a decreasing
trend in precipitation, although this decline was less than 2 mm per
year. An analysis of the correlation between precipitation and vegetation
NPP (Figure 4F) revealed that areas with a positive correlation
coefficient accounted for 92.10% of the region, while areas with a
negative correlation accounted for only 7.90%, indicating that the
majority of the region’s NPP was positively correlated with annual
precipitation. The regions with an insignificant negative correlation
covered 7.78% of the study area, primarily distributed along the coastal
areas of Qinhuangdao, western Handan, and eastern Tangshan.
Regions with a significant or highly significant negative correlation
were extremely small, accounting for only 0.12%, and were scattered
around the eastern border of Beijing and Langfang. On the other hand,
regions with an insignificant positive correlation accounted for 49.44%
of the study area and were widely distributed. Areas with a significant
positive correlation covered 19.77% of the study area, mainly located in
Chengde, northwestern Beijing, as well as Cangzhou and Langfang,
where favorable hydrothermal conditions promoted vegetation growth.
Regions with a highly significant positive correlation were concentrated
in the Bashang Plateau and the high-altitude forested areas of the
Yanshan and Taihang mountain ranges, covering 22.89% of the study
area. This indicated that precipitation had a strong positive impact on
vegetation growth in these regions, with vegetation responding more
intensely to changes in rainfall.

The spatial distribution of solar radiation in the Beijing-Tianjin-
Hebei region, as shown in Figure 4G, exhibited a decreasing trend from
the northern to the southern parts of the region. The lowest levels of
solar radiation were observed in Handan and Xingtai, while the highest
levels were found in the northern Bashang region of Zhangjiakou and
Chengde. This is due to the higher altitude of these areas, where the
atmosphere has less of an attenuating effect on solar radiation, resulting
in stronger radiation reaching the ground. Over the 21-year study
period, solar radiation in the region also showed an upward trend
(Figure 4H), with clear spatial differentiation. Specifically, the
northeastern part of the region experienced an increase in solar
radiation, while the southwestern part saw a decrease. The area
experiencing increased solar radiation accounted for 67.17% of the
total, more than twice the size of the area with decreasing radiation. The
most significant increase, exceeding 12MJm−2, was observed in western
Tianjin, western Tangshan, and the northern Bashang region of
Zhangjiakou. The analysis of the correlation between solar radiation
and vegetation NPP (Figure 4I) showed that areas with a positive
correlation coefficient made up 89.29% of the region, while areas with a
negative correlation accounted for 10.71%. This indicated that most of
the region’s vegetation NPP was positively correlated with the annual
total solar radiation. Areas with an insignificant positive correlation
covered 62.28% of the study area, mainly distributed in Zhangjiakou,
Chengde, Tangshan, Qinhuangdao, Shijiazhuang, and Hengshui. Areas
with an insignificant negative correlation accounted for 10.45% of the
region, primarily located in northern Chengde, scattered areas of
Langfang, and parts of Tianjin. The correlation analysis showed that

27.27% of the region passed the significance test, indicating that the
correlation between solar radiation and NPP was higher than that
between temperature and NPP but lower than that between
precipitation and NPP. Of this, areas with a significant or highly
significant positive correlation made up 27.01% of the study area,
concentrated in Beijing, eastern Langfang, eastern Cangzhou, and
western Tangshan. In these areas, the combination of favorable
water and heat conditions, along with increased solar radiation,
promoted photosynthesis, contributing to improved vegetation growth.

3.3 The impact of climate change and
human activities on vegetation NPP

3.3.1 The main driving factors influencing
vegetation NPP changes in the Beijing-Tianjin-
Hebei region

Figure 5 showed the spatial distribution of the dominant factors
influencing vegetation NPP changes in the Beijing-Tianjin-Hebei
region, while Table 2 presented the area proportions of these
different dominant factors. As seen from Figure 5 and Table 2,
the improvement in vegetation across the Beijing-Tianjin-Hebei
region was primarily driven by the combined effects of climate

FIGURE 5
Drivers of NPP variability at each point according to the criteria in
Table 1. *CC&HA indicates that NPP variability is driven by both climate
change and human activities. CC means that NPP variability is only
driven by climate change. HA indicates that NPP variability is
driven by human activities alone.
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change and human activities, accounting for 36.94% of the area,
which was mainly located in Chengde, central Zhangjiakou, and
northern Baoding. The second most dominant factor was human
activities alone, which influenced 28.40% of the area, mainly
distributed in northern Beijing, eastern Cangzhou, northern
Zhangjiakou, and western Shijiazhuang and Baoding. Climate
change alone accounted for 14.26% of the area, mainly in the
southern part of the study region. Vegetation degradation in the
region was predominantly caused by human activities, affecting
8.79% of the area, mostly in Tangshan, Langfang, and eastern
Baoding. These areas experienced significant pressure on
vegetation growth due to rapid socioeconomic development and
the construction of the industrial zone surrounding the capital,
which led to poor vegetation recovery and degradation. The
combined effects of both climate change and human activities
also contributed to vegetation degradation in 6.14% of the area,
mainly in central Shijiazhuang, Baoding, and eastern Handan.
Vegetation degradation caused solely by climate change
accounted for 5.47% of the area, primarily located in the
southern part of the study region. Overall, the combined effects
of climate change and human activities were the main factors
contributing to vegetation improvement in the Beijing-Tianjin-
Hebei region from 2000 to 2020, while human activities were the
leading cause of vegetation degradation.

3.3.2 The relative contributions of climate change
and human activities to vegetation NPP

Figures 6A, B illustrated the contributions of climate change and
human activities to vegetation NPP changes, while Figures 6C, D
showed the relative contribution rates of climate change and human

activities. Table 3 presented the relative contribution rates of climate
change and human activities in areas of vegetation improvement
and degradation. According to Figure 6, the mean contributions of
climate change and human activities to vegetation NPP changes
were 1.22 g C m⁻2 a⁻1 and 2.57 g C m⁻2 a⁻1, respectively. The areas
with positive contributions from climate change and human
activities accounted for 48.64% and 73.95% of the total study
area, respectively. The relative contribution rates of climate
change and human activities to vegetation NPP changes were
45.11% and 54.89%, respectively. Areas where the relative
contribution rate of climate change exceeded 60% covered
28.86% of the total area, mainly distributed in eastern Chengde,
Baoding, Hengshui, Handan, and western Cangzhou. Meanwhile,
areas where the relative contribution rate of human activities
exceeded 60% covered 45.86% of the total area, mainly located in
Zhangjiakou, northwestern Beijing, eastern Cangzhou, most of
Chengde, and scattered areas in Shijiazhuang and Baoding. The
implementation of ecological projects and the enforcement of
ecological protection policies in these regions significantly
promoted vegetation growth, leading to a higher relative
contribution of human activities. In terms of different vegetation
types, human activities contributed most significantly to farmland,
with a relative contribution rate of 43.29%. Forestland and grassland
followed, with rates of 35.56% and 17.77%, respectively, while
shrubland had the lowest rate, at 3.38%.

4 Discussion

4.1 The accuracy validation and spatio-
temporal variation characteristics of NPP

The NPP is an important indicator of vegetation coverage and
growth, playing a crucial role in climate regulation and maintaining
terrestrial carbon balance (Brinkmann et al., 2011). The analysis of
regional vegetation dynamics and their driving mechanisms has
been a core focus in global change research and ecological

TABLE 2 Statistic of the area proportion based on different drivers (%).

NPP tread CC&HA CC HA

>0 36.94 14.26 28.40

<0 6.14 5.47 6.14

FIGURE 6
Spatial distributions of the contributions of climate (A) and human activities (B) to the vegetation NPP, and the contribution proportions of climate
change (C) and human activities (D) to vegetation NPP.
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civilization construction. Variations in methods, model structures,
data sources, and spatiotemporal resolutions can lead to
uncertainties in NPP estimation. In this study, NPP estimated
using the CASA model closely aligns with the results of studies
by Wang (2012), Liu (2008), Gao et al. (2022). Moreover, it
demonstrates strong consistency with remote sensing products
(Guo, 2023), indicating the CASA model’s high reliability in
simulating vegetation NPP.

Through the study of the spatiotemporal distribution
characteristics of vegetation NPP in the region from 2000 to
2020, it was found that the overall trend of vegetation NPP
increased over time, consistent with previous research findings
(Zhang, 2015; Wang et al., 2021). The reasons for this increase
can be attributed to the implementation of ecological restoration
projects, such as the Conversion of cropland to forest and grassland
project since 2000, which improved the ecological quality of the
region. Additionally, the establishment of various ecological security
barriers has provided some protection to the environment in the
region (Cui, 2011). In terms of spatial patterns, the NPP in the
region exhibited a stepped distribution, decreasing from northwest
to southeast, with high values in the Yanshan and Taihang
mountains where forest vegetation predominates, and lower
values in the Bashang Plateau and southeastern plains where
grasslands and croplands are dominant. This pattern aligns with
the findings of Lv et al. (2017). The overall vegetation in the region
has been steadily recovering, especially in the sparsely populated
areas of the Bashang Plateau and mountainous regions, where
ecological engineering efforts have been concentrated. However,
in parts of the central and coastal areas, urban expansion,
agricultural irrigation, and other human activities have caused
significant vegetation fluctuations, limiting recovery or even
leading to degradation.

4.2 Analysis of driving mechanisms for
vegetation dynamics in the Beijing-Tianjin-
Hebei region

Climate and human activities are the fundamental driving forces
controlling and influencing the spatial distribution and changes of
vegetation (Yin et al., 2021). In this study, climate change drove an
increase in NPP, accounting for 51.20% of the total. Among them,
precipitation had a high explanatory power for the spatial
distribution of NPP. The correlation analysis between NPP and
precipitation showed that the interannual fluctuation of NPP was

basically consistent with that of precipitation, indicating that
vegetation is more sensitive to interannual changes in
precipitation. This is consistent with the findings of Zhou et al.
(2017) regarding the significant correlation between NPP and
precipitation in temperate desert grasslands. Similarly, solar
radiation also showed a high correlation with vegetation NPP,
accounting for 27.27% of the total area through significance
testing, lower than the correlation between precipitation and
NPP but higher than that between temperature and NPP. This
suggests that increased solar radiation benefits vegetation
photosynthesis and storage, consistent with the results of
Guo (2023).

The interannual fluctuation of NPP was positively correlated
with temperature fluctuations overall, but only accounted for
10.79% of the study area through significance testing. The reason
for this may be that suitable temperature and heat can promote
vegetation growth to a certain extent, but continued warming can
exacerbate drought and inhibit vegetation growth (Gao et al., 2019),
even leading to withering and death of artificial vegetation due to the
occurrence of dry soil layers (Chang et al., 2024). Under the
background of global climate warming, the frequency, duration,
intensity, and impact range of drought events have all shown a
significant increasing trend (Liu et al., 2015). However, the
occurrence of drought events has not changed the overall
decreasing trend of NPP in the Beijing-Tianjin-Hebei region.
This may be attributed to the ecological restoration projects
implemented in the study area since 2000, such as returning
farmland to forests and grasslands, desertification control,
wetland protection, soil and water conservation, and governance.

Pixel-scale analysis revealed that human activities contributed to
67.34% of the NPP changes, with the comprehensive
implementation of returning farmland to forests and grasslands
in the Beijing-Tianjin-Hebei region since 2002, as well as the
implementation of a series of large-scale ecological projects since
2010 and the enforcement of grazing bans. NPP has been
significantly improved, and the negative impact of human
activities on NPP in the Beijing-Tianjin-Hebei region has
gradually weakened. In localized areas such as Tangshan,
Langfang, and Baoding, NPP changes are mainly affected by
human activities. Long-term and rapid urbanization activities and
industrial zone construction have caused severe land pressure and
landscape damage, resulting in weak vegetation stability. It is
necessary to further strengthen the control of human activities
and coordinate the relationship between economic development
and environmental protection.

TABLE 3 The relative contribution rates of climate change and human activities in areas of vegetation improvement and degradation.

NPP tread Drivers Area proportion (%)

<20 20~40 40~60 60~80 >80

Increasing trend of NPP Climate change 16.04 24.75 18.55 12.63 7.82

Human activities 7.86 12.50 18.53 24.66 15.89

Decreasing trend of NPP Climate change 1.80 3.28 6.72 4.85 3.56

Human activities 3.54 4.89 6.82 3.53 1.78
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4.3 Limitations

The differences in research results may be related to various
factors such as the scope of the study, the study period, and the
quality of data used. Currently, large-scale studies based on remote
sensing data are still limited by factors such as low spatiotemporal
resolution and insufficient meteorological station coverage (Zhang
et al., 2011). Additionally, while the residual analysis method has
been widely used to separate the effects of human activities on
vegetation NPP changes, it still has some limitations. For example,
when simulating the impact of meteorological elements on
vegetation NPP, only factors such as precipitation, temperature,
and solar radiation are considered, while factors like relative
humidity and wind speed may also affect vegetation NPP but are
not fully accounted for. Similarly, when mentioning human
activities, specific aspects such as vegetation restoration,
agricultural technological advancements, transportation
expansion, and urban sprawl are not explicitly considered (Liu
et al., 2016). Quantitatively distinguishing the specific impacts
and differences of human activities requires further research.

Due to variations in how vegetation growth responds to different
influencing factors in different regions, these issues and limitations
are difficult to resolve in large-scale studies, leading to some degree
of uncertainty in the research results. Refining the driving factors of
vegetation change, determining the relationship between each factor
and vegetation change, and evaluating the accuracy of the results
through field investigations will help reduce such uncertainties.
Overall, further research is needed to better understand the
effects of human activities and climate change on vegetation NPP
changes and their driving mechanisms in the Beijing-Tianjin-
Hebei region.

5 Conclusion

From 2000 to 2020, the annual average NPP in the Beijing-
Tianjin-Hebei region showed an overall increasing trend, indicating
an improvement in the ecosystem productivity of the area. The
growth rates of NPP varied across different vegetation types, with
the most significant increase observed in forests, reflecting effective
forest ecosystem restoration. Spatially, NPP changes in the Beijing-
Tianjin-Hebei region exhibited heterogeneity, with areas showing
significant increases far outweighing those with decreases,
suggesting a gradual enhancement of overall ecological quality.
Analysis showed that vegetation NPP in the region is highly
dependent on precipitation, which plays a critical role in
promoting vegetation growth, while increased solar radiation also
provides favorable conditions for photosynthesis. Overall,
vegetation improvement in the Beijing-Tianjin-Hebei area was
driven mainly by the combined impact of climatic factors and
human activities, while vegetation degradation was primarily
influenced by human factors. These findings highlight the pivotal
role of human activities in regional ecological construction and

provide a scientific basis for sustainable ecological management
in the area.
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