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In light of global climate change and environmental challenges, reducing agricultural
carbon emissions while maintaining food security has become a critical concern for
sustainable agricultural development. This study examines 13 provinces in primary
grain-producing regions, utilising data from 1999 to 2022 to analyse the spatio-
temporal heterogeneity and driving factors of the coupled and coordinated
development of agricultural carbon emission efficiency and food security. The
findings indicate that: 1) The proportion of carbon emissions from agricultural
inputs in primary grain-producing regions exceeds 80%, whereas the contribution
of carbon sinks from rice, maise, and wheat surpasses 95%. Both agricultural carbon
emissions and carbon sinks in the Yellow River Basin are significantly elevated; 2) The
general trend of agricultural carbon emission efficiency and food security is
increasing, spatially characterised by a pattern of high levels in the north and
south, and low levels in the south and high levels in the north, respectively. The
integration of the two systems is progressing positively, and the trailing form of food
security has emerged as a developmental trend, with the degree of food security
limiting the coordinated advancement of both. 3) The overall spatial disparity exhibits
a declining tendency, with hypervariable density being the primary contributor to this
spatial difference. The overall polarisation of the primary grain-producing regions has
diminished. The level of heterogeneity in the Songhua River basin progressively
intensifies; 4) Rural human capital and financial support for agriculture, urbanisation
rate and soil erosion control, agricultural machinery power and soil erosion control
are the main interaction factors. The economic status and rural human capital will
facilitate the integrated and harmonious development of the two systems, while the
agricultural disaster rate will impede this integrated and harmonious development.
Ultimately, policy solutions are proposed to optimise agricultural inputs and raise
their utilisation efficiency, adopt diversified regional development strategies,
promote regional connection and coordinated development, and reinforce the
management of drivers and policy support.
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1 Introduction

Access to sufficient and reliable food supplies is paramount to the nation’s security.
China has solemnly committed to reducing carbon emissions significantly around the globe.
China, a country with a long history of agriculture, has consistently seen food security as the
fundamental basis of its economy. China’s capacity to ensure food security has dramatically
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improved since the 18th National Congress of the Communist Party
of China (CPC). With 9% of the world’s arable land and 6% of its
freshwater resources, China can provide food for almost 20% of the
global population (Lee et al., 2024). In the current era of
unprecedented upheavals, including a chaotic international
situation, severe global climate change, frequent natural disasters,
and other dangerous issues, the strategic importance of food security
has grown more prominent as we enter a new stage of growth.

The climate environment has significantly influenced
agriculture. The effects of climate change, such as extreme
weather events, limited resources, and energy challenges, will
affect food production. The Emissions Gap Report 2023, released
by the United Nations Environment Programme (UNEP), states
that to achieve the 1.5°C temperature control objective, global
greenhouse gas emissions must be reduced by 42% annually by
2030 (Nabernegg et al., 2019). Tackling the climate catastrophe has
become a universal and pressing challenge for the entire planet. The
China Greenhouse Gas Inventory 2018 Circular reveals that
agriculture contributes 870 million tonnes of carbon dioxide,
equivalent to the country’s greenhouse gas emissions. This
accounts for approximately 15% of the total emissions, making
agriculture the second largest source of greenhouse gases after
industry (Chen et al., 2022). Consequently, the agricultural sector
has emerged as a crucial battleground in the fight against climate
change. Hence, by thoroughly examining the connection between
agricultural carbon emission efficiency and food security, it is
feasible to decrease the unnecessary duplication of agricultural
carbon emissions and enhance the effectiveness of agricultural
carbon emissions, all while ensuring food security. A meticulous
evaluation of the variations in regional disparities, dynamic shifts,
and influencing factors between agricultural carbon emission
efficiency and food security will offer a scientific foundation for
developing more accurate regional policies.

Most scholars’ research is primarily based on quantifying
agricultural carbon emissions and carbon sinks. Agricultural
carbon emissions encompass the greenhouse gas emissions from
using fertilisers, pesticides, fossil fuels, and waste disposal in
agricultural production (Zhao et al., 2018). Scholars have
employed various methods, such as the emission factor method,
actual measurement method, and mass balance method (Li et al.,
2023), to quantify carbon emissions in different aspects of
agriculture, including agricultural waste, livestock breeding,
plantation production, and straw incineration (Yang et al., 2022;
Guo et al., 2022). Furthermore, scientists quantify carbon emissions
from agricultural land usage by considering factors such as
fertilisers, pesticides, agricultural plastic film, diesel fuel,
ploughing, and irrigation (Guo and Zhang, 2023; Cui et al.,
2022). The research on measuring agricultural carbon sinks
encompasses four main areas: agricultural inputs, crop
cultivation, carbon emissions from animal husbandry, and crop
carbon absorption (Chopra et al., 2022; Wang and Qiu, 2024).

Research is conducted on agricultural carbon emission
efficiency, primarily focusing on measuring efficiency (Khatri-
Chhetri et al., 2023), identifying influencing factors (WU et al.,
2021), and analysing regional variations (Zhang et al., 2020) based
onmeasurements of agricultural carbon emissions and carbon sinks.
Two main methods for measuring agricultural carbon emission
efficiency are single-factor and total-factor. The single-factor

perspective measures agricultural carbon productivity, while the
total-factor perspective uses the Malmquist index model (Jiang et al.,
2020) and the super-efficient SBM-DEA model (Kuang et al., 2020;
Chen et al., 2021). The study primarily examines the factors
influencing agricultural carbon emission efficiency, explicitly
focusing on industry, aspects, and the environment. It reveals
that the agricultural industry’s structure, chemical factors’ inputs,
and the occurrence of agricultural disasters negatively impact
agricultural carbon emission efficiency (Shan et al., 2022).
Conversely, economic development, urbanisation, and financial
support for agriculture have a positive influence (Li et al., 2022).
Furthermore, researchers have conducted regional analyses
comparing agricultural carbon emissions across national,
provincial, and county boundaries, highlighting notable variations
in efficiency among different regions (Su et al., 2023).

The academic community has consistently prioritised the issue
of food security, leading to numerous research exploring its meaning
(Mbow et al., 2020), developmental levels (Irtyshcheva et al., 2019),
spatial and temporal distribution (Cooper et al., 2020), and the
influencing factors (Tushar et al., 2023). The examination of the
interconnection between the food security system and other systems
has primarily concentrated on water, soil, urbanisation, ecological
efficiency, and food security (Clapp, 2023). Several scientists have
identified contradictory and mutually beneficial connections
between agricultural carbon emissions and food security
regarding yield increase and carbon sequestration, yield increase
and emission reduction (Kong et al., 2022), carbon sequestration
and emission reduction, and policy (Sun et al., 2024a). Enhancing
agricultural carbon emission efficiency involves moving away from
the conventional “three highs and one low” crude agricultural
production methods and effectively utilising resources and energy
(Elahi et al., 2024). This is beneficial for augmenting food output and
improving its quality. The implementation programme of the
national food security strategy aims to conserve fertilisers, water,
and medicines in agricultural production (Liu and Ren, 2023). It also
focuses on improving crops to achieve higher yields of new food
varieties and reduce greenhouse gas emissions. This will enhance the
efficiency of agricultural carbon emissions and create synergies
between the two goals (Adesete et al., 2023). However, suppose a
region excessively depends on chemical fertilisers, pesticides, and
other agricultural substances to boost food production. This can lead
to higher carbon emissions from paddy fields and N2O emissions
from drylands (Khan et al., 2024). Consequently, inefficient
agricultural carbon emissions can occur, which in turn can
reduce future crop yields and pose a threat to food security. In
such a scenario, there is a conflict between the two.

The primary regions for grain production serve the dual
purposes of ensuring consistent food production and availability
and promoting environmentally friendly and low-carbon
agricultural practices (Wang et al., 2018). These locations have
garnered significant interest from the academic community. On
the one hand, the policy impact in the primary grain-producing
regions can simultaneously decrease agricultural surface pollution
and enhance grain production (Wei et al., 2017). It can also boost
farmers’ income and ensure the stability of grain cultivation areas
(Zhan et al., 2012). Additionally, there are variations in the fairness
of agricultural carbon emissions among different regions in the
primary grain-producing areas (Tian et al., 2021). However,
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implementing policies in significant grain-producing regions
specifically impacts reducing carbon emissions. Additionally,
combining large-scale operations (Zhu et al., 2018) and
technological advancements (Wang et al., 2022) can facilitate
major grain-producing areas in achieving a mutually beneficial
outcome of increasing production while simultaneously reducing
carbon emissions. Consequently, the majority of researchers hold
the view that the impact of decreasing carbon emissions from
agriculture while also guaranteeing food security (Wu Z. et al.,
2024) is particularly noteworthy in regions that produce large
quantities of grains.

Based on comprehensive studies regarding agricultural carbon
efficiency and food security, current scholars integrate both into a
unified analytical framework. Cao et al. (2024) carefully examines
the correlation between agricultural carbon emission efficiency and
food security in Hebei province at the regional level. Gu et al. (2023)
analyses the interrelation between agricultural carbon emission
efficiency and food security in Henan province, emphasising the
urgent necessity to address the coordination between these two
factors. At the national level, Sun et al. (2024b) modelled several
government priority scenarios by modifying the model parameters
and determined a stage relationship between agricultural carbon
emission efficiency and food security. Wang et al. (2024) employed a
systematic generalised method of moments estimation model to
examine the bi-directional causality between agricultural carbon
emission efficiency and food security. He et al. (2024) used a
dynamic fuzzy set qualitative comparison method to explore the
correlation between agricultural carbon emission efficiency and the
level of coordinated growth in food security. He also identified the
driving mechanisms of technology, finance, and urbanisation.
Researchers have conducted extensive studies on the relationship
between the two. Nevertheless, most extant research originates from
provincial or national levels, with fewer investigations concentrating
on primary grain-producing regions. Examining agricultural carbon
efficiency and food security in key food-producing regions is
particularly representative and significant to China’s agriculture.
Secondly, while current research has explored the bidirectional
relationship between agricultural carbon efficiency and food
security, it is deficient in analyses of the nature of coordination.
It has not undertaken comprehensive investigations into the
regional variability of their coordinated development. Studying
the origins of spatial disparities and their dynamic growth is
essential for fostering coordinated development. Furthermore, the
determinants and regional variability of their coordinated evolution
require more investigation.

The potential marginal contributions of this study are as follows.
Initially, by examining the spatial attributes of agricultural carbon
emissions and sinks in primary grain-producing regions, the carbon
sequestration of farmland is incorporated into the agricultural
carbon emission efficiency assessment framework, utilising the
Super-SBM model to enhance the scientific rigour of the
measurement outcomes. Secondly, using the synergistic
characteristics of both factors, the coupling coordination degree
model is employed to assess the nature of the coordination between
agricultural carbon emission efficiency and food security in primary
grain-producing regions. The research region encompasses the
Yangtze River Basin, Songhua River Basin, and Yellow River
Basin. The spatial and temporal disparities and the dynamic

evolution of the coupling between the two are examined utilising
the Dagum Gini coefficient and the kernel density function, thereby
offering a reference for future studies. Ultimately, the geo-detector
and spatio-temporal geographically weighted regression model are
used to examine the interaction intensity of the factors influencing
the coordination of the two couplings, together with the spatial
heterogeneity of these factors.

The remaining sections of the paper are structured in the
following manner: Section 2 presents the theoretical analysis,
Section 3 describes the material and methodology, Section 4
provides a comprehensive analysis of the findings, Section 5
offers a thorough discussion of the findings, Section 6 contains
the conclusions and recommendations, and the final section
addresses the limitations of the study.

2 Theoretical analysis

The degree of coupling coordination, also known as the degree
of coordinated development, is a measure used to evaluate and
research the entire system. It assesses the status of coordinated
development and the virtuous cycle interaction between systems
(Dong et al., 2023). The efficiency of carbon emissions in agriculture
and the systems that provide food security have a mutually beneficial
relationship, restricting and stimulating effects on each other.

Firstly, the focus is on optimising resources and ensuring
environmental sustainability. Enhancing agricultural carbon
emission efficiency often involves implementing optimal resource
management strategies for water, land, fertiliser, and energy (Sun
et al., 2024a). Optimisation techniques contribute to the attainment
of environmental sustainability in agricultural production while
simultaneously preserving the efficiency and stability of food
production and maintaining food security.

Secondly, the focus is on technological advancement and
efficient production management. By implementing technological
advancements and adopting efficient production strategies, such as
precision farming, integrated pest management, crop rotation, and
intercropping systems, it is feasible to decrease carbon emissions in
agricultural production significantly (Zhang Z. et al., 2022).
Moreover, these practices can simultaneously enhance crop yields
and quality and promote food production’s sustainability.

Thirdly, the implementation of policy support and market
processes is crucial. The efficacy of agricultural carbon emissions
reduction and the assurance of food security relies heavily on the
combination of government policy assistance and market
mechanisms. Policy incentives, financial subsidies, tax
concessions, and carbon trading markets can encourage farmers
and agribusinesses to adopt environmentally friendly production
practices (Tushar et al., 2023). These measures also help maintain
the stability of food production and supply.

Simultaneously, there are evident variations in the levels of
agricultural carbon emission efficiency and food security across
different regions. These disparities have resulted in noticeable
regional differences in the interdependent relationship between
the two factors, exhibiting distinct characteristics and patterns of
coupling in each area. Hence, it is vital to thoroughly contemplate
these disparities during the policy creation and execution stages and
adopt specific strategies to facilitate the comprehensive
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amalgamation and synchronised advancement of agricultural
carbon emission efficiency and food security.

Based on the findings above, the theoretical framework of this
study has been established, as depicted in Figure 1:

3 Materials and methods

3.1 Study area and data sources

This study focusses on the primary grain-producing regions,
encompassing 13 provinces: Heilongjiang, Henan, Shandong,
Anhui, Jilin, Hebei, Jiangsu, Inner Mongolia, Sichuan, Hunan,
Hubei, Liaoning, and Jiangxi. The rationale for selecting the study
sample is as follows: Firstly, the primary grain-producing regions
are crucial agricultural hubs in China, significantly contributing to
national food security. The agricultural sector in principal grain-
producing regions is highly developed. Since 2019, each province’s
annual grain production has attained 20 million tonnes,
culminating in exceeding 500 million tonnes, constituting 78%
of the nation’s overall grain output, ensuring robust food security
for China. The region’s advanced agricultural production results
in considerable negative externalities, as its consumption of

agricultural inputs, including chemical fertilisers, pesticides,
and agricultural films, surpasses 70% of the national total.
Therefore, agricultural carbon emissions in the region are
markedly higher than those in other provinces in China,
significantly influencing national and global food production
and climate change through their agricultural carbon emission
efficiency and food security status. Secondly, significant grain-
producing regions are typically situated across various provinces,
encompassing diverse geographic, meteorological, and soil
characteristics. These regions vary in agricultural production
techniques, crop varieties, and degrees of agricultural
technology. Selecting primary grain-producing regions as
samples can more accurately represent the overall state of
agricultural carbon emission efficiency and food security in
China while also being geographically representative.

This paper selects the period from 1999 to 2022 as the
chronological sequence and focuses on studying 13 provincial-
level administrative districts located in the primary grain-
producing regions as the research samples. The data on grain
output, crop planting area, irrigated area, urbanisation rate, forest
coverage rate, gross domestic product, and employment in the
primary industry are sourced from the China Statistical
Yearbook. The information on pesticides, agricultural film, diesel

FIGURE 1
Theoretical framework.
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fuel, ploughing, financial expenditure, crop-affected area, the total
power of agricultural machinery, electricity consumption in
agriculture, and the per capita income of rural inhabitants are
obtained from the China Rural Statistical Yearbook. The data on
cultivated land area was obtained from the China Statistical
Yearbook on Land and Resources. At the same time, the
information on the number of years of education of the rural
labour force was sourced from the China Statistical Yearbook on
Population and Employment. In cases with missing data, the linear
interpolation method was employed to fill in the gaps and ensure the
completeness of the data.

3.2 Research methods

3.2.1 Agricultural carbon emission efficiencymodel
3.2.1.1 Emission factor approach

This method fundamentally involves calculating greenhouse gas
emissions by integrating activity data with emission variables, which
are predominantly utilised in agriculture and other industries. This
paper examines the relationship between the efficiency of carbon
emissions in agriculture and food security. The focus of agricultural
carbon emissions is on the plantation industry. The sources of
carbon emissions include various materials used in agriculture,
such as fertilisers, pesticides, agricultural films, agricultural diesel,
agricultural ploughing, and irrigation (Zhao et al., 2018).
Additionally, concerning the IPCC, carbon emissions from rice
cultivation and nitrous oxide (N2O) emissions from the
cultivation of significant grains like wheat, maise, beans, and
potatoes are considered. According to the Fourth Assessment
Report, N2O is transformed into standard carbon using a
conversion factor 81.27 (Wu D. et al., 2024). The precise formula
is as follows (see Equation 1):

E � ∑Ei � ∑Xi × αi (1)
where E represents the overall amount of carbon emissions from
agriculture, Ei represents the specific carbon emissions from
agricultural sources, Xi represents the degree of activity that
produces carbon, and ɑi represents the factor determining the
amount of carbon emitted (Table 1).

3.2.1.2 Agricultural carbon sink modelling
This strategy is fundamentally grounded in the theory of the

carbon cycle. Plants assimilate atmospheric carbon dioxide via
photosynthesis in agricultural production, transforming it into
organic carbon for storage in the plant structure and soil,
creating agricultural carbon sinks. Carbon sinks are simulated
using a model that considers the carbon sequestration process
during the growth cycle of crops in farmland systems. In this
study, carbon sequestration in farmland is estimated by
considering the dry mass of food crops (Ding et al., 2024; Han
C. Y. et al., 2023) using the following equation (see Equation 2):

C � ∑Ci × Yi × 1 −Wi( ) × 1 + Ri( )/Hi (2)
where C represents the overall amount of carbon stored in farms, Ci

represents the rate at which food crops absorb carbon, Yi represents
the number of crops produced, Wi represents the water content in
the soil, Ri represents the coefficient that relates to the ratio of roots
to crowns in plants, and Hi represents the coefficient that relates to
economic factors (Table 2).

3.2.1.3 Super-SBM model
Data Envelopment Analysis is a technique employed to evaluate

relative efficiency by juxtaposing input and output metrics of
analogous units to ascertain the efficiency value of each unit.
Nonetheless, the conventional DEA model is hindered by the

TABLE 1 Carbon emission factors for agricultural carbon sources.

Carbon source Emission factor Carbon emission factor

Agricultural Input Fertiliser 0.8956 kg(C)kg−1

Pesticide 4.9341 kg(C) kg−1

Agro-film 5.1800 kg(C) kg−1

Diesel 0.5927 kg(C) kg−1

Plough 312.6000 kg(C)·km−2

Irrigate 266.4800 kg(C)·hm−2

Soil Utilisation Paddy Northern 234.0000 kg(C)·hm−2

Eastern 215.5000 kg(C)·hm−2

Central South 236.7000 kg(C)·hm−2

Southwest 156.2000 kg(C)·hm−2

Northwest 168.0000 kg(C)·hm−2

wheat 2.0500 kg(N2O)·hm−2

Maise 2.5300 kg(N2O)·hm−2

Legume 0.7700 kg(N2O)·hm−2

Potato 0.9500 kg(N2O)·hm−2
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issue of positioning effective decision-making units without a
comprehensive ranking, and it fails to assess the efficiency value
that includes undesirable outputs appropriately. Tone introduced the
Super-SBM model in 2001, incorporating undesired outputs (Chen
et al., 2021). This model retains the fundamental principles of the
DEA model for evaluating relative efficiency while enhancing it by
developing a linear programming model that includes a stochastic
error term, thereby assessing the efficiency value of the decision unit
within the stochastic frontier framework (Shan et al., 2022). This
model is selected to determine agricultural carbon emission efficiency,
with carbon emission treated as an unintended outcome. The formula
used is as follows (see Equations 3, 4):

CEE � min

1
m ∑m

i�1
xi
xi0

1
r1+r2 ∑r1

s�1
yds
ygs0

+ ∑r2
t�1

ydt
ygt0

( )
(3)

�x≥∑n
j�1
λjyb

j , y
g ≤∑n

j�1
λjy

g
j , y

b ≥∑n
j�1
λjyb

j ;

�x≥ x0, y
g ≤yg

0 , y
b ≥yb

0;
yg ≥ 0, λ≥ 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(4)

where n represents unit, m represents unit input, r1 represents
expected output, and r2 represents undesired output; x, yb, and yg

represent the corresponding elements in the matrix composed of
input, desired output and undesired output respectively; λ represents
the weight vector; CEE represents the carbon emission efficiency of
agriculture. The input indicators for agricultural carbon emission
efficiency are determined based on three dimensions: land, labour,
and agricultural resources. The output indicators consider desired
outcomes such as food production, farmland carbon sinks, total
agricultural output value, and undesired outcomes of agricultural
carbon emissions (Table 3).

3.2.2 Food security model
3.2.2.1 Entropy method

The entropy value method evaluates a system’s overall level by
analysing the degree of dispersion. Its fundamental principle
involves assessing the weight of an indicator by examining its
overall relative change, resulting in a more objective and
scientific assessment of the overall level compared to other
methods. The degree of dispersion of these indicators is
considered to assess the impact of food security indicators on the
comprehensive evaluation (Bao et al., 2022). A higher degree of
dispersion indicates a more significant impact on the evaluation.
The precise formula is as follows (see Equations 5–9):

Standardisation of positive indicator data:

Sij �
Xij −min X1j, X2j,/, Xnj( )

max X1j, X2j,/, Xnj( ) −min X1j, X2j,/, Xnj( ) (5)

Standardisation of negative indicator data:

Sij �
max X1j, X2j,/, Xnj( )−Xij

max X1j, X2j,/, Xnj( ) −min X1j, X2j,/, Xnj( ) (6)

Determine the value of the indicator weight Pij and compute the
information entropy ej:

Pij � Xij

∑n
i�1
Xij

; ej � − 1
lnn

( ) × ∑n
i�1
Pij ln Pij (7)

Determine the redundancy of information entropy dj and the
weight of entropy for each indication Wj:

dj � 1 − ej;Wj � dj

∑m
j�1
dj

(8)

Computation of a composite food security index FS:

FS � ∑m
j�1
WjXij (9)

TABLE 2 Carbon uptake, water content, economic coefficient and root-crown ratio of grain crops.

Grain crop Carbon uptake Water content Economic coefficient Root-crown ratio

Paddy 0.4144 0.1200 0.4500 0.6000

wheat 0.4853 0.1200 0.4000 0.4000

Maise 0.4709 0.1300 0.4000 0.1600

Legume 0.4500 0.1300 0.3500 0.1300

Potato 0.4226 0.700 0.7000 0.1800

TABLE 3 Agricultural carbon efficiency input-output indicators.

Category Dimension Specific indicator

Agricultural Input Land Input Grain Sown Area

Labour Input Employees in the Primary Sector

Agricultural Input Fertiliser Application Rate

Pesticide Application Rate

Agricultural Film Application Rate

Agricultural Diesel

Effective Irrigated Area

Agricultural Output Desired Output Total Grain Output

Farmland Carbon Sink

Gross Agricultural Output

Non-desired Output Agricultural Carbon Emission

Frontiers in Environmental Science frontiersin.org06

Liu and Yang 10.3389/fenvs.2024.1503733

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1503733


where Sij represents the standardized value and Xij represents the
actual value.

3.2.2.2 Construction of food security indicator system
The paper’s food security index methodology considers food

supply security, food production security, and food quality
security. The weight of each indicator is calculated using the
entropy weight approach (Irtyshcheva et al., 2019), as shown in
Table 4. There is a direct correlation between the size of the
cultivated land for grain, the amount of grain produced per
person, the extent of irrigated land, and the level of food security.
Additionally, the greater the impacted area of crops, the more
detrimental it is to food security. The rise in agricultural electricity
usage, the overall power of agricultural machinery, and the added
value of the primary industry suggest that enhancing technological
proficiency and efficiency in agricultural production contributes to
food security. Increasing the usage of chemical fertilisers, pesticides,
and agricultural films per unit area leads to more chemical residues in
food, resulting in decreased food quality and reduced food security.

3.2.3 Coupled coordination degree model
System theory posits complex systems comprise interrelated

subsystems or elements characterised by intricate coupling
relationships. The coupling coordination degree model is founded
on system theory, which perceives the internal components of a
system as an interconnected and interactive organic entity,
facilitating quantitative analysis and evaluation. The coupling
coordination model is extensively employed across various
domains, including regional economics, industrial growth, social
management, and ecological environments. Using the coupling
coordination degree model, the interaction intensity among
elements can be measured, allowing for a more comprehensive
analysis of the system’s operational state. This establishes a
foundation for system optimisation and facilitates the
identification of issues within the system, enabling the
implementation of specific enhancement strategies (Sun et al.,
2024a). This paper utilises the coupling coordination degree
model to examine the interplay between agricultural carbon
emission efficiency and food security. The particular formulas
employed are as follows (see Equations 10–12):

C � CEE × FS( )/ CEE + FS

2
( )2{ }1/2

(10)

D � C × T( )1/2 (11)
T � α × CEE + β × FS (12)

where C represents the coupling degree, and the value range is
[0,1]; α and β represent coefficients to be determined. This paper
believes that carbon emission efficiency and food security are
equally important, so α and β are assigned the value of 0.5; D
represents the coupling coordination degree. Based on previous
research findings (Gu et al., 2023), the level of coupled
coordination is classified into four categories: severe
dysfunction, impending dysfunction, essential coordination,
and extreme coordination. The coupling coordination degree is
split into 12 subcategories based on the two primary
characteristics of synchronous coordination and lagging
dysfunction, together with the composite index of the two
systems (CEE, FS) (Table 5).

3.2.4 Dagum Gini coefficient decomposition
The Gini coefficient is a conventional metric for assessing

income or resource distribution inequality. In contrast, the Dagum
Gini coefficient enhances and refines the Gini coefficient by
employing the probability distribution function of the Dagum
distribution. In comparison to the conventional Gini coefficient
method, the Dagum Gini coefficient decomposition method
adeptly addresses the issue of cross overlap among subsamples,
allowing for the disaggregation of spatial disparities into intra-
regional differences, inter-regional differences, and hypervariable
density, thereby yielding more rigorous and precise measurement
outcomes (Zhang L. et al., 2022). This method is primarily
employed to analyse the distribution of resources across several
countries, regions, or historical periods, thereby elucidating
developmental disparities and imbalances among regions. This
paper uses the Dagum Gini coefficient decomposition approach to
examine the regional disparities and their origins in the
interconnected coordination of agricultural carbon emission
efficiency and food security. The specific formulas used are as
follows (see Equation 13):

TABLE 4 Indicator system and weighting of food security.

Level 1 index Level 2 index Level 3 index Direction Weight

Food Security Index Supply Security Grain Sown Area Positive 0.093

Food Production Per Capita Positive 0.104

Effective Irrigated Area Positive 0.105

Crops Affected Negative 0.118

Production Safety Electricity Consumption Positive 0.075

Gross Mechanical Power Positive 0.066

Value Added of Primary Industry Positive 0.101

Quality Safety Fertiliser Application Per unit Area Negative 0.111

Pesticide Application Per unit Area Negative 0.113

Agricultural Film Use Per Unit Area Negative 0.115
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G �
∑k
j�1

∑k
h�1

∑nj
i�1
∑nh
r�1

yji − yhr

∣∣∣∣ ∣∣∣∣
2n2μ

(13)

where n represents the number of provinces, k represents the
number of total regions, nj, nh represent the number of provinces
within regions j and h, yji, yhr represent the degree of coupled
coordination of the two systems in any province within regions j and
h, μ represents the mean value of the degree of coupled coordination
of the two systems. The method decomposes the Gini coefficient G
into three components: intra-regional variations Gw, inter-regional
variations Gb, and hypervariance density Gt. This decomposition
fulfils the equation G = Gw + Gb + Gt.

3.2.5 Non-parametric kernel density estimation
Kernel density estimation is a non-parametric method that

approximates the probability density function of a dataset by
applying a kernel function to each data point and aggregating the
results. In cases where the distribution form of the data is unknown
or intricate, non-parametric kernel density estimation serves as an
effective method for estimation that does not necessitate
assumptions regarding the data distribution, instead deriving
inferences directly from the data samples and is suitable for
distributions of all shapes and types (Han X. et al., 2023).
Consequently, it effectively represents the overall distribution of
the coupled coordination degree of agricultural carbon emission
efficiency and food security in the main food-producing areas.
Furthermore, it can capture the dynamic characteristics of this
distribution over time. The specific formulas used are as follows
(see Equations 14, 15):

f x( ) � 1
nh

∑n
j�1
k

xj − �x

n
( ) (14)

K x( ) � 1���
2π

√ e−
xj2

2 (15)

where n represents the number of observations, xj represents the
independent and identically distributed observations, �x denotes the
mean value of the observations, and h represents the
optimal bandwidth.

3.2.6 Geo-detector
Geodetector is a statistical tool that relies on spatial

autocorrelation in the distribution of geographic phenomena. It
aims to identify the causal relationship between an independent and
dependent variable by examining the degree of similarity in their
spatial patterns. Geodetector is extensively employed in various
disciplines, including ecology, environment, and economic
development. The geodetector can identify the interaction
between two elements affecting the dependent variable. By
computing and contrasting the q-value of each factor with the
q-value of the two factors combined, one may ascertain the
presence of an interaction between the two factors, as well as the
nature of that interaction—whether it is strong, weak, directional,
linear, or non-linear, among other characteristics (Cai et al., 2023).
This paper utilises factor detection and interaction detection in
geodetector to identify the driving factors and their interactions that
affect the coupled coordination degree of agro-ecological efficiency
and food security in the main grain-producing areas. The
formulated driving factors and their interactions are as follows
(see Equation 16):

q � 1 −∑L
h�1

Nhσ
2
h/Nσ2 (16)

where L represents the stratification of the coupling coordination
degree driver X, Nh and N represent the number of samples in a
specific stratum h and the entire study region, respectively; σ2h, σ

2

represent the variance of the specific stratum h and the entire study
area. The variable q ranges from 0 to 1. Based on the significance test,
a higher value of q indicates a more substantial explanatory power of

TABLE 5 Criteria for discriminating the degree of harmonisation of the coupling.

Type of coupled coordination Coordination
zone

Basis of
determination

Types of coupled coordination
differences

Severe Dysfunctional 0≤D< 0.4 0<CEE/FS≤ 0.8 Severe Dysfunctional Carbon Efficiency Lag (SDCEL)

0.8<CEE/FS≤ 1.2 Severe Dysregulation Synchronised Lag (SDSL)

CEE/FS> 1.2 Severe Dysfunctional Food Security Lag (SDFSL)

Impending Dysfunctional 0.4≤D< 0.6 0<CEE/FS≤ 0.8 Impending Dislocation Carbon Efficiency Lag (IDCEL)

0.8<CEE/FS≤ 1.2 Impending Dysfunctional Co-morbidity (IDC)

CEE/FS> 1.2 Impending Dysfunctional Food Security Lag (IDFS)

Basic Coordination 0.6≤D< 0.8 0<CEE/FS≤ 0.8 Basic Coordination Carbon Efficiency Lag (BCCEL)

0.8<CEE/FS≤ 1.2 Basic Coordination and Synchronous Development (BCASD)

CEE/FS> 1.2 Basic Coordination Food Security Lag (BCFSL)

Extreme Coordination 0.8≤D< 1 0<CEE/FS≤ 0.8 Extreme Coordination Carbon Efficiency Lag (ECCE)

0.8<CEE/FS≤ 1.2 Extremely Coordinated and Synchronised Development
(ECASD)

CEE/FS> 1.2 Extremely Coordinated Food Security Lag (ECFS)
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driver X on the coupling coordination of agricultural carbon
emission efficiency and food security degree. Conversely, a lower
value of q indicates a weaker explanatory power.

On the basis of single-factor analysis, by comparing the q values
q(Xi) and q(Xj) of the coupling and coordination degrees of pairs Xi

and Xj and the q-value q(Xi ∩ Xj) after the superposition of the two
factors, the strength and direction of the factor interaction are
judged according to their mutual relations (Pan et al.,
2024) (Table 6).

3.2.7 Spatio-temporal geographically weighted
regression

The GTWR model is a regression analysis technique that
integrates the temporal dimension with the GWR model, which
emphasises data variations in geospatial contexts and illustrates the
relationships between variables across diverse geographic locations
by incorporating geographic location weights. The GTWR model
additionally incorporates the temporal dimension, allowing it to
account for spatial and temporal variation (Zhao et al., 2023). This
work presents the construction of the GTWR model utilising
ArcGIS software to analyse the spatial heterogeneity of the
factors influencing the linked coordination degree of agro-
ecological efficiency and food security, represented by the
following formula (see Equation 17):

Di � φ0 ui, vi, zi( ) +∑m
j�1
φj ui, vi, zi( )Xij + δi (17)

where Di represents the degree of coupling coordination; Xij

represents the driving factors; (ui, vi, zi) represents the latitude
and longitude coordinates of the study area and the time of
observation, φ0(ui, vi, zi) represents the intercept, and δi
represents the random error.

4 Results and analyses

4.1 Agricultural carbon emissions and sinks

4.1.1 Agricultural carbon emission
Agricultural carbon emissions in the primary grain-producing

regions from 1999 to 2022 exhibit two “increase and decrease
phases,” as illustrated in Figure 2. Between 1999 and 2016,
overall carbon emissions rose annually due to the contribution of
numerous production factors, resulting in agricultural carbon
emissions reaching 85.12 million tonnes in 2016, a 36.49%
increase compared to 1999. From 2016 to 2022, influenced by

national policy control and the international “Carbon Emission,
Carbon Peak” initiative, agricultural carbon emissions have
progressively decreased, reaching 76.16 million tonnes in 2022.
Agricultural input carbon emissions constituted 82.09% of total
carbon emissions, with contributions from fertiliser, irrigation,
diesel, agricultural film, pesticides, and ploughing in descending
order. Overall emissions exhibited a trend of initially increasing,
followed by a decline, with fertiliser emissions representing 41.88%
of the total. Carbon emissions from agricultural soils exhibit three
phases: decrease, stabilisation, and resurgence. These emissions
constitute 17.91% of the total, with maise and rice contributing
significantly at 6.92% and 5.68%, respectively.

4.1.2 Agricultural carbon sink
The agricultural carbon sink in primary food-producing

regions from 1999 to 2022 exhibits a consistent annual increase,
with a more rapid growth rate before 2016, averaging 2.39%, as
illustrated in Figure 3. The overall agricultural carbon sink rose
from 445.73 million tonnes in 1999 to 673.60 million tonnes in
2022, reflecting a 51.13% increase. This may pertain to the annual
enhancement of soil carbon sequestration in primary grain-
producing regions, the augmentation of plant growth efficiency,
and the restoration and conservation of ecosystems. The
composition of carbon sinks predominantly consists of rice,
maise, and wheat, contributing 34.87%, 33.37%, and 27.44%,
respectively, collectively exceeding 95% of the total carbon
sinks, with maise exhibiting a superior average growth
rate of 3.82%.

4.1.3 Spatial characterisation of inter-provincial
agricultural carbon emissions and sinks

The primary grain-producing regions are categorised into the
Yangtze River Basin, Songhua River Basin, and Yellow River Basin
based on watershed delineations, as illustrated in Table 7.
Agricultural carbon emissions in the Yangtze River Basin are
moderate, exhibiting the lowest average growth rate of about
1.99%. Jiangsu Province accounts for the most agricultural
carbon emissions, averaging 6.31 million tonnes. Agricultural
carbon emissions in the Songhua River Basin are relatively
modest, although the average growth rate is 12.09%. Notably,
Heilongjiang Province exhibits the most rapid increase, with an
average growth rate of 15.84%. Agricultural carbon emissions in the
Yellow River Basin are elevated, demonstrating a substantial
increase from 1999 to 2014, followed by a declining trend from
2014 to 2022, with an average growth rate of 3.84%. Henan Province
and Shandong Province are the primary contributors, with average

TABLE 6 Types of driver interactions and basis for judgement.

Basis of judgement Interaction

q(Xi ∩ Xj) < Min (q(Xi), q(Xj)) Non-linear Attenuation

Min (q(Xi), q(Xj))< q(Xi ∩ Xj) < Max (q(Xi), q(Xj)) Single-factor Non-linear Attenuation

q(Xi ∩ Xj) > Max (q(Xi), q(Xj)) Two-factor Enhancement

q(Xi ∩ Xj) � q(Xi) + q(Xj) Stand Alone

q(Xi ∩ Xj) > q(Xi) + q(Xj) Non-linear Enhancement
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emissions of 10.16 million tonnes and 9.70 million tonnes,
respectively. Agricultural carbon sinks in the Yangtze River basin
are low, exhibiting the lowest average growth rate of merely 3.36%.
In contrast, agricultural carbon sinks in the Songhua River basin are
at a medium level but demonstrate a high average growth rate of
16.56%. Agricultural carbon sinks in the Yellow River basin
consistently maintain a high level, with an average growth rate
of 10.69%.

4.2 Spatial and temporal evolution

4.2.1 Agricultural carbon emission efficiency
From 1999 to 2022, the agricultural carbon emission efficiency

in major grain-producing regions improved annually, with the
average efficiency rising from 0.589 in 1999 to 0.990 in 2022,
reflecting an increase of 0.401. This substantial enhancement
indicates significant potential for further carbon emission

FIGURE 2
Time-series characterisation of carbon emissions from the plantation sector.

FIGURE 3
Time-series characteristics of agricultural carbon sinks.
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reductions through technological advancements and the
optimisation of input factors.

The regional and temporal distribution of agricultural carbon
emission efficiency in the primary grain-producing regions is
illustrated in Figure 4, revealing a pattern of elevated efficiency in
the north and south, with diminished efficiency in the central area.
In 1999, four provinces—Jilin, Sichuan, Hunan, and

Jiangxi—exhibited no redundancy in agricultural production
carbon emissions, whereas the other provinces’ agricultural
carbon emission efficiencies were below 0.8. From 1999 to 2004,
the agricultural carbon emission efficiencies of five
provinces—Heilongjiang, Henan, Shandong, Hubei, and
Liaoning—increased. From 2004 to 2014, the majority of
provinces exhibited an upward trend. From 2014 to 2022, all

TABLE 7 Total agricultural carbon emissions and sinks by province (million tons).

Watershed Province 1999 2004 2009 2014 2018 2022

E S E S E S E S E S E S

Yangtze River Basin Jiangsu 6.29 45.68 6.18 35.88 6.55 42.15 6.57 45.94 6.35 49.09 5.90 50.73

Anhui 5.06 34.09 5.53 34.22 6.20 41.15 6.86 46.06 6.76 54.24 6.39 55.46

Jiangxi 2.79 21.78 2.96 20.99 3.31 25.29 3.49 27.00 3.26 27.84 3.04 27.25

Hubei 4.71 30.07 4.88 25.41 5.80 29.24 6.14 32.88 5.63 36.16 5.18 34.71

Hunan 4.18 39.61 4.58 35.07 5.04 35.93 5.45 37.32 5.36 38.23 4.84 38.14

Sichuan 4.45 39.61 4.45 35.07 4.96 35.93 5.14 37.32 4.98 38.23 4.64 38.14

Songhua River Basin Liaoning 2.69 18.60 2.88 18.96 3.48 18.57 3.85 20.24 3.65 25.54 3.44 29.21

Jilin 2.44 26.65 3.19 29.46 3.61 29.20 4.37 40.92 4.55 42.52 4.43 48.61

Heilongjiang 3.72 37.24 4.01 36.04 5.67 52.98 7.30 75.77 7.72 91.42 7.38 95.61

Yellow River Basin Hebei 6.55 34.41 8.27 31.06 7.96 37.13 8.16 42.58 7.33 46.10 6.23 48.22

Neimenggu 2.35 15.73 2.69 15.73 3.82 21.49 4.76 30.54 4.99 39.60 5.43 43.39

Henan 7.71 54.58 8.79 56.13 10.64 72.41 11.69 78.17 11.57 89.71 10.54 91.60

Shandong 9.41 53.76 9.86 44.16 10.34 55.81 10.21 59.71 9.67 69.94 8.71 72.89

FIGURE 4
Spatial and temporal patterns of agricultural carbon emission efficiency. The map is obtained from Natural Earth (https://www.naturalearthdata.
com/). (A) 1999; (B) 2004; (C) 2009; (D) 2014; (E) 2018; (F) 2022.
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provinces in the primary grain-producing regions showed a notable
efficiency enhancement. Hubei and Inner Mongolia saw substantial
improvements in agricultural carbon emission efficiency, increasing
by 0.455 and 0.520, respectively. The grain cultivation structure has
undergone substantial alterations, evidenced by a notable increase in
the area dedicated to rice and beans, alongside a significant
reduction in the area allocated for potatoes, which decreased by
58.11%. In Hubei Province, the grain farming pattern remained
unchanged; nevertheless, agricultural inputs experienced a
significant decline, with pesticide application decreasing by 32.59%.

4.2.2 Food security levels
From 1999 to 2022, the food security level in primary grain-

producing regions exhibited a gradual upward trajectory, with the
average food security index increasing from 0.397 to 0.527, reflecting
a 32.71% rise. This improvement was propelled by the medium- and
long-term national food security planning initiatives, indicating
further potential for enhancement in food security levels.

The regional and temporal distribution of food security levels in
primary food-producing areas is illustrated in Figure 5, indicating a
gradual increase in food security from the south to the north of the
region. In 1999, the food security levels in most provinces were
inadequate, with Heilongjiang being the sole exception exhibiting
considerable safety. From 1999 to 2009, the food security levels in
most provinces exhibited a fluctuating rising trend. From 2009 to
2022, food security levels in primary food-producing regions
experienced substantial enhancement, with Heilongjiang, Hubei,
Shandong, and Liaoning provinces exhibiting the highest average
growth rates of 20.55%, 19.25%, 17.55%, and 14.86%, respectively.
However, Liaoning’s food security level remains low at 0.335,
significantly inferior to the other provinces. Heilongjiang
Province consistently maintains high food security, achieving a

score of 0.857 in 2022 because of its advantageous flat terrain,
fertile black soil, and low population density.

4.2.3 Coupling coordination
To elucidate the characteristics of the relationship between

agricultural carbon emissions efficiency and food security levels
in primary food-producing regions, the coupling coordination
degree model was employed to classify and analyse the coupling
coordination degree. This approach identified 10 distinct coupling
coordination types by integrating agricultural carbon emissions data
with food security development in these areas. From 1999 to 2022,
the temporal conflict between agricultural carbon emissions and
food security diminishes in the provinces of primary food-
producing regions, as severe dislocation virtually vanishes,
imminent dislocation persists in declining, and areas of
fundamental and extreme coordination consistently expand.
From 1999 to 2022, the food security lagging coupling type
constituted 67.95% of the total, signifying that the degree of food
security is the primary factor impeding their synergistic
development.

The regional and temporal patterns of the interrelationship
between agricultural carbon emission efficiency and food security
levels in principal grain-producing regions are illustrated in Figure 6.
From 1999 to 2009, the average value of the linked coordination
degree decreased from 0.530 to 0.502. Nine provinces were in a
dysfunctional state in 1999, of which three provinces—Liaoning,
Shandong, and Henan—were in a severe dysfunctional stage,
exhibiting a significantly low level of coordination. In 2009, most
provinces were categorised as near-dislocation co-loss type and
near-dislocation food security lagging type, with only
Heilongjiang and Sichuan advancing to the bare coordination
stage. From 2009 to 2022, the coupling coordination had

FIGURE 5
Spatial and temporal patterns of food security levels. The map is obtained from Natural Earth (https://www.naturalearthdata.com/). (A) 1999; (B)
2004; (C) 2009; (D) 2014; (E) 2018; (F) 2022.
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significant advancement, with an average growth rate of 16.34%. In
2014, the average value of the coupling coordination degree attained
0.596, indicating a favourable progression in the coordination
between the efficiency of agricultural carbon emissions and food
security. In 2018, the number of provinces exhibiting severe food
security discrepancies decreased to zero, with only Liaoning nearing
a lagging food security status. Most provinces were in essential
coordination, including ten provinces such as Henan and Shandong,
which were categorised as lagging in food security coordination.
Meanwhile, Heilongjiang province emerged as the frontrunner,
advancing into a highly coordinated and synchronous
development phase. In 2022, the average coupling coordination
degree attained 0.796, with five provinces—Heilongjiang, Henan,
Shandong, Inner Mongolia, and Sichuan—entering the stage of
highly coordinated development. However, only Heilongjiang
sustains the significantly coordinated and synchronous
development model, while the other provinces exhibit a lag in
food security. Sichuan Province has achieved a high level of
coordinated development in agricultural carbon emission
efficiency and food security from 1999 to 2022. Consequently, all
regions within primary food-producing areas must enhance the
safeguarding of arable land, bolster scientific and technological
innovation, and establish a diversified food supply system to
improve food security levels consistently.

4.3 Spatial differences in coupled
coordination

4.3.1 Analysis of overall spatial variation
The primary grain-producing regions were categorised based on

watersheds, and the DagumGini coefficient was utilised to assess the

overall disparities in the coupled coordination of agricultural carbon
emission efficiency and food security, along with the decomposition
results presented in Table 8. The overall Gini coefficient indicates
that the spatial disparity in the coupling and coordination of
agricultural carbon emission efficiency and food security from
1999 to 2022 exhibits a fluctuating downward trend, with the
Gini coefficient in 2022 decreasing by 68.94% compared to 1999,
signifying a gradual reduction in regional inequality. This results
from the regional coordinated development strategy enacted by the
state to effectively mitigate regional development disparities,
significantly contributing to the decrease in overall spatial
discrepancies in the integration and synchronisation of
agricultural carbon emission efficiency and food security.

4.3.2 Analysis of spatial differences in three regions
(1) Disparities within a region. Table 8 illustrates that relative to

1999, the intra-regional Gini coefficients of coupled
coordination in the Yangtze River Basin, the Songhua
River Basin, and the Yellow River Basin decreased by
83.08%, 31.39%, and 80.29%, respectively, indicating an
improvement in the equilibrium of coupled coordination
among the three significant basins due to the
comprehensive execution of the coordinated regional
development strategy. The mean intra-regional difference
in the Songhua River basin is 0.115, characterised by a
notable alternating rise and fall during 2014–2015,
followed by a fluctuating decline from 2015–2022,
rendering it the region with the most substantial intra-
regional difference among the three principal basins. The
average intra-regional disparity in coupling coordination
within the Yangtze River Basin is 0.071, exhibiting a
generally declining trend. The average intra-regional

FIGURE 6
Spatial and temporal distribution of types of coupled coordination of agricultural carbon emission efficiency and food security. The map is obtained
from Natural Earth (https://www.naturalearthdata.com/). (A) 1999; (B) 2004; (C) 2009; (D) 2014; (E) 2018; (F) 2022.
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TABLE 8 Gini coefficients and their decomposition results for coupled coordination.

Year Overall gini
coefficient

Intraregional gini coefficient Interregional gini coefficient Contribution rate

Yangtze Songhuajiang Huanghe Yangtze and
songhuajiang

Yangtze and
Huanghe

Songhuajiang and
Huanghe

Regional Interregional Hypervariable
density

1999 0.161 0.130 0.137 0.137 0.144 0.202 0.182 30.48% 43.68% 25.84%

2000 0.164 0.143 0.117 0.110 0.201 0.194 0.126 30.49% 52.48% 17.03%

2001 0.144 0.126 0.068 0.131 0.144 0.189 0.115 31.02% 50.75% 18.23%

2002 0.148 0.102 0.082 0.183 0.115 0.207 0.171 29.01% 50.00% 20.99%

2003 0.143 0.126 0.085 0.154 0.115 0.182 0.158 32.17% 35.54% 32.29%

2004 0.116 0.086 0.070 0.144 0.089 0.153 0.135 30.64% 43.01% 26.35%

2005 0.112 0.095 0.086 0.126 0.097 0.130 0.132 32.53% 29.52% 37.95%

2006 0.111 0.074 0.107 0.127 0.117 0.117 0.138 29.96% 24.89% 45.15%

2007 0.119 0.088 0.155 0.100 0.143 0.110 0.156 30.65% 28.92% 40.43%

2008 0.106 0.094 0.114 0.078 0.128 0.098 0.119 31.60% 11.57% 56.83%

2009 0.106 0.072 0.172 0.065 0.141 0.088 0.150 29.01% 30.68% 40.31%

2010 0.097 0.068 0.149 0.062 0.133 0.073 0.141 29.17% 7.21% 63.63%

2011 0.082 0.066 0.118 0.051 0.109 0.063 0.112 30.56% 13.36% 56.08%

2012 0.076 0.058 0.109 0.044 0.102 0.057 0.108 29.68% 17.41% 52.91%

2013 0.071 0.057 0.090 0.036 0.101 0.050 0.101 28.62% 24.80% 46.59%

2014 0.088 0.046 0.187 0.030 0.149 0.044 0.153 25.52% 16.58% 57.90%

2015 0.076 0.045 0.139 0.040 0.116 0.047 0.123 27.14% 12.07% 60.79%

2016 0.073 0.047 0.115 0.042 0.105 0.049 0.113 27.69% 19.32% 53.00%

2017 0.070 0.037 0.123 0.039 0.109 0.042 0.116 25.93% 20.39% 53.68%

2018 0.066 0.036 0.133 0.032 0.107 0.036 0.108 26.78% 7.85% 65.37%

2019 0.060 0.034 0.112 0.032 0.095 0.035 0.093 27.35% 11.84% 60.82%

2020 0.062 0.032 0.114 0.039 0.095 0.042 0.098 26.36% 14.32% 59.32%

2021 0.046 0.022 0.091 0.028 0.074 0.026 0.076 26.32% 12.55% 61.13%

2022 0.050 0.022 0.094 0.027 0.077 0.034 0.081 24.66% 21.65% 53.69%
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disparity in the Yellow River basin is 0.077, having increased
from 2000 to 2002, followed by a drop from 2002 to 2022 at an
average rate of 8.08%.

(2) Regional disparities. Table 8 illustrates that the Gini
coefficient for the Songhua River and Yellow River Basin is
the highest, averaging 0.125, while the Gini coefficient for the
Yangtze River and Yellow River Basin is the lowest, averaging
0.095. The interregional Gini coefficients of the Yangtze River
and Songhua River Basins, as well as those of the Yellow River
and Songhua River Basins, exhibit comparable temporal
trends, characterised by varying downward trajectories
from 2006 to 2022, with an improvement noted in 2014.
The Yangtze and Yellow River Basins consistently decline at
an average rate of 6.49%. Addressing the stabilisation of inter-
regional disparities among the three principal river basins in
the low-level category is critical for advancing green and low-
carbon agricultural growth.

(3) Factors that cause variations in space and their respective
contribution rates. Table 8 illustrates that the average
contribution of hypervariable density to the spatial
variation of coupled coordination is 46.09%, signifying it as
the principal source of the spatial variance in coupled
coordination and demonstrating a significant degree of
regional overlap in coordinated development. The mean
contribution of intra-regional and inter-regional disparities
is 28.89% and 25.02%, respectively.

4.4 Dynamic evolution in coupled
coordination

4.4.1 Analysis of overall spatial evolution
Figure 7 illustrates the outcomes of the Kernel density

estimation about the integrated coordination of agricultural
carbon emission efficiency and food security throughout the
primary food-producing regions. Figure 7A illustrates that the
coupling coordination degree distribution curve in major grain-
producing areas from 1999 to 2022 exhibits a consistent rightward
shift, signifying a continual optimisation of the coupling
coordination mode. The right-dragging tail characteristic of the
coupling coordination degree distribution progressively enhances
throughout the examination period, culminating in an observable
increase in the central peak height and a reduction in wave width,
indicating a declining trend in the differentiation of coupling
coordination degree across the primary grain-producing regions.

4.4.2 Analysis of spatial evolution in three regions
Figure 7B illustrates the Kernel density estimation findings for

the coupling coordination degree of the Yangtze River Basin. The
trajectory of the Yangtze River Basin from 1999 to 2022 has a multi-
peak distribution, signifying multi-polar polarisation phenomena,
necessitating rapid resolution of the spatial imbalance issue. Over
time, the position of the wave peak exhibits a consistent rightward
shift, with a notable increase in the peak since 2018, accompanied by
a narrowing of the wave peak’s width. This indicates an
enhancement in the coupling coordination of the Yangtze River
Basin, as evidenced by a reduction in the absolute difference of the
coupling coordination. Figure 7C illustrates that the primary peak of

the Songhua River basin distribution curve consistently shifted to
the right from 1999 to 2009, exhibiting an overall upward trend,
while the width of the primary peak progressively narrowed. The
elevation of the primary peak diminished considerably from 2009 to
2022. Still, the breadth expanded greatly, suggesting that the
coupling coordination degree of the Songhua River basin has
progressively enhanced in terms of differentiation. Figure 7D
illustrates that the primary peak of the kernel density of the
coupling coordination degree in the Yellow River Basin exhibits a
general rightward shift over the examination period, signifying an
overall increase in the coupling coordination degree of the Yellow
River Basin. The data showed a bimodal distribution that
transitioned to an unimodal peak between 2018 and 2019,
signifying a gradual diminishment of two-level differentiation in
the Yellow River Basin. Concurrently, the wave peaks exhibited
enhancement while their widths contracted, suggesting a trend
towards reduced disparities.

4.5 Analysis of drivers of coupled
coordination

4.5.1 Driver selection
The synergistic enhancement of agricultural carbon emission

efficiency and food security in principal food-producing regions
results from the intricate interplay of environmental, social, and
economic factors and cross-scale connectivity. Based on the research
of scholars like Liu et al. (2023) and Sun et al. (2024b), nine
indicators representing natural conditions, economic
development, and governmental actions in primary grain-
producing regions were chosen to examine the driving factors
behind the synergistic development of agricultural carbon
emission efficiency and food security. The indicators are
delineated below:

(1) Arable land extent (X1). The extent of cultivated land is a
fundamental resource for food production, directly linked to
food production and supply. The rapid urbanisation and
population expansion have resulted in a decline of arable
land, presenting a significant challenge to food security.
Moreover, arable land is both a source of carbon emissions
and a crucial mechanism for carbon sequestration. The
carbon storage potential of arable land systems can be
enhanced by optimising farming practices and advancing
ecological agriculture, thus diminishing agricultural carbon
emissions. The configuration and organisation of agricultural
output can be improved through strategic planning and
utilisation of arable land, increasing agricultural carbon
emissions’ efficiency. Defined by the aggregate expanse of
cultivable land in primary grain-producing regions.

(2) Agricultural disaster frequency (X2). The number of
agricultural disasters directly influences crop yields; a high
disaster rate can substantially decrease yields, impacting the
food supply’s stability. Yield variability presents a significant
risk to food security. An expansion of the area affected by crop
disasters may not only result in diminished crop yields. Still, it
may also incite the overutilisation of fertilisers, pesticides, and
other agricultural inputs, therefore elevating agricultural
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carbon emissions. It was defined by the proportion of the
impacted crop area to the total cultivated area.

(3) Crop cultivation structure (X3). Diverse crop planting
configurations necessitate varying quantities and types of
fertilisers and pesticides. Optimising crop planting
configurations and minimising the cultivation area of crops
with elevated fertiliser and pesticide requirements helps
mitigate agricultural carbon emissions. A varied
agricultural system can enhance the stability and resilience
of food production. Prudent crop rotation and intercropping
can sustain soil health and improve soil fertility. It was defined
by the proportion of area cultivated for food to the total area
sown with crops.

(4) Level of economic advancement (X4). An elevation in
economic growth facilitates the judicious utilisation of
resources, encompassing agricultural, human, and capital
resources. Economic development serves as a crucial
catalyst for agricultural modernisation, enhancing food
production and quality while mitigating carbon emissions
in the agricultural production process, thereby achieving the
dual objectives of agricultural carbon emission efficiency and
food security. Defined by GDP per capita.

(5) Urbanisation rate (X5). With the rise in urbanisation, the
diminishing arable land compels the agriculture sector to
utilise land resources more efficiently and minimise excessive
carbon emissions. Urbanisation-induced alterations in the
labour force structure may influence labour inputs for food
production while simultaneously facilitating the dissemination
and use of agricultural technologies to enhance the quality and
efficiency of food production. Defined by the proportion of the
urban populace within the overall population.

(6) Degree of agricultural mechanisation (X6). Agricultural
mechanisation can markedly enhance the efficiency of
agricultural output, and by diminishing labour inputs and
decreasing production costs, it can subsequently reduce
energy reliance and carbon emissions. The research,
development, and implementation of agricultural machinery
that enhances energy efficiency and reduces emissions further
diminish carbon emissions during agricultural machinery
operations. Agricultural mechanisation facilitates uniform
and standardised operational operations, including
planting, fertilising, irrigating, and harvesting, enhancing
food quality and safety, as defined by agricultural gear’s
whole power capacity.

FIGURE 7
Kernel density estimation for coupled coordination. (A) Nation wide; (B) Yangtze river basin; (C) Songhua river basin; (D) Yellow river basin.
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(7) Rural human capital index (X7). Enhancing rural human
capital signifies an augmentation in farmers’ education, skills,
and knowledge. Farmers may diminish carbon emissions
from agricultural production and to improve food security
by adopting innovative technologies and renewable energy
sources. Human capital is accumulative and can be
systematically assigned to many production methods.
Defined by a weighted average of years of schooling
among the rural workforce.

(8) Degree of financial assistance to agriculture (X8). Financial
aid for agriculture facilitates agricultural modernisation by
offering monetary support and policy direction, motivating
farmers to embrace low-carbon agricultural technologies and
advancing the transformation of agricultural production
practices. Enhancing agricultural infrastructure bolsters the
resilience and stability of agricultural production against
disasters. Facilitate innovation in agricultural science and
technology and talent development to advance and
revolutionise agricultural science and technology. Defined
by allocating funds to agriculture, forestry, and water
management as a proportion of overall fiscal spending.

(9) Degree of soil erosion management (X9). Efficient soil and
water erosion management can augment soil’s carbon
sequestration potential, transform atmospheric carbon
dioxide into organic carbon, and elevate the agricultural
carbon sink capacity. It safeguards arable land resources,
mitigates soil erosion and degradation, and preserves soil
fertility, assuring food production’s stability and
sustainability. Defined by the domain of soil erosion
management.

4.5.2 Analysis of driver interaction detection
The fundamental factors influencing the synergistic

development of the two systems and their intensity were assessed
using geo-detectors. All nine indicators demonstrated significance at
the 1% level. The primary determinants were the agricultural
disaster rate (X2), urbanisation level (X5), financial support for
agriculture (X8), and soil erosion control (X9). Figure 8 illustrates
the interaction effect of each driving component on the coupling
coordination degree of agricultural carbon emission efficiency and
food security. The explanatory capacity of the nine driving factors,
following two-by-two interactions, is nonlinearly augmented or
enhanced by two factors to varying extents, signifying that the
degree of coupling coordination between agricultural carbon
emission efficiency and food security in primary grain-producing
regions is influenced by the interplay of multiple factors. The
primary interacting determinants are rural human capital,
financial assistance for agriculture, urbanisation rate, soil erosion
control, and the power of agricultural machinery concerning soil
erosion management. This suggests that economic development,
natural resources, and governmental actions in primary food-
producing regions must be harmonised to create a reciprocal
synergy of internal transformation and external influence, thereby
attaining the multiplier effect of synergistic development between
the two systems.

4.5.3 Analysis of spatial heterogeneity of drivers
Spatio-temporal spatially weighted regression was utilised to

examine the spatial heterogeneity of the factors influencing the
linked coordination degree of agricultural carbon emission
efficiency and food security. Before executing the regression,

FIGURE 8
Interaction exploration results for coupled coordination drivers.
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covariance analysis was conducted on the nine drivers to ascertain
the model’s validity. Consequently, the VIF for each factor was
below 10, signifying the absence of covariance issues and confirming
the validity of the regression results. The R2 of the GTWR model is
0.973, and the AICc is −1119.57, signifying a solid fit of the GTWR
model. Consequently, the driving factor coefficients for each spatial
unit element were computed utilising the GTWR model and
hierarchically represented by the natural breakpoint approach,
with the results illustrated in Figure 9.

(1) The cultivated land area is inconsistent with the degree of
coupling coordination. The areas of positive value are
predominantly located in the Songhua River and Yellow River
Basins, with the Yellow River Basin experiencing the most
significant beneficial impact. Areas with negative values are
predominantly located in the Yangtze River Basin. The spatial
peaks in the north and troughs in the south suggest that
increasing arable land in the northern region enhances
agricultural carbon emission efficiency and fosters harmonious
food security development. In contrast, provinces in the Yangtze
River Basin should pursue moderate arable land expansion.

(2) The rate of agricultural disasters is inversely connected with
the level of coupling coordination. A rise in the frequency of
agricultural disasters will directly result in a decline in the
level of coupling coordination. The Henan, Shandong,
Liaoning, and Hebei provinces represent a negative high-
value low area, signifying that fluctuations in the agricultural
disaster rate significantly affect the degree of coupling
coordination; thus, the agricultural risk resilience in these
regions should be enhanced.

(3) The relationship between crop cultivation structure and
coupling coordination degree is unstable. Areas of positive
and high value are concentrated in the Songhua River basin,
suggesting that the Northeast region’s pivotal role in ensuring
China’s food security should be further leveraged. Inner
Mongolia is the sole region exhibiting negative values,
signifying that modifications in the planting structure will
alter the agricultural industry’s framework, adversely affecting
the efficiency of agricultural carbon emissions and
food security.

(4) The extent of economic development is positively correlated
with the degree of coupling coordination. The elevation of

FIGURE 9
Spatial distribution of the impact of drivers on coupled coordination. The map is obtained from Natural Earth (https://www.naturalearthdata.com/).
(X1) Arable land extent; (X2) Agricultural disaster frequency; (X3)Crop cultivation structure; (X4) Level of economic advancement; (X5)Urbanisation rate;
(X6) Degree of agricultural mechanisation; (X7) Rural human capital index; (X8) Degree of financial assistance to agriculture; (X9) Degree of soil erosion
management.
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economic status will directly enhance the degree of coupling
coordination. Elevated values are concentrated in the Yellow
River Basin, signifying that enhanced economic levels
facilitate the implementation of more precise policies and
optimise resource allocation, hence boosting the degree of
linkage coordination in the Yellow River Basin.

(5) The urbanisation rate exhibits an inconsistent correlation
with the degree of coupling coordination. Areas of negative
high value are concentrated in the Songhua River Basin,
signifying that variations in urbanisation levels significantly
affect the degree of coupling coordination. This underscores
the Northeast region’s need to prioritise agricultural
development during urbanisation.

(6) The degree of agricultural mechanisation exhibits an
inconsistent relationship with the coupling coordination
degree. The Heilongjiang, Sichuan, and Jiangsu provinces
are identified as high-value locations, suggesting that
growth in mechanisation levels enhances coupling
coordination. Areas with negative values are predominantly
located in the Yellow River Basin, signifying that heightened
mechanisation correlates with increased energy consumption
and carbon emissions. Therefore, enhancing the effective
integration of water resources and energy management
within the Yellow River Basin is imperative.

(7) The extent of rural human capital is positively correlated with
the degree of coupling coordination. The enhancement of
human capital will directly increase the degree of linkage
coordination. The locations of high positive value are
concentrated in the Yellow River Basin, exhibiting an
intermediate high spatial pattern.

(8) The relationship between financial support for agriculture
and the degree of coupling coordination is inconsistent.
Shandong, Henan, and Hebei are significant high-value
regions, and these three provinces should be prioritised for
financial assistance to agriculture, which would strengthen
food security and facilitate the revitalisation of the seed sector.
The area has an elevation pattern in the east and a depression
in the west.

(9) The link between soil erosion control and coupling coordination
degree is unstable. Areas with positive values are predominantly
located in the Yangtze River Basin, signifying that enhanced soil
erosion control significantly improves the natural environment.
Negative values are prevalent in the Songhua River Basin and
the Yellow River Basin, indicating a weak synergy between soil
erosion management and eco-agricultural advancement,
thereby constraining the enhancement of the coupling
coordination between agricultural carbon emission efficiency
and food security.

5 Discussion

This study offers a novel perspective on the literature in multiple
facets. Scholars have established a connection between the
intertwined development of agricultural carbon emission
efficiency and food security; however, existing research
predominantly emphasises the analysis of their significance,
interrelations, and coordination pathways. Opportunities remain

for advancements in elucidating the varieties of coupled
coordination, geographical disparities, and determinants of
agricultural carbon emission efficiency and food security. The
interplay between the two can be further examined in the
subsequent aspects:

(1) The associated coordination between agricultural carbon
emission efficiency and food security in most provinces
within the primary grain-producing regions is
characterised by a trailing food security type. The
inadequate degree of food security has emerged as the
primary impediment to the advancement of their
integration. The insufficient food security status will
impede the enhancement of agricultural carbon emission
efficiency. Due to the declining food security status,
applying inputs such as chemical fertilisers and pesticides
may need to be augmented in agricultural production to
sustain food output (Shao, 2024). This exacerbates
agricultural carbon emissions and results in soil
contamination and ecological degradation, constraining
agricultural carbon emission efficiency enhancement.

(2) The regional disparities in the coupling and coordination of
agricultural carbon emission efficiency and food security in
principal food production regions mainly stem from
hypervariable density. The disparities in resource
endowment and agricultural production conditions across
various geographical units can result in varying levels of
carbon emission efficiency and food security (Hao et al.,
2024). Furthermore, the policy orientation and economic
development levels in different regions may influence
investment and technological innovation in agricultural
production, subsequently impacting carbon emission
efficiency and food security (Feng et al., 2024). Additionally,
regional market demand and consumption habits can affect
agricultural product production and marketing, influencing
food security and carbon emission efficiency.

(3) Enhancing economic growth, rural human capital, and
mitigating agricultural disasters can substantially improve
the coordination between agricultural carbon emission
efficiency and food security in key food-producing regions.
Economic development can enhance the optimisation and
advancement of agricultural industrial structures, so fostering
the green development of agriculture reduces carbon
emissions and improves the sustainability of food
production (Rong et al., 2023). The enhancement of rural
human capital signifies the advancement of farmers’
education, skill proficiency, and innovative capacity,
elevating the scientific and technological quality and added
value of agricultural produce. Reduced occurrences of
agricultural disasters contribute to the stability and
sustainability of food production while enhancing the
efficiency of agricultural carbon emissions (Wei et al., 2023).

6 Conclusion and recommendations

The study focuses on 13 provinces within primary grain-
producing regions, employing the Super-SBM model, coupled
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coordination degree model, Dagum Gini coefficient decomposition
method, non-parametric kernel density estimation, geo-detector,
and spatio-temporal geo-weighted regression to analyse the spatio-
temporal characteristics of the coupling and coordination between
agricultural carbon emission efficiency and food security, as well as
regional disparities and influencing factors. The subsequent findings
are derived from the following:

(1) The proportion of carbon emissions from agricultural inputs
in primary grain-producing regions exceeds 80%, with rice,
maise, and wheat accounting for over 95% of total carbon
sinks. In contrast, the Yellow River Basin’s agricultural carbon
emissions and sinks remain elevated. Minimising agricultural
inputs or enhancing their utilisation efficiency is essential for
decreasing agricultural carbon emissions; the efficiency of
these emissions has been increasing annually, exhibiting a
spatial and temporal pattern characterised by higher levels in
the northern and southern regions and lower levels in the
central area. The overall degree of food security is increasing,
exhibiting a spatial gradient from south to north,
transitioning from low to high, with most provinces
demonstrating a low level of food security. The disparate
advancement of primary food-producing regions is notable,
necessitating a varied regional development strategy to foster
balanced growth across each area.

(2) A robust correlation exists between agricultural carbon
emission efficiency and food security in primary food-
producing areas, with a continual rise in places exhibiting
essential and highly coordinated relationships. In 2022, only
Heilongjiang had a highly coordinated and synchronous
development model, while the food security trailing model
predominated. The inadequate food security in China is the
primary issue hindering coordinated development.

(3) The overall spatial disparity between agricultural carbon
emission efficiency and food security in primary food-
producing regions exhibits a fluctuating decline, with
hypervariable density serving as the principal source of
spatial variation in coupled coordination, signifying a high
degree of regional crossover and overlap in coordinated
development. The general polarisation of the interconnected
coordination between agricultural carbon emission efficiency
and food security is progressively diminishing, exhibiting
heightened multipolarity in the Yangtze River Basin and
increasing divergence in the Songhua River Basin.
Consequently, interregional connectivity must be considered
while devising regional development initiatives.

(4) The explanatory capacity of the two-by-two interactions
among the driving factors is nonlinearly augmented or
enhanced by two factors to varying extents. The primary
interaction factors influencing agricultural carbon emission
efficiency and food security are rural human capital and
financial support for agriculture, urbanisation rate and soil
erosion control, and agricultural machinery power and soil
erosion control. Economic development and the
improvement of rural human capital facilitate paired
coordinated development, but the incidence of agricultural
disasters hinders it. The cultivated land area, crop cultivation
structure, urbanisation rate, agricultural mechanisation,

financial support for agriculture, and soil erosion control
exert inconsistent impacts on the degree of coupling
coordination.

Based on the above findings, the following policy
recommendations are made:

(1) Enhancing agricultural inputs and increasing utilisation
efficiency. Carbon emissions from agricultural inputs in
primary food-producing regions constitute about 80% of
the total. The government should proactively direct
farmers and agricultural enterprises to enhance the
composition of agricultural inputs, diminish the utilisation
of high-carbon inputs like chemical fertilisers and pesticides,
and promote the adoption of low-carbon alternatives such as
organic fertilisers and bio-pesticides. Advocate for
sophisticated agricultural technology and equipment to
enhance the efficacy of agricultural capital utilisation.
Enhance oversight of agricultural material utilisation in
critical regions, such as the Yellow River Basin, to ensure
adherence to regulations and optimise efficiency.

(2) Implement tailored regional development plans. To address
the issue of uneven development in principal grain-producing
regions, the government ought to devise tailored regional
development programs that reflect the specific circumstances
of each area. In regions exhibiting elevated agricultural carbon
emission efficiency yet diminished food security, it is
imperative to augment food production inputs to enhance
both food production and quality, ensuring food security. In
places exhibiting elevated food security yet diminished
agricultural carbon emission efficiency, the emphasis
should be on advancing energy-saving and emission-
reduction technology to mitigate agricultural carbon
emissions. Enhance inter-regional collaboration and
exchanges to advance the synchronised growth of
agricultural carbon emission efficiency and food security.

(3) Enhance regional linkages and foster coordinated growth.
Given the significant regional interdependence and overlap
in integrated development, the government should enhance
inter-regional connectivity and facilitate resource sharing and
complementary strengths among regions. Implement a cross-
regional monitoring system for agricultural carbon emissions
and food security to accurately track real-time variations in
agricultural carbon emission efficiency and regional food
security levels. Foster collaboration and exchanges among
regions to collectively advance the synchronised growth of
agricultural carbon emission efficiency and food security,
particularly in areas with significant disparities, such as the
Yangtze River Basin and Songhua River Basin.

(4) Enhance driver management and policy assistance. The
government is advised to augment financial expenditure,
particularly in rural education and agricultural
technologies, to elevate the quality of rural human capital.
Promote the integration of urban development and ecological
conservation, particularly in regions experiencing significant
soil erosion, to attain a mutually beneficial outcome between
economic advancement and environmental safeguarding
through strategic urban planning and ecological
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compensation frameworks. Advocate for the amalgamation of
agricultural mechanisation with sustainable development,
enhance the efficacy of agricultural machinery via
technological innovation and policy direction, and reinforce
soil and water conservation and remediation initiatives to
mitigate the environmental impact of agricultural production.
Enhancing agricultural disaster early warning systems and risk
management to minimise the effects of natural catastrophes on
agricultural output and safeguard food security.

7 Limitations

This study has specific restrictions that facilitate the growth and
depth of future research.

(1) The data source for this study primarily depends on publicly
accessible statistics and literature. While these data possess a
degree of authority and reliability, they may be influenced by
factors such as the quality of the statistics, the frequency of
data updates, and regional disparities, leading to inherent
limitations and uncertainties in the data.

(2) This study acknowledges the interaction of various driving
forces, yet it is possible that significant elements were omitted
from the analysis. Future studies should broaden their scope to
thoroughly examine additional factors influencing agricultural
carbon emission efficiency and food security, thereby elucidating
their interconnected and coordinated driving mechanisms.

(3) In examining the spatial and temporal attributes of the
interconnected coordination between agricultural carbon
emission efficiency and food security, certain
methodological constraints may persist despite applying
many sophisticated methodologies for analysis. Model
parameter configurations and data preprocessing variables
may influence it. Future research should further investigate
and refine research methodologies to augment the accuracy
and dependability of the findings.
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