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Introduction: Agricultural green development (AGD) prioritizes sustainable
growth by integrating economic, ecological, and social dimensions, aiming to
harmonize agricultural economic development with environmental protection
and social progress.

Methods: This study integrates the three-stage super-efficiency DEA-SBMmodel
with the BP algorithm, creating an advanced DEA-SBM-BP model to overcome
the shortcomings of traditional DEA in evaluation and management processes.
The study further applies the Dagum Gini coefficient, kernel density estimation
(KDE), and Moran’s index to assess and forecast the efficiency and spatiotemporal
evolution patterns of green agricultural development in key cities within the
Yangtze River Delta.

Results: The analysis shows that AGD in the central city of the Yangtze River Delta
is overall balanced; however, substantial variations exist among cities within
individual provinces. Factors like macroeconomic conditions, workforce
quality, and policy support play a crucial role in promoting the efficiency of
AGD. Among these, macroeconomic development level has a negative impact,
while labor quality and policy support exhibit bidirectional effects. Infrastructure
construction, digitalization of agricultural economy, and rural security have
become key factors in the green development of modern agriculture. The
green advancement of agriculture in the central Yangtze River Delta region
typically exhibits a marked clustering effect; however, the local clustering
reveals a trend toward dispersed development.

Discussion: Despite the emergence of new characteristics in agricultural
production in China within the context of high-quality development,
differences in resource endowments and economic structures among cities
continue to be significant factors contributing to regional imbalances and
changes in the agglomeration patterns of agricultural development.
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1 Introduction

China’s economy has been transformed from a phase of rapid
growth to one characterized by high-quality development. The core
aspects of high-quality include the vitality, innovation, and
competitiveness of the economy, which are closely interconnected
with and enhanced by green development. The concept of green
development values harmony between humans and nature, takes
green, low-carbon cycles as the main principle, and regards the
construction of ecological civilization as the basic approach. It not
only provides sustainable vitality and innovation for the economy
but also serves as one of the sources of economic development.
Therefore, developing a comprehensive green, low-carbon, and
circular economic system is considered crucial for advancing
high-quality development in China. As an important pillar of the
Chinese economy, agriculture has historically occupied a crucial
position in the national economy, directly affecting the country’s
food supply capacity. Ensuring the consistency and growth of
agricultural production is essential for maintaining domestic food
stability. Simultaneously, agricultural development is closely linked
to the economic progress in rural areas of China and the
enhancement of farmers’ living standards. Fostering diversified
rural economic development through agricultural green
development (AGD) is crucial for reducing the urban-rural
divide and realizing the aim of establishing a well-off society in
all aspects. Currently, China’s agricultural production mode is still
dominated by small-scale farming, with small production scale,
lagging technological level, and irrational allocation of
agricultural resources. This has resulted in increasingly serious
challenges, including excessive land exploitation, water resource
wastage, and widespread instability in farmers’ incomes, thereby
underscoring the significant issues related to agriculture, rural areas,
and farmers. The Chinese government pointed out that issues
related to agriculture, rural areas, and farmers are fundamental
concerns that impact the overall interests of the country and the
wellbeing of the people. It is necessary to always prioritize the
resolution of agriculture, the countryside, and farmers issues as a
top priority of the Party’s work and implement the rural
revitalization strategy. Different from the traditional extensive
agricultural production, agricultural development under the
background of rural revitalization covers various aspects such as
improving rural industrial structure, enhancing agricultural
productivity, and promoting diversified rural economic
development. It emphasizes high-quality AGD and focuses on
the coordinated development of agricultural economy, ecological
environment, and social progress.

The Yangtze River Delta, located in eastern China, spans four
provinces and municipalities including Jiangsu, Anhui, Zhejiang,
and Shanghai. It is among the most economically advanced,
populous, and culturally influential regions in the country. In
recent years, the region has supported the development of
precision agriculture through modern agricultural technologies
and integrated excellent agricultural resources with tourism,
achieving coordinated development of agricultural economy,
ecological environment, and social progress. Therefore, a
thorough analysis of the characteristics of AGD in the Yangtze
River Delta is expected to offer valuable insights for AGD in this
region as well as in other regions.

The main contribution of this research: 1) Combining the three-
stage super-efficiency DEA-SBMmodel (3S-DEA-SBM) with the BP
algorithm to construct the three-stage super-efficiency DEA-SBM-
BP (3S-DEA-SBM-BP) model, thereby addressing the shortcomings
of the DEA model in systematic evaluation and proactive
management. This model can predict the final efficiency value
when determining input planning, facilitating timely adjustment
of inputs to ensure that input-output remains in an effective state. 2)
From a city perspective, this study utilizes the 3S-DEA-SBM-BP
model to minimize the impact of external environmental factors,
enabling an objective measurement of AGD efficiency in cities
within the Yangtze River Delta. It also predicts development
trends for the next 3 years and analyzes the factors influencing
AGD. This contributes to managers’ more effective formulation of
various policies. 3) Using KDE and the Gini coefficient to
simultaneously analyze the differences in AGD efficiency within
and between provinces.

2 Literature review

As an agricultural powerhouse, agricultural development
occupies a crucial position in China’s economy. However, the
traditional agricultural model has long relied on chemical
fertilizers, pesticides, and water resources. Although this reliance
has significantly increased yield, it has also led to a series of
ecological imbalances, including soil pollution, water
eutrophication, and excessive groundwater extraction (Craswell,
2021). Therefore, in order to achieve high-quality economic
growth, it is imperative to accelerate the green transformation
and upgrading of agriculture. Currently, research on AGD, both
domestically and internationally, primarily centers on three areas.
The first is the exploration of the definition and rich connotations of
AGD. AGD is a comprehensive approach that encompasses organic,
circular, low-carbon, ecological, and green agricultural principles,
aiming to balance economic, ecological, and social benefits. Its core
lies in enhancing resource utilization efficiency through
technological innovation and alleviating conflicts between
agricultural activities and resources, ecology, and the
environment (Liu et al., 2020a). AGD does not aim to safeguard
the ecological environment at the expense of agricultural growth but
seeks a higher level of ecological protection (Yin et al., 2021),
emphasizing minimizing resource consumption and
environmental impact while enhancing the quality and efficiency
of agricultural products to boost agricultural profitability and social
prosperity (Zhou andWen, 2023). Secondly, based on the definition
and connotations of AGD, scholars have developed evaluation
indicator systems for assessing the level of AGD from various
perspectives. Commonly used indicator dimensions in existing
research include fundamental agricultural conditions, agricultural
sector composition, potential for agricultural development, and
intensity of agricultural inputs (Liu et al., 2020b), as well as
economic and social transformation, resource consumption,
green production, and living standards (Yao et al., 2023).
Additionally, indicators such as social macroeconomic conditions,
technological advancement, and resource environment are also
considered (Chen and Zhang, 2023). In terms of research
methods, while qualitative methods such as subjective weighting
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(Wei et al., 2018), the Delphi method (Flinzberger et al., 2020), and
scenario analysis (Mirzabaev et al., 2022) are widely applied,
quantitative methods remain predominant. Quantitative methods
like entropy weight method (Gao et al., 2023), grey relational
analysis (Meili, 2021), DEA models (Liu et al., 2022), and DEA-
Malmquist index (Myeki et al., 2023) are extensively used due to
their objectivity. With the advancement of research, scholars have
increasingly integrated traditional models with machine learning
techniques to develop new evaluationmodels suited for the era of big
data (Shen et al., 2022). Finally, in the context of rural revitalization
efforts, research on the driving factors of AGD has garnered
increasing attention. Digital economy (Min, 2024), industrial
integration (Tian et al., 2024), digital finance (Li et al., 2023),
and inclusive finance (Gao et al., 2022) have become significant
forces driving AGD. These factors inject new momentum into the
green transformation of agriculture by enhancing resource
allocation efficiency, optimizing industrial chain structure, and
reducing production costs. At the same time, mechanization
(Zhu et al., 2022), as a key method for improving agricultural
production efficiency, remains an important and indispensable
indicator in agricultural green production.

In summary, existing research on AGD provides a solid
foundation for this study. In the context of high-quality
development, we need to recognize that, although there has been a
general enhancement in ecological efficiency and AGD levels in
China, the overall level remains relatively low (Liu et al., 2023).
Moreover, due to differences in resource endowment and
economic development levels, there are significant disparities in
the implementation of green development concepts across regions.
The eastern region benefits from technological and market
advantages, resulting in a significantly higher level of AGD
compared to the central and western regions (Sun and Sui, 2023).
This disparity poses a significant challenge to the comprehensive
advancement of agricultural green transformation in our country.
Moreover, it is worth noting that although quantitative methods such
as the entropy weight method, grey relational analysis, and data
envelopment analysis (DEA) models have been widely applied in
practice, each of these methods has its limitations. The entropy weight
method and grey relational analysis are highly sensitive to data, which
may lead to variability and uncertainty in the results. The DEAmodel
demonstrates flexibility in handling various data types and multiple
input and output variables, providing significant advantages
compared to other evaluation models (Kyrgiakos et al., 2023).
However, DEA typically requires that the number of decision-
making units (DMUs) be at least two to three times the sum of
the input and output indicators, which limits the choice to a few
representative indicators and restricts the systematic nature of the
evaluation. Additionally, most existing evaluation models are
retrospective analyses, lacking predictive capabilities, and are thus
inadequate for effectively guiding current production planning.
Therefore, there is an urgent need to develop a comprehensive
evaluation model that integrates systematic assessment, broad
applicability, and predictive ability.

As one of the most economically influential regions in China, the
Yangtze River Delta has become a pioneering and demonstrative
area for AGD policies, supported by a robust policy framework. In
advancing AGD, the region has established various types of
demonstration zones, including ecological agriculture

demonstration areas, technology-driven agricultural
demonstration areas, and agricultural industry integration
demonstration zones (Geng et al., 2020; Cheng and Ren, 2024).
Although these demonstration zones are all committed to the goal of
AGD, they exhibit significant differences in terms of factor
allocation and development pathways. AGD encompasses
multiple dimensions, including traditional elements and emerging
factors such as agricultural digitization, which complicates the
rational allocation of resource inputs. Consequently, how to
scientifically plan and reasonably allocate various resource inputs
has become an important challenge. The three-stage DEA model is
capable of fully considering external environmental impacts under
diverse input and output conditions, demonstrating significant
advantages in the rational allocation of resources. However, its
systematic evaluation and predictive capabilities still have
limitations. Therefore, this study constructs a 3S-DEA-SBM-BP
model based on DEA and BP algorithms to comprehensively
analyze the key impacts of various inputs on AGD. Furthermore,
this research employs methods such as kernel density estimation
(KDE) and Moran’s index to systematically analyze the efficiency
and spatiotemporal evolution characteristics of AGD in the Yangtze
River Economic Belt at the urban level. The aim is to deeply analyze
the AGD characteristics of cities in the Yangtze River Delta and
predict their future development trends, providing valuable
guidance for AGD planning in this region and beyond.

3 Methodology

3.1 Research region

The Yangtze River Delta is located in the eastern part of China,
spanning four provinces and municipalities including Jiangsu, Anhui,
Zhejiang, and Shanghai. In the year 2019, the Chinese government
released the Outline of the Plan for Integrated Regional Development of
the Yangtze River Delta. This strategic framework designates a central
zone comprising 27 cities, with the specific distribution of cities shown
in Figure 1. This central zone serves as the nucleus for radiating and
propelling high-quality development throughout the Yangtze River
Delta region. Therefore, this study focuses on these 27 cities,
employing a 3S-DEA-SBM-BP model to thoroughly explore the
features of AGD and forecast future development trends.

In 2017, China explicitly put forward the idea of establishing a
sound economic system for green, low-carbon, and circular
development. This provided a clear direction for high-quality
development in the new era and presented an extremely
important theme for the times. Given that the relevant data for
2023 has not been released, this study has chosen the timeframe
from 2017 to 2022 and considers 2023 as the future period.

3.2 Research method

3.2.1 DEA-SBM based on non-expected output
Because the CCR and BCCmodels assume that inputs and outputs

change proportionally, Tone (2001) introduced the SBM model, which
allows inputs and outputs to vary in different proportions, existing
researches have indicated that the SBM solution values are more in line
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with actual production efficiency values (Gerami et al., 2022). However,
the original SBMmodel can only measure the efficiency of DMUs with
expected outputs, while actual production processes often involve non-
expected outputs. Tone (2003) proposed theDEA-SBMmodel based on
non-expected outputs, expanding its applicability. The formula can be
expressed as (Equation 1).

min ρ �
1 − 1

t ∑t
i�1

s−i/xik

1 + 1
c1+c2 ∑c1

r�1
s+r/yrk

+ ∑c2
t�1

sb−t /brk( )

s.t.

Xλ + s− � xk

Yλ − s+ � Yk

Bλ + sb � bk
λ, s−, s+ ≥ 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

In which, xik is the i-th input of the k-th DMU, yrk is the r-th
output of the k-th DMU, b stands for non-expected output, c1, c2
represents the number of expected and non-expected outputs
respectively. X, Y, λ represent the input matrices and output
matrices and coefficient matrices, while s− is input slack variables
and s+ is output slack variables.

The Super-Efficiency model, with the addition of extra
constraints denoted by “ j ≠ k”, calculates the efficiency values of
DMUs by utilizing the production frontier formed by other DMUs.
Consequently, the Super-Efficiency SBM model can effectively

differentiate the efficiency of DMUs that are in the DEA-efficient
state. The formula can be expressed as (Equation 2).

min ρ �
1 + 1

t ∑t
i�1

s−i/xik

1 − 1
c1+c2 ∑c1

r�1
s+r/yrk

+ ∑c2
t�1

sb−t /brk( )

s.t.

∑n
j�1,j ≠ k

xijλj − s−i ≤xik

∑n
j�1,j ≠ k

btjλj − sb−t ≤ btk

1 − 1
c1 + c2

(∑c1
r�1

s+r/yrk
+∑c2

t�1
sb−t /brk > 0

λ, s−, s+ ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

3.2.2 3S-DEA-SBM based on non-
expected outputs

First, the initial efficiency values for each DMU and the slack
values for each input indicator are calculated.

Next, the slack variable of the input indicator is used as the
dependent variable, and Stochastic Frontier Analysis (SFA)
regression is performed with selected external environmental
factors as independent variables. The results from this regression

FIGURE 1
Research Region. Note: County-level cities under the jurisdiction of each municipality are not specially labeled.
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are then used to adjust the original inputs. The formula for the SFA
regression function is represented in (Equation 3).

sik � f ZK; βi( ) + vik + μik (3)

In which, sik represents the slack variable for the i-th input of the
k-th DMU. Zk represents the environmental variable. βi represents
the coefficient to be estimated for the environmental variable. vik
represents the random disturbance. vik ~ N(0, σ2v), μik represents
the inefficient management.

The maximum likelihood estimation method is utilized to
estimate location parameters. During the research, the separation
formula proposed by Luo is applied to break down the mixed errors
into managerial inefficiency and random error (Luo, 2012). The
separation formula is shown as (Equation 4).

E
∧
μik + vik( ) � σλ

1 + λ2
φ λ ε1

σ( )
ø λε1

σ( ) + λεi
σ

⎡⎢⎣ ⎤⎥⎦ (4)

In which, εi � μik + vik, λ � σμ/σv, σ �
������
σ2μ + σ2v
√

;
The final adjusted formula is as follows:

XA
ik � Xik + max (f Zk; β̂K( ) − f Zk; β̂K( )[ ] + max vik( ) − vik( ) (5)

In which, XA
ik (Equation 5) is the adjusted input, while Xik is the

input before adjustment.
Eventually, the efficiency values, adjusted using SFA, are

recalculated with the non-expected Output super-efficiency DEA-
SBM model.

3.2.3 BP algorithm
The BP algorithm generally consists of three parts: the input

layer, the hidden layer, and the output layer. Existing research
indicates that a three-layer BP algorithm can approximate any
nonlinear function. Therefore, this paper primarily introduces the
training process of the three-layer BP algorithm model. The training
process of the BP consists of forward propagation of the signal and
backward propagation of the error.

Assume thatxi is the input to the i-th neuron in the input layer.Whi

and Woh represent the weights from the hidden layer (h) to the input
layer (i) and from the output layer (o) to the hidden layer (h),
respectively; θh is the threshold of hidden layer neuron h; f and g
respectively represent the activation functions for the hidden layer and
the output layer; ao represents the threshold for the neuron o in the
output layer, and yo represents the output of the o-th neuron in the
output layer. The training process of the BP algorithm is as follows:

The process of forward signal propagation (Equations 6, 7). The
input neth and output zh of the hidden layer node (h):

neth �∑M
h�1

Whixi + θh (6)

zh � fh neth( ) � f ∑M
h�1

Whixi + θh⎛⎝ ⎞⎠ (7)

The input neto and output yo of the output layer node (O):

neto �∑q
h�1

Wohzh + ao (8)

yo � g neto( ) � g ∑q
h�1

Wohzh + ao⎛⎝ ⎞⎠ (9)

where M and q is the total number of neurons in the input and
hidden layer, respectively (Equations 8, 9).

Error backpropagation. The error E for the n-th sample is given
by (Equation 10)

E � 1
2
∑L
o�1

To − yo( )2 (10)

where To is the true value of the o-th neuron, and L denotes the total
number of neurons in the output layer.

The total error for N samples is given by:

Ez �∑N
n�1

E � 1
2
∑N
n�1
∑L
o�1

To − yo( )2 (11)

As per (Equation 11), it is evident that the total error is a
function of the weights and thresholds in each layer. Therefore, by
adjusting the weights and thresholds, the error can be reduced. The
adjustment of the correction amount △Woh for the output layer
weights is carried out using the gradient descent method. Assuming
the learning rate is η, from the partial derivative of (Equation 8), it
can be expressed as (Equation 12).

△Woh � −η ∂E
∂Woh

� −η ∂E
∂neto

∂neto
∂Woh

� −η ∂E
∂neto

zh (12)

Similarly, the formulas for the adjustment of the output layer
threshold△ak, the hidden layer weight△Wij, and the threshold△θi
can be represented as (Equations 13–15).

△ao � −η ∂E
∂ao

� −η ∂E
∂neto

(13)

△Whi � −η ∂E
∂Whi

� −η ∂E
∂neto

xi (14)

△θh � −η ∂E
∂θh

� −η ∂E
∂neth

(15)

Based on the partial derivatives of (Equations 9, 10), this paper
defines the local gradient as (Equation 16).

δo � − ∂E
∂neto

� −∂E
∂oo

∂oo
∂neto

� To − yo( )g′ neto( ) � To − yo( )yo 1 − yo( ) (16)

The formulas for adjusting the output layer weights and
thresholds can be simplified to (Equations 17, 18).

△Woh � ηδoyh (17)
△ao � −η ∂E

∂ao
� ηδo (18)

Likewise, define (Equation 19).

δh � − ∂E
∂neth

� − ∂E
∂yh

∂yh

∂neth
� − ∂E

∂yh
f′ neth( )

� − ∂E
∂neto

− ∂neto
∂yh

f′ neth( ) � − ∂E
∂neto

Woh � δoWoh

(19)
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The formulas for adjusting the hidden layer weights and
thresholds can be simplified to (Equations 20, 21):

△Whi � ηδhxi (20)
△θh � ηδh (21)

In the BP algorithm, the weights and thresholds between layers
are iteratively adjusted based on the error between the output value
and the expected value, until the final sample error is achieved or the
specified number of iterations is reached. Therefore, the ultimate
performance of the BP algorithm is closely related to factors such as
the error threshold, learning rate, and number of iterations.

3.2.4 Dagum Gini coefficient
The Gini coefficient is an important indicator used to measure

the inequality of income or wealth distribution. In 1997, Dagum
decomposed the Gini coefficient into the contributions of intra-
group differences, inter-group net differences, and inter-group
super-variable density. This method not only effectively identifies
the sources of regional disparities but also explains the issues of
cross-terms between subgroups. Therefore, the Dagum Gini
coefficient is widely used in analyzing regional disparities, and its
specific formula is as follows:

Overall Gini coefficient (Equation 22):

H � Hw +Hnb +Ht (22)
Intra-regional disparity contribution (Equations 23–26):

Hw �∑m
j�1
Hjjpjsj (23)

Hjj �
1
2αj
∑oj
i�1
∑oj
r�1

ρji − ρhr
∣∣∣∣∣ ∣∣∣∣∣
n2j

(24)

pj � oj
o

(25)

si � ojαj
no

(26)

where α represents the overall mean, αh is the average efficiency of
AGD in region h, o is the number of provinces, nj represents the
number of provinces included in the subgroup j, k is the number of
regions; Hjj is the Gini coefficient within provinces.

Inter-regional net value difference contribution
(Equations 27–30):

Hnb �∑k
j�2
∑j�1
h�1

Hjh pjsh + phsj( )Ijh (27)

Ijh � sjh − wjh

sjh + wjh|
(28)

sjh � ∫∞

0
dFj ρ( )∫ρ

0
ρ − x( )dFh x( ) (29)

wjh � ∫∞

0
dFh ρ( )∫ρ

0
ρ − x( )dFj x( ) (30)

where Ijh is the relative impact of efficiency between regions j and h,
sjh represents the difference in efficiency between region j and h,
and wjh can be understood as the mathematical expectation of ρhr −
ρji > 0 that satisfy the conditions in regions j and h.

Super-variable density difference contribution (Equations
31, 32):

Ht � Hjh pjsh + phsj( ) 1 −Hjh( ) (31)
Ijh � sjh − wjh

sjh + wjh
(32)

where Ijh represents the relative impact between regions j and h.

3.2.5 Moran’s index
Moran’s Index is a statistical method used to assess the

distribution characteristics and interrelationships of spatial data.
Its basic assumption is that spatial data values at neighboring
locations may exhibit some form of dependence, which
diminishes with increasing distance. Moran’s index can be
expressed as (Equations 33, 34).

Ia �
∑n
i�1
∑n
j�1
wij xi − �x( )(xj − �x)

S2∑n
i�1
∑n
j�1
wij

i ≠ j( ) (33)

Ib � xi − �x

S2
∑n
j�1
wij xi − �x( ) (34)

Here, Ia and Ib represent the global and local Moran’s Index
values, respectively, n represents the total number of provinces
under investigation, i and j denote distinct spatial units, xi and
xj indicate the efficiency values of province i and j, �x and S2 indicate
the mean and variance, and wij serving as the spatial weight matrix.
Global spatial autocorrelation analyzes the overall spatial disparities
and clustering patterns of AGD. In contrast, the local Moran’s Index
focuses on assessing spatial differences among neighboring cities.

3.3 Indicator selection

3.3.1 AGD efficiency input-output indicators
AGD emphasizes following sustainable development principles in

the agricultural production process, fully utilizing advanced science
and technology and scientific management methods to foster
agricultural sustainability and enhance the ecological environment.
Agricultural development has its unique characteristics, requiring
inputs of land and labor, whether it is traditional or modern
agriculture. In the information age, digital economy and green
technology innovation have become two key directions leading the
transformation of industrial structures, and they naturally influence
agricultural development (Yin and Qiu, 2023). Therefore, this paper
takes crop sown area, labor force, mechanization level, green
technology innovation, and agricultural digital economy as input
indicators. In measuring agricultural digital economy indicators,
most studies currently consider broadband penetration rate as a
substitute indicator for the digital economy. However, with the rise
of short video platforms, mobile phones have become important
terminals formany farmers to participate in online transactions due to
their convenience and low threshold. Therefore, this paper considers
the Internet device penetration rate, including broadband penetration
rate and mobile terminal penetration rate, as substitute indicators for
the digital economy.
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AGD emphasizes the pollution-free and sustainability aspects of
production. However, inevitably, agricultural production processes
will generate unintended outputs such as environmental pollution.
Agricultural pollution sources mainly include chemical fertilizers,
pesticides, plastic film residues, and agricultural carbon emission.
Existing studies often use the quantities or residues of chemical
fertilizers, pesticides, and plastic films as surrogate indicators for
solid pollution sources, and they use the quantities of various fossil
energy sources as surrogate indicators for carbon emission (Liang
and Long, 2015), Although this simplifies the calculation steps, it
fails to comprehensively reflect agricultural surface pollution
sources. Building upon existing research, this article uses the
Entropy Weight-TOPSIS method to comprehensively analyze the
residues of chemical fertilizers, pesticides, and plastic films residues
to obtain an agricultural pollutant emission index. During the
calculation process, residues = actual usage * retention rate, with
the retention rates for chemical fertilizers, pesticides, and plastic
films chosen as the average rates published by the Chinese Ministry
of Agriculture, which are 59.8%, 59.4%, and 18.6%, respectively.
Regarding agricultural carbon emission, this paper calculates the
total carbon emission for each city based on the usage of nine energy
sources: coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil,
liquefied petroleum gas, and natural gas. The IPCC method is
employed for estimation, and the carbon emission from
agriculture in each city are estimated based on the proportion of
the primary industry.

Furthermore, in the context of rural revitalization,
promoting AGD has become a policy tool to narrow the
rural-urban disparity and promote common prosperity. AGD
emphasizes sustainable development and environmental
protection. By adopting eco-friendly production methods,
enhancing product added value and quality, it drives the
diversified development of industries such as organic

agriculture, eco-tourism, and rural e-commerce, continuously
enriching the connotation of rural economic development,
creating more employment opportunities, reducing the
development gap between urban and rural areas, and
ultimately achieving the goal of common prosperity.
Therefore, this paper utilizes the entropy weight-TOPSIS
method to select nine representative indicators in three
dimensions: affluence, sharing, and sustainability. These
dimensions include per capita GDP, per capita disposable
income of rural residents, the proportion of local general
budget revenue, urban-rural income ratio, security level,
unemployed reemployment, the number of higher education
graduates, water resources, and greening rate. These
indicators are used to comprehensively analyze and obtain the
Rural Shared Prosperity Index to measure the promotion of
agricultural development on social equity. As a result, the output
indicators in this paper are finally determined as agricultural
production value, agricultural pollutant emission index,
agricultural carbon emission, and Rural Shared Prosperity
Index, balancing economic, environmental, and social
benefits. The AGD input-output indicator system is shown
in Table 1.

3.3.2 Environmental variables
Environmental variables are defined as factors that affect

production efficiency but cannot be managed by the DMU itself.
In order to effectively eliminate the interference of the environment,
it is necessary to select environmental factors from multiple
dimensions. Yan et al. considered per capita regional GDP, the
proportion of primary industry to GDP, the proportion of internal
expenditure on scientific activities, along with the total value of trade
in goods as the most influential external environmental factors
affecting food production (Yan et al., 2022). Chen Y et al.

TABLE 1 AGD indicator system.

Indicator Unit Explanation Calculation method

Input Crop Planting Area Thousand
hectares

Actual area used for planting crops Actual land area where crops are sown or transplanted

Labor Force Ten thousand
people

Number of employees in the primary industry Number of people employed in the primary industry

Mechanization Level Ten thousand
kilowatts

Degree of agricultural production with the help
of machinery

Total power of agricultural machinery

Green Technology
Innovation

Billion yuan Investment in modern agricultural technologies
such as breeding, new pesticides, and fertilizers

R&D expenditure

Digitalization of
agricultural economy

% The extent to which IoT is used in crop
production and sales

Internet Device Penetration Rate

Output Agricultural Gross
Output

Billion yuan — Total monetary value of all products from agriculture,
forestry, animal husbandry, and fisheries

Rural Shared Prosperity
Index

% The overall level of universal prosperity achieved
by eliminating polarization and poverty

Comprehensively calculated using TOPSIS method based
on indicators such as per capita GDP and per capita

disposable income of rural residents

Undesired
Outputs

Agricultural Pollution
Emission Index

% The impact of residual levels of fertilizers,
pesticides, and plastic film on the environment

Comprehensively calculated using TOPSIS method based
on average residual levels

Agricultural Carbon
Emission

Ten thousand
tons

Total greenhouse gas emissions from
agricultural activities

Comprehensively calculated using the IPCC method based
on various energy usage levels
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believed that external environmental factors can be decomposed
into natural, economic, and policy factors, and further proposed that
natural factors such as terrain and precipitation, economic factors
including level of economic development and dependence on trade,
as well as policy factors like the extent of financial support, are
important factors influencing green production in the agricultural
sector in China (Chen et al., 2021). Since the differences in resource
endowments among regions in the Yangtze River Delta are relatively
small, this paper was based on economic and policy factors,
combined with the characteristics of agricultural production, to
choose three indicators—macroeconomic development level,
labor quality, and policy support—as environmental variables.
Considering the availability of data, this study uses per capita
disposable income of rural residents to measure the
macroeconomic development level of each region, the ratio of
graduates from higher education institutions to the resident
population to measure labor quality, and the funding allocated
for agriculture, forestry, and water resources in the overall public
budget to measure government policy support.

3.4 Data sources

The data sources include the China Statistical Yearbook,
Statistical Yearbooks of Various Cities, China Energy Statistical
Yearbook, and the Greenhouse Gas Emissions Inventory for the
years 2017–2022. In cases where data wasmissing for certain years, it
was imputed using the historical average growth rates. The Rural
Shared Prosperity Index, Agricultural Pollution Emission Index, and
Carbon Emission were calculated based on the statistical data using
the methods introduced earlier in this paper.

4 Results

The 3S-DEA-SBM-BP model constructed in this study first
measures the AGD efficiency of each city using the 3S-DEA-SBM
model. Subsequently, the AGD efficiency of each city is used as the
output set for training the BP algorithm. The technical roadmap of
this study is shown in Figure 2.

FIGURE 2
The technical roadmap of this study.
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4.1 3S-DEA-SBM model

4.1.1 First-stage AGD efficiency
The study first employs the constant returns DEA-SBM model

with non-desired outputs to measure the efficiency of AGD, setting
the weights of non-desired and desired outputs at a 1:1 ratio.
Summarize and organize the calculation results to obtain the
average efficiency of AGD in the first stage of each city in Table 3.

From a longitudinal perspective, the average efficiency of AGD
in the first stage in the Yangtze River Delta region from 2017 to
2022 ranged from 0.72 to 0.75, showing overall stability.
Nonetheless, scale efficiency was marginally greater than pure
technical efficiency, suggesting that AGD in the Yangtze River
Delta region has reached a relatively mature stage. From a
horizontal perspective, there is a significant disparity in the
efficiency of AGD among different cities. The lowest efficiency
was observed in Tongling City, Anhui Province, with a value of
0.19, while the highest efficiency reached 1, resulting in a gap of 0.81.
During the period from 2017 to 2022, there were 13 cities with an
efficiency value of 1 under the DEA-SBM model in the first stage.
These cities include Anqing, Chuzhou, and Xuancheng in Anhui
Province; Changzhou, Nanjing, Nantong, Wuxi, and Yancheng in
Jiangsu Province; and Shanghai, as well as Jinhua, Ningbo, Taizhou,
and Zhoushan in Zhejiang. This indicates that these 13 cities
maintained DEA efficiency over the six-year period. Additionally,
there is a considerable difference in AGD efficiency among different
provinces. Anhui Province, Jiangsu Province, Shanghai City, and
Zhejiang Province had efficiency values of 0.62, 0.87, 1.00, and 0.68,
respectively. Shanghai City and Jiangsu Province exhibited higher
AGD efficiency, while Anhui Province had relatively lower
AGD efficiency.

Due to the large number of DMUs in a DEA-efficient state, this
article employs the super-efficiency model to reevaluate the 13 cities
that remained DEA-efficient. In the super-efficiency model,
Zhoushan City in Zhejiang Province has the highest average
efficiency, with a value of 1.99, while Xuancheng in Anhui
Province has the lowest, with a value of 1.01. The difference
between them is 0.98. This indicates that even among cities in
the DEA-effective state, there remains a significant disparity in
development efficiency.

The influence of environmental factors and random noise
cannot be eliminated by the first-stage DEA model. To achieve a
more objective measurement of AGD efficiency, the second stage
will utilize a SFA to remove the impact of environmental factors and
random noise and obtain more accurate AGD efficiency values.

4.1.2 Second stage SFA analysis
In this stage, the redundant variables of input indicators,

measured by the first stage DEA-SBM analysis of AGD efficiency,
are taken as the dependent variables. Meanwhile, three
environmental variables - macroeconomic development level,
labor quality, and policy support - for the years 2017–2022 are
selected as independent variables. Logarithmic transformations are
applied to the environmental variables, and their impact on the
redundant values of various input indicators is calculated using
Frontier 4.1 software, as shown in Table 2.

As shown by the coefficients in Table 2, the regression
coefficients of the macroeconomic development level on the slack
variables of various inputs are positive, and all are statistically
significant at the 1% level. This indicates that an improvement in
the macroeconomic development level reduces the efficiency of
green agricultural development. This may be because in
economically developed regions, social capital and high-quality
talent are more likely to flow into the more advanced secondary
and tertiary industries, thus reducing the efficiency of green
agricultural development. The quality of the labor force is
significant at the 1% level for the slack variables of all inputs.
However, the regression coefficient of labor quality on the slack
of agricultural economic digitalization level is negative,
indicating that the improvement in labor quality reduces the
slack of agricultural economic digitalization but significantly
increases the redundancy of other inputs, such as green
technology innovation. This could be because high-quality
workers possess higher education levels and technical skills,
enabling them to utilize modern agricultural technologies and
equipment more effectively, thereby reducing the dependence of
agricultural production on inputs like land and labor. The
regression coefficient of policy support on the slack of
mechanization level is positive and significant at the 1% level,
while the coefficients on the slack of other input indicators are

TABLE 2 Results of SFA.

Slack Cropland area Labor force Mechanization
level

Green technology
innovation

Agricultural economic
digitization

β0 −222.12***
(−1903.11)

−12.43*** (−10.76) 204.99*** (198.47) −594.75*** (−554.32) −49.30*** (63.51)

β1 34.75*** (38.38) 2.17*** (5.96) 18.18*** (−44.89) 52.87*** (60.27) 20.95*** (48.46)

β2 42.51*** (19.58) 2.28** (3.28) 7.71* (3.10) 10.19*** (10.24) −4.50** (−4.88)

β3 −58.51*** (−50.60) −3.93** (−3.48) 8.99*** (−7.20) −5.24 (−1.13) −44.20*** (−31.27)

σ2 23323.99***
(23324.39)

271.23*** (271.60) 4557.04*** (4555.40) 17714.03*** (17713.98) 7113.09*** (7116.81)

γ 0.99*** (79357.17) 0.99***
(1994888.29)

0.99*** (773383.18) 0.99*** (746410.30) 0.99*** (108087.55)

LR 8.71** 15.23*** 16.94*** 14.59*** 12.24***

Note: *, **, *** represents significance at the 10%, 5%, and 1% levels.
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negative. The slack variables for crop planting area, labor input,
and agricultural economic digitalization pass the 1% significance
test. This suggests that policy support increases the slack of
mechanization level but significantly reduces the redundancy
of other inputs. This phenomenon may be due to government
support for agricultural production through subsidies for
agricultural machinery. As government attention to
agricultural production continues to increase, more capital
and management talent flow into the agricultural machinery
production sector, leading to resource redundancy.

In summary, the selected environmental variables—macroeconomic
development level, labor quality, and policy support—all have
statistical impacts on AGD. Among them, the macroeconomic

development level has a negative impact, while labor quality and
policy support exhibit bidirectional effects.

4.1.3 The third stage of AGD efficiency
Recalculate efficiency for the adjusted input data from the

second phase using the steps from the first phase. To further
distinguish cities that are not in a DEA efficient state, we
referenced the research methods of Yi M et al. and categorized
the AGD efficiency of each city into four levels (Yi et al., 2019).
Specifically, when the AGD technical efficiency is greater than or
equal to 1, it indicates that the development efficiency is in a DEA
efficient state, with input-output balance and rational resource
allocation. When the technical efficiency is between 0.8 and 1,
the development efficiency is in a relatively efficient state,
indicating that inputs have not been fully converted into outputs,
but balance can be achieved through systematic adjustments. When
the technical efficiency is between 0.6 and 0.8, it indicates a weakly
efficient DEA state, with inputs and outputs weakly efficient,
requiring long-term adjustments to achieve balance. When the
overall technical efficiency is less than 0.6, it indicates an
inefficient DEA state, with obvious problems in resource
allocation, necessitating a reconfiguration of inputs. Summarizing
and organizing the calculation results, one can obtain the average
efficiency of AGD in the third stage for each city in Table 3, along
with a spatial distribution comparison of average efficiency between
the first and third stages, as illustrated in Figure 3.

From Table 3 and Figure 3, it is evident that the overall AGD
efficiency values in the third stage are lower than those in the first
stage. This indicates that environmental factors and random
disturbances have a significant impact on the measurement of
AGD efficiency in the Yangtze River Delta region. Therefore,
using SFA to eliminate environmental factors and random
disturbances can yield more objective and accurate efficiency values.

From a longitudinal perspective, the average AGD efficiency
values in the third stage ranged from 0.63 to 0.71. Compared to the
first stage, technical efficiency significantly decreased and exhibited
higher fluctuations. The gap between scale efficiency and pure
technical efficiency narrowed, indicating that the AGD efficiency
in the Yangtze River Delta region is significantly influenced by
environmental factors and random disturbances. When viewed
across cities, notable disparities in AGD efficiency persist. The
lowest value is still found in Tongling City, Anhui Province, with
a value of 0.22, while the highest value is 1, resulting in a difference of
0.78. From 2017 to 2022, eight cities achieved an average efficiency
value of 1, including Changzhou, Nantong, Wuxi, and Yancheng in
Jiangsu Province, as well as Jinhua, Ningbo, Taizhou, and Zhoushan
in Zhejiang. The eight cities also had an average efficiency value of
1 in the first stage, indicating their high AGD efficiency, which is
attributed to their favorable internal environments. But, Shanghai,
Anqing City and Chuzhou City in Anhui Province, Xuanzhou City,
and Nanjing City in Jiangsu Province saw their efficiency values
drop from 1 in the first stage to 0.34, 0.84, 0.70, 0.88, and 0.74 in the
third stage, respectively. This suggests that the previously higher
AGD efficiency values of these cities were due to their favorable
external environments, such as macroeconomic development and
policy support. Among the eight cities in an effective DEA state,
Zhoushan City in Zhejiang still had the highest average efficiency
value of 1.99, while Taizhou City in Zhejiang had the lowest value at

TABLE 3 The average efficiency of AGD in each city for the first and third
stages.

DMU The first-stage The third stage

TE PTE SE S-TE TE PTE SE S-TE

Anqing 1.00 1.00 1.00 1.06 0.34 0.67 0.66 0.35

Chizhou 0.75 1.00 0.75 0.75 0.45 1.00 0.45 0.45

Chuzhou 1.00 1.00 1.00 1.04 0.84 1.00 0.84 0.87

Hefei 0.48 0.67 0.79 0.48 0.49 0.62 0.84 0.49

Ma’anshan 0.23 0.34 0.70 0.23 0.28 0.45 0.67 0.28

Tongling 0.19 1.00 0.19 0.19 0.22 1.00 0.22 0.22

Wuhu 0.30 0.33 0.94 0.30 0.36 0.51 0.80 0.36

Xuancheng 1.00 1.00 1.00 1.01 0.70 1.00 0.70 0.70

Changzhou 1.00 1.00 1.00 1.48 1.00 1.00 1.00 1.18

Nanjing 1.00 1.00 1.00 1.01 0.88 1.00 0.88 0.90

Nantong 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.08

Suzhou 0.93 1.00 0.93 0.95 0.85 1.00 0.85 0.87

Taizhou 0.69 0.71 0.97 0.69 0.68 0.71 0.96 0.68

Wuxi 1.00 1.00 1.00 1.12 1.00 1.00 1.00 1.12

Yancheng 1.00 1.00 1.00 1.17 1.00 1.00 1.00 1.15

Yangzhou 0.76 0.87 0.87 0.76 0.80 0.87 0.92 0.81

Zhenjiang 0.47 0.62 0.84 0.47 0.56 0.61 0.94 0.56

Shanghai 1.00 1.00 1.00 1.09 0.74 0.76 0.96 0.75

Hangzhou 0.89 0.91 0.96 0.90 0.91 0.96 0.95 0.93

Huzhou 0.32 0.35 0.90 0.32 0.36 0.40 0.90 0.36

Jiaxing 0.33 0.82 0.43 0.33 0.36 0.66 0.57 0.36

Jinhua 1.00 1.00 1.00 1.05 1.00 1.00 1.00 1.04

Ningbo 1.00 1.00 1.00 1.09 1.00 1.00 1.00 1.07

Shaoxing 0.36 0.41 0.88 0.36 0.39 0.44 0.89 0.39

Taizhou 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.02

Wenzhou 0.25 0.31 0.81 0.25 0.26 0.33 0.80 0.26

Zhoushan 1.00 1.00 1.00 1.99 1.00 1.00 1.00 1.99

Note: S-TE represents the third-stage technical efficiency.
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FIGURE 3
Comparison of first and third stage super-efficiency values.

TABLE 4 The input indicators for the BP algorithm.

Indicator Unit Calculation method

Input
variables

Cropland Area Thousand Hectares Actual cropland area

Labor Force Ten Thousand
People

Employment in the primary sector

Mechanization Level Ten Thousand
Kilowatts

Mechanization level of agriculture

Green Technology Innovation Billion Yuan R&D expenditure

Digitalization of agricultural
economy

% Internet Device Penetration Rate

Environmental Investment Billion Yuan Benchmarked against the total environmental protection investment in the city, calculated by the
proportion of the primary sector

Security Level % Ratio of the number of rural residents enjoying minimum living security to the total number of
people receiving living security

Resources Billion Kilowatt-
Hours

Total electricity consumption in rural areas

Export Dependence % Proportion of total exports to GDP

Infrastructure Construction Kilometers Substituting highway mileage

Agricultural Chemicals Ten Thousand Tons Total consumption of pesticides, fertilizers, and agricultural films

Energy Ten Thousand Tons Replaced by agricultural carbon emission
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1.02, resulting in a significant difference in development efficiency.
Additionally, there were substantial differences in development
efficiency between different provinces in both the first and third
stages. The third-stage efficiency values in Anhui, Jiangsu, Shanghai,
and Zhejiang were 0.46, 0.86, 0.74, and 0.70, respectively. Compared
to the first stage, Zhejiang’s technical efficiency slightly improved,
while Anhui, Jiangsu, and Shanghai experienced a decrease in
technical efficiency. Among them, Anhui and Shanghai were
more affected by external environmental factors.

4.2 BP algorithm

To address the limitations in quantity and the inability to
manage in advance between the DEA model DMU and
indicators, this paper integrates the BP algorithm to construct a
3S-DEA-SBM-BP model. This model is designed to systematically
evaluate the efficiency of AGD.

4.2.1 Construction and training of the BP algorithm
The input set for the BP algorithm in this study, in addition to

the input indicators of the DEA model, includes additional input
indicators such as agricultural chemicals, energy, resources,
environmental protection, security level, export dependence,
infrastructure construction, and others. This comprehensive set
of inputs aims to measure the economic, environmental, and
social aspects of inputs in agricultural production. The input set
of BP is shown in Table 4.

The efficiency values from the third stage of AGD in each city
between 2017 and 2022 serve as the output dataset for the BP
algorithm. Of this set, 80% is used as the training set, 10% as the

validation set, and 10% as the testing set. After min-max
normalization, MATLAB 2016a software is employed for
computation. The parameter configurations are as follows: a
single-layer BP network architecture featuring 6 nodes in the
hidden layer; the activation function connecting the input layer
to the hidden layer employs the Logsig function, whereas the output
layer utilizes the Purelin function as its activation function. The
training function is set as Trainlm, with a learning rate of 0.001, a
minimum error goal for training of 1E-07, and a maximum number
of iterations set at 15,000.

The final 3S-DEA-SBM-BP model in this study achieved fitting
coefficients of 0.94, 0.92, and 0.96 for the test set, validation set, and
training set, respectively. The overall fitting coefficient was 0.94,
indicating a good overall fit, with all fitting coefficients
being above 0.9.

It can be observed that the BP algorithm’s test set predictions
closely match the actual efficiency changes in DEA (Figure 4). The
BP algorithm’s predicted values range from 0.25 to 2.14, while the
actual efficiency values range from 0.32 to 2.00. The overall average
error is 0.076, with only one instance of a prediction failure, where
DEA-effective status was incorrectly predicted as non-DEA
effective. The prediction accuracy is 94%. Therefore, the 3S-DEA-
SBM-BP model, combining the 3S-DEA-SBM-BP model and BP
algorithm, can effectively measure and predict the AGD efficiency.

4.2.2 Weight analysis of indicators
The weights at various layers in the BP algorithm can, to some

extent, reflect the influence of the input layer on the output layer.
However, the weights obtained by training the BP network only
represent the relationships between the neurons in the network, and
the weights or their products do not fully reflect the decision weights

FIGURE 4
Fitting Results of the DEA-SBM-BPMode. Note: The left side of the dashed line represents the validation set, and the right side represents the test set.
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of the input indicators on the output indicators. Therefore, in this
paper, leveraging existing research findings, decision weights are
measured by calculating the absolute impact coefficients between
input and output indicators (Wu et al., 2006). The formula for
calculating the absolute impact coefficients is as follows:

Significant Correlation Coefficients (Equation 35):

rio �∑p
h�1

Whi 1 − e−Woh( ) 1 + e−Woh( ) (35)

Correlation Index (Equation 36):

Rio � 1 − e−rio( )/ 1 + e−rio( ) |∣∣∣∣ (36)

Absolute Impact Coefficient (Equation 37):

Sio � Rio/∑m
i�1
Rij (37)

where i represents the input layer neuron in the BP algorithm,
i � 1, 2,/,m; j represents the output layer neuron in the BP
algorithm, j � 1, 2,/, n; h represents the hidden layer,
h � 1, 2,/, p; Whi represents the weight between input layer i and
hidden layer h;Woh represents the weight between output layer neuron
o and hidden layer neuron h; According to the above formula, the
weights between each neuron can be calculated to obtain the absolute
impact coefficients, i.e., the weights for input indicators on output
indicators. Table 5 present the weights and distribution of each input
indicator in the 3S-DEA-SBM-BP model constructed in this paper.

From Table 5, it can be observed that infrastructure
development, agricultural digitization, and social security are the
most influential factors affecting the efficiency of AGD in the
Yangtze River Delta region, with weights all above 12%. This is
because agriculture is highly vulnerable to natural factors, and
robust agricultural infrastructure helps resist the uncertainties
posed by these natural elements, ensuring stable expected returns
in agricultural production. In the digital age, the “digital+” approach
is driving continuous improvements in agriculture, injecting new
energy into rural revitalization. Social security represents social
equity, which promotes the rational allocation of resources and
ensures that everyone has access to high-quality education and
training opportunities, thereby enhancing people’s quality of life.
Therefore, improvements in infrastructure development,
agricultural digitization, and social security significantly enhance
agricultural production efficiency. The next most influential factors
affecting the efficiency of AGD in the Yangtze River Delta region are
environmental investment, crop planting area, and green technology

innovation, each with weights exceeding 10%. As AGD emphasizes
the convergence of economic, environmental, and social benefits, the
impact of environmental investments on AGD efficiency is gradually
increasing. It is noteworthy that among the influencing factors of
AGD, traditional agricultural elements such as resources,
agricultural labor, energy, agrochemicals, and mechanization, all
have weights below 5%. This suggests that traditional extensive
agriculture is shifting towards sustainable agriculture.

4.3 Regional disparity analysis

The analysis results from earlier sections indicate that AGD
efficiency in the Yangtze River Delta region has gradually improved,
yet significant disparities persist among cities within the provinces.
Taking Anhui Province as an example, during the study period,
Chuzhou City exhibited the highest AGD efficiency, reaching 0.87,
while Tongling City showed the lowest efficiency at only 0.22, resulting
in a difference of 0.65 between them. In comparison, the differences in
AGD efficiency between Anhui Province and Jiangsu Province,
Shanghai, and Zhejiang Province were 0.46, 0.28, and 0.36,
respectively, highlighting a significant imbalance in development
within the province. To objectively assess the degree of AGD
imbalance among provinces and cities, this study employs the
Dagum Gini coefficient to measure both intra-regional and inter-
regional inequality.

The comprehensive Gini coefficient for the Yangtze River Delta
region remained around 0.3 during the study period, suggesting that
AGD in the region is generally balanced. In terms of the contribution
rate of the Gini coefficient, the impact of inter-group differences has
decreased, while the contribution rates of intra-group differences and
hyper-variable density have increased. This indicates that the imbalance
in AGD within provinces is a significant factor affecting the further
balanced development of the Yangtze River Delta region. Regarding
intra-regional differences, the Gini coefficient of Anhui Province has
consistently been higher than the overall level of the Yangtze River Delta,
with the coefficient approaching 0.4 in several periods, nearing awarning
level. This indicates a severe imbalance in AGD within Anhui Province.
The Gini coefficient of Zhejiang Province is similar to the overall level of
the Yangtze River Delta, indicating a relatively reasonable range. The
Gini coefficient of Jiangsu Province has consistently been lower than the
overall level, remaining below 0.1 from 2017 to 2019, indicating an
absolutely balanced state of AGD within the province (Figure 5A).
However, a certain degree of development disparity can incentivize
industrial innovation and technological progress, while an absolutely

TABLE 5 Input indicator weights.

Indicator Weight Ranking Indicator Weight Ranking

Crop Planting Area 0.1139 5 Energy 0.0424 10

Labor Force 0.0496 9 Resources 0.0499 8

Mechanization Level 0.0368 12 Environmental Investment 0.1190 4

Green Technology Innovation 0.1133 6 Safety Guarantee Level 0.1237 3

Agricultural Economic Digitization 0.1243 2 Export Dependence 0.0599 7

Agricultural Chemicals 0.0404 11 Infrastructure Construction 0.1267 1
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balanced state might limit further industrial upgrading. In recent years,
the Gini coefficient of Jiangsu Province has increased slightly, staying
below 0.2, which is still within a reasonable range. Regarding inter-
regional differences, the Gini coefficient between Zhejiang Province,
Jiangsu Province, and Shanghai is relatively small, indicating that these
three have achieved good results in collaborative AGD. The gap between
Anhui Province and the other three regions is relatively large, but it
shows a decreasing trend (Figure 5B).

4.4 Analysis of spatiotemporal evolution
characteristics

4.4.1 Dynamic distribution and evolution
characteristics

Based on the calculation results of AGD efficiency, this paper
further analyzes the dynamic distribution characteristics of AGD
using the KDE, as shown in Figure 6.

FIGURE 5
(A) The Gini coefficients within provinces and their decomposition. (B) The Gini coefficients among provinces.

FIGURE 6
Kernel density curve of AGD efficiency in central cities of the Yangtze river delta.
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From 2017 to 2022, the peak height and width of the kernel
density curve for AGD efficiency remained relatively stable. Most
values were concentrated within a certain range, with relatively few
values deviating significantly from the mean, indicating that the
absolute differences in AGD across these cities remained generally
stable (Figure 6). However, it is noteworthy that the kernel density
curve in 2018 exhibited a ‘one main peak and one secondary peak’
bimodal pattern, highlighting a significant polarization trend in
AGD in the Yangtze River Delta. Starting from 2019, the secondary
peak gradually weakened, indicating a significant reduction in the
polarization trend. The reason might be that in 2018, the integration
development of the Yangtze River Delta was elevated to a national
strategy, but Anhui Province’s economy is relatively lagging, and its
industrial structure differs significantly from that of Jiangsu
Province, Zhejiang Province, and Shanghai, possibly causing its
integration process to be somewhat slower.

4.4.2 Spatial correlation analysis
The preceding analysis reveals notable spatial disparities in AGD

across the Yangtze River Delta. Generally, Jiangsu and Zhejiang
Provinces demonstrate superior performance, whereas Anhui
Province shows comparatively weaker results. To quantitatively
examine the spatial distribution differences in AGD within this
region, this study utilizes both global and local Moran’s Index for
further investigation.

4.4.2.1 Global spatial autocorrelation analysis
Global Moran’s I is a statistical indicator used for spatial data

analysis, which measures the overall similarity or correlation of data
values in geographic space. The results of the global Moran’s Index
analysis are shown in Table 6.

As shown in Table 6, the Global Moran’s I for AGD efficiency
from 2017 to 2022 is greater than 0, and all values pass the 1%
significance level test. This suggests a robust positive spatial
correlation in the distribution of AGD. Specifically, the Global
Moran’s I increased from 0.1522 in 2017 to 0.2047 in 2020,
suggesting an increasing spatial agglomeration effect in AGD.
After 2020, the Global Moran’s I showed a downward trend, but
the Z-values and P-values for 2021–2022 remained significant at the
1% level. This indicates that although the spatial agglomeration
characteristics of AGD weakened slightly, they still demonstrate a
relatively stable pattern. This change could be attributed to the
initiation of the Rural Land Contracting Right Transfer Management
Measures in 2021, which kickstarted the reform of land “tri-partite”

rights, allowing farmers to transfer land contracting rights through
leasing, subcontracting, swapping, and transferring to other farmers
or agricultural enterprises. While this policy promotes the scale and
intensive use of land, it also leads to fragmented land transfers,
altering the original land use pattern. Additionally, for
environmental protection, the government has designated
important ecological functional zones and ecological
environment-sensitive areas in the Yangtze River Delta region,
prohibiting or restricting agricultural production and
construction activities in these areas, resulting in the transfer of
agricultural production to non-protected areas and further changing
the original agricultural clustering trend.

4.4.2.2 Local spatial autocorrelation analysis
The global spatial Moran’s I reflects the overall spatial clustering

characteristics of AGD at a macro level, but it cannot depict the
specific spatial connections between individual cities. Therefore, this
paper further employs Local Moran’s I to study the spatial
connections between cities, and the LISA cluster map of local
spatial autocorrelation is shown in Figure 7.

From 2017 to 2022, an average of 49% of the cities demonstrated
LISA spatial agglomeration each year. However, this mainly
manifested as low-low and high-low agglomeration types, with
only Changzhou and Zhoushan displaying high-high
agglomeration characteristics (Figure 7). This indicates that while
the AGD in the core cities of the Yangtze River Delta has formed a
relatively stable spatial agglomeration effect, there is still significant
room for improvement. In 2017, spatial agglomeration
characteristics were primarily observed in the northwest part of
the core area of the Yangtze River Delta, such as Chuzhou, Nanjing,
and Zhenjiang, as well as in the southeastern part, including Taizhou
and Wenzhou. Starting from 2018, the agglomeration phenomenon
began to shift toward the central region, with a weakening trend in
the northwest, gradually forming a central agglomeration area
centered around Huzhou and Xuancheng. However, by 2019, the
localized agglomeration characteristics in the core area of the
Yangtze River Delta had significantly weakened, with only 33%
of the cities showing localized agglomeration effects, and the
distribution becoming more scattered. This may be due to the
initiation of the Yangtze River Delta Regional Integration
Development Plan in 2019, which began to promote the
marketization of agricultural land, altering the original land use
pattern. Between 2020 and 2021, the agglomeration characteristics
in the core area of the Yangtze River Delta significantly strengthened

TABLE 6 Analysis results of global Moran’s index.

Year Moran’s I Expected value Standard deviation Z value p-value

2017 0.1522 −0.0399 0.0356 5.3994*** 0.0010***

2018 0.1213 −0.0383 0.0357 4.4769*** 0.0010***

2019 0.1392 −0.0379 0.0359 4.9347*** 0.0010***

2020 0.2047 −0.0381 0.0350 6.9307*** 0.0010***

2021 0.1520 −0.0384 0.0366 5.2056*** 0.0010***

2022 0.1349 −0.0369 0.0356 4.8264*** 0.0010***

Note: *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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and gradually concentrated in the central region, with Huzhou and
Xuancheng reemerging as central agglomeration areas. However, by
2022, the clustering characteristics showed a similar situation to that
in 2019. This change may be related to further land reforms and the
designation of important ecological function zones, among other
policy measures.

In General, the central cities in the Yangtze River Delta have
experienced a development trend in the local characteristics of AGD
characterized by concentration, dispersion, re-concentration, and
re-dispersion. Policy factors such as land reform have been
significant factors leading to the local dispersion of AGD.
However, it is worth noting that the efficiency of AGD in various
cities has shown an improving trend over the years, indicating
significant differences in the driving factors between the
efficiency and spatial distribution of AGD.

4.5 Efficiency forecast

The 3S-DEA-SBM-BP model constructed in this paper,
combining the 3S-DEA-SBM model and the BP algorithm, not

only allows for a more systematic evaluation of the development
efficiency of various sectors but also addresses the inability of
existing evaluation models to be managed proactively. When
determining the input plans, the 3S-DEA-SBM-BP can predict
the final efficiency values, enabling various sectors to adjust
inputs promptly to achieve the optimal input-output state. Since
the data for input planning beyond 2023 has not been released, this
paper first uses the GM (1,1) model to forecast the inputs for the next
3 years (2023, 2024, and 2025). Subsequently, the constructed 3S-
DEA-SBM-BP model is applied to predict the AGD efficiency of
each city, aiming to analyze in-depth the changing trends in AGD in
the future. Due to space limitations, this paper only presents the
fitted and forecasted values of input for Anqing City, Anhui
Province, as shown in Figure 8.

The GM (1,1) model demonstrates high accuracy in predicting
various inputs, showing consistent trends between predicted and
actual values (Figure 8). Additionally, the average relative mean
error between the predicted and actual values of each input is only
3.03%. This indicates that the predicted values can effectively reflect
the future trends of various agricultural inputs in Anqing City. Based
on the projected inputs for agricultural production in each city over

FIGURE 7
Local spatial autocorrelation LISA clustering for different years. (A) 2017; (B) 2018; (C) 2019; (D) 2020; (E) 2021; (F) 2022.
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the next 3 years, the future AGD efficiency values for each city were
forecasted using the three-stage DEA-SBM-BPmodel constructed in
this study. Figure 9 illustrates the projected efficiency values and
spatial distribution of AGD in the central cities of the Yangtze River
Delta for the years 2023–2025.

Over the next 3 years, the overall efficiency of AGD in the
Yangtze River Delta region remains relatively stable. Anhui Province
continues to lag behind Jiangsu Province and Zhejiang Province but
shows a significant overall improvement trend (Figure 9). Cities
such as Hefei and Xuancheng in Anhui Province, as well as
Wenzhou and Huzhou in Zhejiang Province, are expected to
gradually transition from an inefficient state to a relatively
efficient state, with Huzhou projected to reach an efficient state
by 2025. Meanwhile, Hangzhou will transition from a relatively
efficient state to an efficient state. However, Chizhou City is expected
to experience a regression after improving from an inefficient state
to a relatively efficient state, indicating the need for further
adjustments to various inputs. In the next 3 years, the central
cities of the Yangtze River Delta will see a significant
enhancement in local agglomeration characteristics, potentially
forming new agglomeration centers around Hangzhou and Huzhou.

5 Discussion

The development of agriculture not only directly impacts a
nation’s food security and stable economic growth but also serves as

a pillar of rural economies, influencing the prosperity and stability of
rural societies. This study measures the efficiency of AGD in the
central cities of the Yangtze River Delta and analyzes regional
differences. The findings indicate that while AGD in the Yangtze
River Delta has demonstrated a consistent upward trend in recent
years, considerable regional disparities remain. This discovery is
consistent with the findings of scholars such as Xu and Lei, although
their research primarily focuses on inter-provincial differences and
overlooks intra-provincial disparities (Xu and Kong, 2024; Lei and
Tu, 2024). Variations in factors such as resource endowments and
economic structures among cities contribute to significant regional
imbalances in China’s agricultural development, rendering
provincial average efficiency values not broadly representative.
This study identifies significant imbalances in AGD among cities
within Anhui Province, indicating that the overall efficiency value of
Anhui Province does not fully represent the development status of
cities within the province. This suggests significant shortcomings in
previous research, which often substituted provincial efficiency
values for regional development levels. Analyzing the
development characteristics of individual cities can more
comprehensively depict the actual development status of a
region. From the viewpoint of the spatiotemporal evolution of
AGD, both this study and research by Lu and Xiong confirm
significant spatial agglomeration effects in AGD along the
Yangtze River Economic Belt (Lu and Xiong, 2023). However,
this study finds that there have been drastic changes in the local
spatial distribution of AGD between 2019 and 2022. The reasons for

FIGURE 8
The forecasted results of input for Anqing City.
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this change can be attributed to factors such as the influence of land
reform policies. From a methodological perspective, this study and
the research by Pan demonstrate the significant impact of external
environmental factors on management efficiency (Pan et al., 2022).
Efficiency values measured using the 3S-DEA-SBM model are more
objective, aiding policymakers in more effectively formulating
various policies.

In traditional agricultural production, the area of cultivated
crops and labor have always been important factors affecting
agricultural productivity. Previous studies have emphasized the
feasibility of improving agricultural efficiency by increasing the
level of mechanization in agricultural production (Du et al., 2023;
Sun et al., 2024). However, this study found that factors such as
mechanization level, agricultural chemicals, and energy, which
are traditionally relied upon in agriculture, have significantly
reduced proportions in agricultural green production. Instead,
factors such as infrastructure construction, agricultural

economic digitization, and security level have a more
significant impact on agricultural production efficiency. This
finding aligns with the conclusions of studies by Wang et al.,
which indicate that in the context of high-quality development,
agricultural production exhibits new characteristics (Wang et al.,
2024; Wang and Qian, 2024).

While this paper comprehensively evaluates and predicts the
efficiency of AGD using the objective 3S-DEA-SBM-BP model and
analyzes regional development disparities, it still has two limitations
that need to be addressed. Firstly, this study uses the entropy-
weighted TOPSIS method to construct the indices of the Rural
Shared Prosperity Index and Agricultural Pollution Emission Index.
Although the entropy-weighted TOPSIS method has been widely
applied in previous research, the indices it generates still have certain
limitations. Secondly, this study uses city-level data, which may
overlook the efficiency of AGD at the county level. County-level data
can more comprehensively reflect the differences within the region.

FIGURE 9
Future trends of AGD and spatial distribution in central cities of the Yangtze River Delta. (A) AGD in 2023; (B) AGD in 2024; (C) AGD in 2025; (D) LISA
clustering in 2023; (E) LISA clustering in 2024; (F) LISA clustering in 2025.
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6 Conclusion

This study combines the 3S-DEA-SBM model with BP neural
networks to construct an innovative 3S-DEA-SPM-BP model,
thereby providing a systematic and quantitative analytical tool for
evaluating and predicting the efficiency of AGD in the Yangtze River
Delta region. This model not only addresses the limitations of existing
DEA models in predictive capability but also offers a new theoretical
perspective for the systematic evaluation of AGD. In the research
process, a comprehensive analysis of both traditional and emerging
factors reveals the critical impacts of infrastructure construction,
agricultural economic digitization, and safety levels on AGD. These
findings provide important theoretical support and practical references
for the digital transformation of agriculture and infrastructure upgrades.
Additionally, this study analyzes the spatiotemporal evolution
characteristics of AGD in the central cities of the Yangtze River
Delta, revealing significant differences between cities in the region,
particularly highlighting the pronounced differentiation within Anhui
Province. In recent years, changes in policy factors have further
exacerbated this trend. Notably, the predictive results of this study
indicate that, in the next 3 years, urban disparities in the Yangtze
River Delta are expected to narrow, and the characteristics of
agglomeration will significantly strengthen, with the potential
formation of new agglomeration centers around Hangzhou and
Huzhou. This provides policymakers with forward-looking references
for optimizing regional agricultural development layouts. Overall, this
study not only provides reliable quantitative analysis tools for evaluating
and predictingAGD efficiency but also deepens the understanding of the
spatiotemporal dynamics of AGD, further advancing the theory and
practice of sustainable agricultural development.

The analysis results presented in this paper provide the following
recommendations for AGD in various regions.

6.1 Deepen the planning and regional
coordination of intelligent agricultural
production to promote sustainable
agricultural development

Through rational planning of agricultural production activities,
farmers can not only improve efficiency and maximize the utilization
of agricultural resources but also contribute to the rational allocation and
optimal utilization of agricultural resources. This helps farmers better
adapt to market changes and reduce the impact of market fluctuations
on farmers’ income. In addition, by coordinating agricultural production
plans in different regions, resource sharing and complementary
advantages can be achieved, further improving the overall efficiency
of agricultural production. Advanced planning also provides the
government with fundamental data, aiding in the formulation of
agricultural policies and the rational allocation of resources to
promote the healthy development of the entire agricultural industry.
Therefore, the government should actively promote the establishment of
agricultural information systems, providing timely and accurating
weather, soil, and market information to assist farmers in making
informed decision, such as rational crop selection, planting time, and
fertilizer level. Simultaneously, the widespread adoption of technologies
such as sensors, drones, and big data analysis in agriculture should be
vigorously promoted to achieve precision agricultural management.

6.2 Emphasize the persistent and stable
macro-control role of external
environmental variables in AGD

Different environmental factors have varying effects on the
efficiency of AGD. Macro-control of AGD can be achieved by
guiding changes in external environmental variables. While the
improvement of macroeconomic development level and labor
quality may promote the upgrading of the agricultural structure
to some extent, it is more likely to divert idle social funds and
high-quality talents towards more developed secondary and
tertiary industries, affecting the rapid development of the
primary industry. Therefore, policy support is needed to
guide idle social funds and high-quality talents toward the
primary industry, promoting the high-quality development of
agriculture.

6.3 Increase investment in infrastructure and
innovative technology

During the transition from traditional extensive agriculture to
AGD, factors such as infrastructure construction and agricultural
economic digitization have a more significant impact. By optimizing
transportation, irrigation, and energy infrastructure, the production
and distribution of agricultural products become smoother,
effectively reducing the transportation and energy costs of
agricultural production. Moreover, robust infrastructure creates
favorable conditions for increasing the added value of agricultural
products. For example, the construction of agricultural processing
plants and cold chain logistics systems helps extend the shelf life of
agricultural products, enhance their commercialization, and drive
agricultural products towards deep processing and high-end
markets, thereby increasing farmers’ income. Additionally, by
introducing advanced agricultural technology, farmers can
achieve precise agricultural management, thereby improving
production efficiency, reducing resource wastage, and advancing
agriculture towards digitization and intelligence. Therefore,
increasing investment in infrastructure and implementing
agricultural economic digitization technologies can accelerate the
improvement of current agricultural production efficiency and
sustainability.
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