
Spatio-temporal variations of
vegetation cover and its
influencing factors in highland
lake basin

Zhoujiang Liu1, Wenxian Hu2*, Liming Ma3 and Xiaoxia Huang4*
1Institute of International Rivers and Eco-Security, Yunnan University, Kunming, China, 2Erhai Watershed
Ecological Environment Quality Testing Engineering Research Center of Yunnan Provincial Universities,
Erhai Research Institute, West Yunnan University of Applied Sciences, Dali, China, 3Natural Resources
Bureau of Suijiang County, Zhaotong, China, 4College of Water Conservancy, Yunnan Agricultural
University, Kunming, China

Exploring dynamic vegetation changes and identifying the factors driving these
changes are important for evaluating global ecosystem processes. Based on the
pixel binary model, coefficient of variation, Theil-Sen median trend analysis,
geographic detector, and Pearson correlation coefficient, this study analyzed
vegetation cover variations and the factors influencing these changes in the Erhai
Lake Basin, one of the most important plateau lakes in China. Vegetation cover
exhibited a continuously increasing trend, with the proportion of high vegetation
coverage consistently ranking first. Land cover is an effective explanatory factor
for vegetation cover, and FVC shows obvious variation rules associated with
elevation, land cover, population, and landform. It is important to highlight that
the combination of two factors influences vegetation dynamicsmore significantly
than one factor alone, with the interaction between land cover type and nightlight
illumination being more powerful. These results enhance our understanding of
the complex processes of vegetation cover variation in plateau lake catchments
and offer a scientific reference for improving the spatial layout of vegetation in
fragile ecosystems.
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1 Introduction

Vegetation is a crucial indicator of the health of the ecological environment. It helps
connect different natural components, including the atmosphere, water, living organisms,
and water (Meyer and Ii, 1992; Suzuki et al., 2007; Du et al., 2015; Zhao et al., 2018).
Fractional vegetation coverage (FVC) indicates proportion of vertical area occupied by
leaves, stems, and branches of plants on ground in relation to total area of a specific
statistical region (Gitelson et al., 2002). It can characterize growth status and trend of a
certain devegetation (Adams and Arkin, 1977). In the context of global climate change and
an increase in extreme weather events, regional vegetation coverage has changed
significantly (Bonan, 2008; Fang et al., 2018), which makes it urgent to research long-
term shifts in vegetation to better understand spatio-temporal variations in regional
ecological environment quality and maintain ecosystem balance (Zhong et al., 2019).
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Remote sensing provides a valuable means for monitoring
vegetation cover dynamics at different spatiotemporal scales with
high precision and frequency (Jalonen et al., 2014; Piao et al., 2003).
Many vegetation indices obtained by remote sensing inversion have
become effective indicators for monitoring regional and even global
vegetation activities, as well as their impacts on natural environment
variety and human intervention (Huete et al., 2002; Frederic et al.,
2019; Bageshree et al., 2022; Gao et al., 2022), Vegetation coverage is
good at tracking the spatiotemporal variations of surface vegetation
(Zhang et al., 2003). For example, Fu and Burgher (2015) discussed
and analyzed the dynamic variations in vegetation coverage in the
Namoi Basin and its relationship with meteorological factors and
groundwater resources. Mu et al. (2012) calculated the vegetation
coverage in Inner Mongolia and discovered that vegetation coverage
was higher in the east and lower in the west. Meng et al. (2015)
changes through meteorological factors and discovered that human
activities have a significant impact on vegetation changes. MODIS
NDVI has the characteristics of long-term continuity, high spatial
resolution, and wide coverage, and many scholars have chosen
MODIS datasets to study vegetation dynamic changes at global,
regional, and watershed scales (Wylie et al., 2008; Fyllas et al., 2009;
Psomas et al., 2011; Shao et al., 2016).

Owing to the large diversity of hydrothermal mechanisms and
ecological environmental conditions, the causal relationship
between vegetation activity and driving factors is complex
and spatially heterogeneous (Piao et al., 2003; Holmgren
et al., 2013; Zhang et al., 2018). In previous studies, most
scholars employed correlation and residual analyses to
explain the causes of vegetation variation. Wang et al. (2015)
and Duo et al. (2017) explored the human factors affecting
vegetation in the North China Plain and southern hilly areas
of China through residual analysis. He et al. (2020) used
nightlight data to characterize human factors and determined
that human influences were the primary factor for the decrease
in vegetation in and around cities in Zhejiang Province through
a correlation coefficient analysis.

However, these traditional methods are unable to elucidate the
nonlinear interdependence between multiple influencing factors,
especially those that are intertwined with anthropogenic
influences and climate fluctuations. In other words, a single
driver cannot be quantitatively determined and has certain
limitations. Based on this, Wang et al. (2016) proposed a
geographic detector model, which is a statistical method for
determining spatial differentiation through spatial variance
analysis and revealing its driving factors. It can quantitatively
identify the influence of factors and their interaction intensity.
Many studies have effectively applied methods at different scales
to cover a variety of influencing factors, resulting in a comprehensive
understanding of the driving forces controlling changes in
vegetation cover (Du et al., 2016; Pei et al., 2019; Yan et al., 2019).

Ecosystems in mountainous and plateau areas are fragile and
irreversible (Wang et al., 2018; Liu et al., 2019) and are particularly
sensitive to climate change (Beniston et al., 1997). As the largest
plateau lake in the National Nature Reserve, the Erhai Lake Basin
provides various ecosystem services. Due to great differences in
topography, climate, and human disturbance, there are significant
differences in surface vegetation coverage and ecological conditions
in the Erhai Lake Basin. Based on the NDVI dataset and 15 driving

factor datasets, this study employedmultiple analytical techniques to
identify the spatio-temporal change characteristics of FVC in the
Erhai Lake Basin and quantify the drivers affecting vegetation in the
region. These results are crucial for promoting ecological restoration
and guiding the local environmental protection in this area.

2 Overview of the study area

The Erhai Lake Basin is a Lancang-Mekong River system that
includes the Cangshan National Nature Reserve and a typical
plateau lake. It is the core area for wetland ecological functions
in northwest Yunnan Province (Zhong et al., 2018). The Erhai Lake
Basin is characterized by a typical low-latitude plateau subtropical
monsoon climate with distinct dry seasons. The average annual
temperature is about 15.2°C, and the average annual rainfall is about
1,048 mm. The vegetation distribution in the basin is vertical zonal.
Diversified plant communities provide an important guarantee for
the stability of the ecosystem in this region. The rock and soil types
in the Erhai Lake Basin are primarily metamorphic rocks and red
soil (Chen et al., 2021). Erhai Lake Basin contains 18 townships: Dali
Innovation Industrial Park Manjiang Office (MJ), Shuanglang Town
(SL), Xizhou Town (XZ), Dali Innovation Industrial Park Patio
Office (TJ), Dali Innovation Industrial Park Fengyi Town (FY),
Yinqiao Town (YQ), Wanqiao Town (WQ), Shangguan Town (SG),
Xiaguan Town (XG), Dali Town (DL), Haidong Town (HD), Wase
Township (WS), Cibihu Township (CBH), Fengyu Township
(FYU), Sanying Township (SY), Dengchuan Township (DC),
Niujie Township (NJ) and Yousuo Township (YS). The specific
locations are shown (Figure 1).

3 Materials and methods

3.1 Data source and processing

The data sources and processing of the study are seen (Table 1).

3.2 Research method

3.2.1 Pixel binary model
The principle of this model is that a pixel consists of only

vegetation cover and bare soil. It calculates the proportion of
vegetation coverage based on NDVI. The method is widely and
frequently used in detecting vegetation ecological changes (Li, 2003).
The FVC was calculated using Formula 1.

FVC � NDVI −NDVImin

NDVImax − NDVImin
(1)

where NDVImax is the pure vegetation pixel NDVI value, and
NDVImin is the pixel without vegetation cover. The NDVI values
with 5% and 95% confidence intervals were substituted for NDVImin

andNDVImax. The FVC standard deviation characterizes the locality
of the difference in FVC. By analyzing the standard deviation of the
FVC in 18 townships in the Erhai Lake Basin, the spatial
heterogeneity of the FVC in each region was characterized for
the period 2000–2022.
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FIGURE 1
Research area.

TABLE 1 Data source and preprocessing.

Data set Data sources Spatial
resolution

Preprocessing

NDVI dataset National Data Center for Ecological Sciences (http://www.nesdc.org.cn/) 30 m Zoom out by 10,000 times

Land cover data (X1) Data Centre for Resource and Environmental Sciences, Chinese Academy of
Sciences (https:// www.resdc.cn/)

30 m Reclassify, Resampling
to 1 km

Potential
evapotranspiration (X2)

National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/) 1 km

Average annual
temperature (X3)

National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/) 1 km

Annual precipitation (X4) National Earth System Science Data Center (https://www.geodata.cn/) 1 km

Population density (X5) Global population distribution raster data (https://landscan.ornl.gov/) 1 km

Annual minimum
temperature (X6)

National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/) 1 km

Annual maximum
temperature (X7)

National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/) 1 km

PM2.5 (X8) Year by year nationwide PM2.5 raster data (https://zenodo.org/record/6398971) 1 km

GDP (X9) National Earth System Science Data Center (https://www.geodata.cn/) 1 km

Artificial night light (X10) National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/) 1 km Kriging interpolation

Soil (X11) Data Centre for Resource and Environmental Sciences, Chinese Academy of
Sciences (https://www.resdc.cn/)

1 km

DEM (X12) Geospatial data cloud (https://www.gscloud.cn/) 30 m Resampling to 1 km

Slope (X13) DEM

Aspect (X14) DEM

Geomorphological data (X15) National Earth System Science Data Center (https://www.geodata.cn/) 1 km
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3.2.2 Coefficient of variation
Coefficient of variation (CV) is the ratio of the standard deviation to

the mean (Deng et al., 2017; Chaudhari and Thakkar, 2023). The
variation coefficient is generally used to assess the degree of dispersion
of long-term data. The variation coefficient of the average annual
vegetation coverage obtained from to 2000–2022 was calculated
pixel-by-pixel to determine the degree of vegetation stability. It is a
dimensionless quantity that does not require the mean of the reference
data (He et al., 2023). Its calculation is shown in Formulas 2, 3:

Cν � σ
FVC

(2)

σ �
�����������������
1
n
∑n
i�1

FVCi − FVC)2(√
(3)

where FVCi and FVC are the FVC values of a pixel in year i and the
mean FVC value during the study period, respectively.

3.2.3 Trend analysis
The Theil–Sen Median is a resilient non-parametric method for

calculating trends. It does not depend on a specific distribution and
is unaffected by outliers, making it ideal for analyzing long-term
trends in FVC (Li et al., 2019; Tian et al., 2022; Sun et al., 2023). Its
calculation is shown in Formula 4:

β � Median
FVCj − FVCi

j − i
( )∀j> i (4)

FVCi and FVCj represent the long-term datasets for years i and j,
respectively. If β is positive, it suggests that there is an increase in
FVC. Conversely, this indicates a decline.

The Mann-Kendall test is a distribution-free test that does not
need to follow the normal distribution of measured values; the
impact of outliers can be reduced to a minimum degree, making it
suitable for long-term time-series data trend significance tests
(Kendall, 1957; Bo-feng and Rong, 2009). The statistical test
formula can be seen in Formula 5.

S � ∑n−1
i�1

∑n
j�i+1

sgn FVCj − FVCi( ) (5)

where, calculation of sgn can be shown in Formula 6.

sgn FVCj − FVCi( ) � 1, FVCj − FVCi > 0
0, FVCj − FVCi � 0
−1, FVCj − FVCi < 0

⎧⎪⎨⎪⎩ (6)

Trend test is carried out with the help of Z. Z is calculated as
Formula 7:

Z �
S − 1( )/ ������

Var S( )√
, S> 0

0, S � 0
S + 1( )/ ������

Var S( )√
, S< 0

⎧⎪⎨⎪⎩ (7)

Calculation formula of Var value is shown in Formula 8:

Var S( ) � n n − 1( ) 2n + 5( )
18

(8)

where n denotes the number of data points. The confidence
level was 95%.

3.2.4 Geographic detector
Geographical detection is a statistical technique used to

reveal the driving factors behind the spatial stratification
heterogeneity of objects. It is often used to identify key
factors and interaction processes of spatial stratification
heterogeneity. There are four main modules for geographical
detection (Song et al., 2020; Zhang et al., 2020; Jiang et al.,
2022). In this study, factors and interaction detectors were
selected to examine the driving influence of vegetation in the
Erhai Lake Basin.

The factor detector is primarily used to identify the spatial
variability of Y(FVC) and the degree of interpretation of different
factors X (each detection factor) on Y. Its explanatory power is
quantified by the q value. The q value was determined using
Equations 9–11:

q � 1 −
∑L
h�1

Nhσ2h

Nσ2
� 1 − W

T
(9)

W � ∑L
h�1

Nhσ
2
h (10)

T � Nσ2 (11)
where h = 1,2 . . . L is the classification of X or Y, q represents
the explanatory power of the driving factors of the FVC, Nh

refers to the number of units in layer h, and N indicates the total
number of units in the entire region. σ2 and σh2 represent
variance of FVC in class h and across region, W and T are
sum of variances and total regional variances of class h
respectively.

When running the geographic detector model, we need to
discretize the driving factors. This study used the natural
segmented point method to divide driving factors such as
precipitation, temperature, altitude, GDP, and population
density into 10 categories. According to the broad category
criteria, soil types are divided into 16 categories, vegetation
types into 10 categories, land-cover types into six categories,
and geomorphic types into six categories (Zhao et al., 2015). The
Erhai Lake Basin was divided into a grid of 1 km × 1 km Data
from 2,188 sample points in this region were selected for analysis.
The q statistics of the 15 driving factors in 2000, 2005, 2010, 2015,
and 2020 in the Erhai Lake Basin were calculated using
geographic detectors.

3.2.5 Correlation analysis
Correlation coefficients (CC) were used to analyze the

relationship between two or more variables (Liu et al., 2020). In
this study, we examined the relationships among FVC, annual
maximum temperature, and annual rainfall.

Rxy �
∑n
i�1

xi − ý( ) yi − ý( )�����������������∑n
i�1
(xi − x́ )∑n

i�1
yi − ý( )√ (12)

where Rxy is the CC between two variables, x is the annual
maximum temperature and annual rainfall, and y is the FVC,
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n is duration of time; x́ and ý are the averages over the
study period.

4 Results and analysis

4.1 Spatio-temporal dynamic characteristics
of FVC

From 2000 to 2022, the FVC in the Erhai Basin was low in the
middle and south and high in the surrounding areas (Figure 2).
The high area accounts for 70.36% of the whole basin and is
concentrated in the eastern and western parts of Erhai Lake,
especially Cangshan Mountain in the western part of the Erhai
Lake Basin. Overall, FVC presents a fluctuating upward trend,
and the peak value appears in 2001, 2005, 2009, 2011, 2016, and
2020. The historical high point (78.71%) was reached in 2020,
which shows the time changes of different levels of FVC in the
Erhai Lake Basin from 2000 to 2022 (Figure 3). The coverage area
gradually increased from 59.20% to 73.12%, which was higher

FIGURE 2
Temporal and spatial changes of vegetation coverage (A–D) and the proportion of each type in each year.

FIGURE 3
Interannual variation of FVC in Erhai Lake basin.
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than the annual average (70.36%). Middle and high coverage
decreased from 19.72% in 2000 to 9.96% in 2022, lower than the
multi-year average (13.45%), while the latter decreased from

7.86% in 2000 to 3.60% in 2022, lower than the multi-year
average (4.11%).

4.2 Change trend of FVC

The results showed that FVC increased significantly,
accounting for 34.8% (Figure 4). A significant increase of
8.8%, a significant decrease of 2.7%, and a very significant
decrease of 6.5% were observed; overall, the increased area
was higher than the decreased area, with a difference of
34.4%. In addition, 47.2% of the regions exhibited no notable
changes in FVC. Spatially, an extremely significant increase in
FVC over the past 23 years was observed, mainly in the north. It is
worth noting that SG, DC, and CBH significantly increased by
more than 50%, and significantly decreased areas were mainly
distributed in MJ and sites (YQ, DL, WQ, and XZ) in the western
Erhai Lake Basin.

Among the different administrative regions, TJ and MJ had
the lowest FVC, but TJ showed a change from low to high FVC
(Figure 5). MJ indicating a continuous decline. In addition to TJ

FIGURE 4
Results of FVC significance test in Erhai River basin.

FIGURE 5
Ratio of different FVC significance in 18 townships of Erhai
River Basin.
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and MJ, the average FVC in the other 16 towns was greater than
73.70%. The multiyear mean for WQ was 87.47%, followed by
SL (86.29%), XZ (85.85%), YQ (85.74), FYU (85.48%), and FY
(85.07%). The FVC standard deviation analysis results showed
that in 2000–2022, the minimum standard deviation of SL,
followed by NJ, XZ, FY, WQ, SG, XG, DL, WS, CBH, FYU, SY,
DC, and YS FVC, was relatively smooth; MJ, TJ, and HD varied
greatly (Figure 6).

4.3 Stability analysis of FVC

The Cv values represent the extent of variability within a
dataset. The stability distribution of vegetation coverage in the
Erhai Lake Basin was obtained by calculating the variation
coefficient of the vegetation coverage image pixel-by-pixel.
The stability of FVC from 2000 to 2022 shows minimal and
slight fluctuations in most regions as a whole (Table 2; Figure 7).
According to the classification results of Cv, 59.74% of the
regions with minimum and slight fluctuations were mainly
distributed in the Cangshan region, with high forest cover
and little influence of human activities. The largest floating
area accounted for 17.35% and was mainly concentrated in
the south of the Erhai Lake Basin. The main reason for this is
that under the influence of regional development (development
zone) and urban expansion (Xiaguan Town), the surface of this
area has changed greatly, resulting in the maximum floating

phenomenon of regional vegetation. The proportion of the
moderately floating area was 16.57%, which was mainly
concentrated in the north of the Erhai Lake Basin. Its area
was intertwined with the highly floating area. Although the
area is affected by urbanization, its impact is small.

4.4 Quantitative the drivers of FVC

To examine how different geographical factors affect changes
in the FVC in the Erhai Lake Basin, 15 relevant variables were
detected using a geographical detector and 2,188 sampling
points were investigated. Land cover (X1) and soil type (X11)
had the highest explanatory powers, with average mean q-values
of 0.196 and 0.138, respectively (Figure 8). The lowest q values
were for the slope direction (X14) and annual rainfall (X4), with
values of 0.016 and 0.042, respectively. Based on the mean q
value, driving factors in order from high to low is: land cover
(0.196) > soil type (0.138) > GDP (0.131)> population density
(0.127) > elevation (0.125) > highest temperature (0.124) in >
PM2.5 (0.122) > annual average temperature (0.119) > artificial
light (0.118)> landform (0.117) > potential evapotranspiration
(0.114)> annual minimum temperature (0.105) > slope
(0.067) >annual rainfall (0.042) >aspect of slope (0.016).
Therefore, land cover and soil type were the main explanatory
variables of the FVC in the Erhai Lake Basin and were identified
as the main factors. The explanatory abilities of the land cover
and soil type were relatively stable. At the same time, other
geographical factors such as GDP, population density, elevation,
annual maximum temperature and potential evapotranspiration
are considered as secondary driving factors. Annual rainfall,
slope direction, and slope had the lowest explanatory powers,
and the mean q values were all less than 0.1, indicating that they
had the least impact on vegetation cover in the Erhai Lake Basin
(Figure 8). In general, human activity factors, represented by
land cover, had a primary influence on the spatial distribution of
the FVC in the Erhai Lake Basin. The influence of land cover type
on anthropogenic factors gradually increased over time,
especially during 2015–2020, when the q value increased from

FIGURE 6
The mean value and standard deviation of FVC in 18 towns in Erhai Lake Basin.

TABLE 2 Classification table of variation coefficient of FVC in Erhai Lake
Basin.

Fluctuation level CV Ratio (%)

Minimum ≤0.05 26.12

Low (0.05, 0.10] 33.62

Moderate (0.10, 0.15] 16.57

High (0.15, 0.252] 6.35

Maximum >0.252 17.35

Frontiers in Environmental Science frontiersin.org07

Liu et al. 10.3389/fenvs.2024.1502208

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1502208


0.194 in 2015 to 0.298 in 2020. The impact of social factors such
as population growth and human activities will be more closely
related to FVC changes and ecological environment evolution in
the future.

Detecting the spatial variations in vegetation associated with
different drivers provides insight into the changes in the
explanatory power of individual drivers. The Geodetector tool
effectively revealed the interactions between drivers that lead to
changes in vegetation cover. The results showed that the influence
of any two of the 15 driving factors on the FVC was more
significant than the effect of each factor alone. Additionally, the
effects of the two-factor and nonlinear enhancements are shown.
Land cover type ∩ night light (q = 0.385), land cover type ∩ GDP
(q = 0.372), land cover type ∩ soil type (q = 0.365) and land cover
type ∩ population density (q = 0.363) are main factors influencing
geographical distribution of vegetation cover in Erhai Lake Basin.
Land cover type, as the most important driving factor, can better
explain the geographical distribution of the FVC in the Erhai Lake
Basin by interacting with other driving factors (Figure 9). After the

interaction between human factors, the explanatory power was
significantly improved.

4.5 Effects of natural factors on FVC in Erhai
Lake basin

4.5.1 Geomorphic factor
The mean and standard deviation of the vegetation coverage of

each geomorphic type showed that the average vegetation coverage
of the large rolling mountains was 0.934 and reached its highest
value (0.950) in 2020. The average vegetation coverage of the
middle elevation plain was 0.630 and reached its lowest value
(0.591) in 2012 (Figure 10). In addition, the large undulating
mountains had the lowest standard deviation and the most stable
change, followed by the large undulating mountains, medium
undulating mountains, small undulating mountains, medium-
altitude hills, and medium-altitude plains, among which the
latter had the greatest change.

FIGURE 7
Spatial distribution of stability degree of FVC in Erhai Lake Basin.
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4.5.2 Topographic factor
The change trend of the average vegetation coverage and its 50m

interval in the elevation area were analyzed and calculated
(Figure 11). The results show that the FVC in the Erhai Lake
Basin exhibited a wavy evolutionary trend. In the initial stage,
from 1,550 to 2,150 m, the trend showed a large fluctuation and
then increased with increasing altitude. The average FVC peak at
3,000 m (0.898). Above this height, the trend experienced a slight

slowdown and gradually stabilized regionally. In addition, at
1,650 m and 2000 m, the standard deviation of the average FVC
was the largest at 0.264 and 0.347, respectively, with a large range
of changes.

4.5.3 Climatic factor
Through the creation of 2,833 sampling points in the entire

Erhai Lake Basin, the mean FVC, annual maximum temperature,
and annual precipitation during 2000–2022 were extracted for
Pearson bivariate correlation analysis (Figure 12), which showed
that in the past 23 years, FVC in the Erhai Lake Basin had a
significant negative correlation with the annual maximum
temperature, with CC ranging from −0.283 to −0.380, and CC
reaching its highest value in 2020, while the correlation
coefficient had a significant positive relationship with annual
precipitation, with values ranging from 0.239 to 0.423, and CC
reaching a higher value in 2013.

4.6 Effects of human activities

From 2000 to 2020, the proportion of construction land area
increased from 3.29% to 5.93% (Figure 13). This may make the
FVC of the construction land increase area fluctuate greatly, and
may even be the main reason for the degradation of this area.
The area of cropland has decreased significantly. Forests and
grassland accounted for the highest proportion of all land cover
in each year. The sum of the two accounted for more than half of
the total area in 5 years, which further explained the high
vegetation coverage in Erhai Lake Basin.

Population density of the Erhai Lake Basin was classified
according to global population levels. It is an extremely rare
area (<1 people/km2), rare area (1–25 people/km2), medium

FIGURE 8
Detect factor q value.

FIGURE 9
Interaction of FVC driving factors in Erhai Lake Basin.

Frontiers in Environmental Science frontiersin.org09

Liu et al. 10.3389/fenvs.2024.1502208

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1502208


zone (25–100 people/km2), and dense area (>100 people/km 2).
As shown in Figure 14, the sparse population density area had
the highest mean FVC (0.841) and lowest standard deviation
(0.166), followed by the very sparse population density area
(0.836), and the medium population area (0.782). It is worth
noting that the sparse population density area had the lowest
mean FVC (0.689) but the highest standard deviation (0.268).

5 Discussion

5.1 Spatio-temporal variations of FVC

Vegetation plays an important role in carbon sequestration,
energy exchange and biodiversity support, and vegetation coverage
has become an important index to evaluate ecological quality.
Understanding the dynamic changes of vegetation on the scale of
plateau watershed is of great significance for resource managers to
manage ecological environment systems. In this study, the
spatiotemporal characteristics of the FVC in the Erhai Lake Basin,
a typical plateau basin in Yunnan Province, and a quantitative analysis
of the factors in the last 23 years were investigated. The topography of

the Erhai Lake Basin is complex, and meteorology, topography, and
human factors have a significant influence on FVC in the region.
From the perspective of spatiotemporal variations, from 2000 to 2022,
FVC in the Erhai Lake Basin exhibited an upward trend, with a
notable increase covered by medium vegetation. Vegetation
degradation in the western and southeastern parts of the Erhai
Lake Basin was evident. In 2020, the FVC of Erhai Lake Basin
reached the highest value (78.71%), and the high coverage area
was mainly distributed in Cangshan Mountain in the west of Erhai
Basin, and the vegetation change in this area was very small, which
was not only related to the regional climate of Cangshan Mountain,
but also closely related to the long-term support of the government for
Cangshan Nature Reserve. The FVC mainly increased significantly
(34.8%), andmainly distributed in SG andDC.On the whole, the FVC
of Erhai Lake Basin maintained a good trend and showed an
increasing trend.

5.2 Analysis of driving factors of FVC

The factors influencing the FVC are cross-complex, and the
geographical detector model is helpful for analyzing the specific

FIGURE 10
Relationship between mean and standard deviation of vegetation coverage and geomorphic types in Erhai Lake Basin.

FIGURE 11
Relationship between mean and standard deviation of vegetation coverage and altitude in Erhai Lake Basin.
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driving mechanism in detail. From 2000 to 2022, land-cover type
was the dominant factor, and the explanatory power of land-
cover type was high. Land cover type was the main factor
influencing the spatial variation in vegetation cover in the
Erhai Lake Basin, but the q value of each driving factor
underwent significant changes over time. The q values for the
15 driving factors selected showed an increasing trend,
particularly the influence of land cover type, annual minimum
temperature, potential evapotranspiration, and night lights on
the spatial differentiation of FVC showed an increasing trend.
According to the results of the interactive detection and analysis,
it is evident that the FVC of the Erhai Lake Basin is greatly
affected by human activities, and the interaction between land

cover type and night light or GDP factors has the strongest effect,
with a q value of more than 0.372.

In the context of global warming, the dynamic change of
vegetation has spatial heterogeneity (Shahid et al., 2018), and is
closely related to climate factors. The analysis results of geographic
detectors showed that the annual maximum temperature and
annual rainfall had a large q value. Therefore, the correlation
between FVC and annual maximum temperature and annual
rainfall in each year from 2000 to 2022 was evaluated by means
of pearson correlation analysis, and the impact of these two climate
factors on FVC was evaluated. The results showed that FVC was
negatively correlated with annual maximum temperature and
positively correlated with annual rainfall, and both showed
significant correlation (p < 0.01). By averaging the correlation
coefficients over 23 years, the effect of annual rainfall (0.35) is
greater than that of annual maximum temperature (−0.32).
Because of the low latitude of Erhai Lake Basin, high
temperature may promote the evaporation of soil water and the
closure of plant stomata, thus affecting the photosynthesis of
vegetation (Gu et al., 2018). Regions with high FVC were
mainly concentrated on the large rolling mountains with an
altitude of 2,700–3,200 m, while the areas above 3,800 m may
have a decrease in FVC caused by a large amount of snow. At high
altitudes, higher-temperature environments are suitable for plant
growth. However, the positive benefits of rising temperatures on
vegetation growth may be offset by the susceptibility of vegetation
to the limiting effect of water availability (Liu et al., 2019; Qiao
et al., 2021). In this study, the annual maximum temperature was
negatively correlated with FVC, which also proved this point. The
area of forest and grassland were in the forefront, which also
explained the reason for the highest proportion of high FVC in the
Erhai Lake Basin. In addition, the FVC of MJ showed a relatively
obvious trend of extremely significant reduction, with a large
standard deviation. MJ is a part of the National Dali Economic
and Technological Development Zone. Some cropland was
transferred to construction land in MJ. The fluctuation was
obvious, which may be related to the economic development of

FIGURE 12
Relationship between FVC and annual maximum temperature
and annual precipitation in Erhai Lake Basin (p < 0.01).

FIGURE 13
Land cover type changes in Erhai Lake Basin from 2000 to 2020.

FIGURE 14
Relationship betweenmean and standard deviation of vegetation
coverage and population density in Erhai Lake Basin.
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this region. In general, the FVC of Erhai Lake Basin is a
complicated process influenced by the interaction of human
and natural factors.

5.3 Limitations

The changing nature of vegetation is a complex process
influenced by various factors. The study of the coupling effect of
natural and human factors is helpful to further deepen our
understanding of the dynamic forces of the FVC in plateau lake
watersheds, but the study still has some limitations. The potential
driving factors considered in this study were not comprehensive. The
implementation of the farmland conversion project, the delayed effect of
climate change on vegetation growth, and more meteorological,
socioeconomic, and policy factors need to be determined to reduce
the uncertainty of the research on vegetation changes (Feng et al., 2020;
Zhang et al., 2021). In addition, in this study, a pixel binary model was
utilized to assess the FVC in the Earhai Lake Basin using remote sensing.
However, in some arid areas, such as Haidong Town, the pixel binary
model may not solve the uncertainty caused by it, and the pixel third
model can compensate for it well. Future studies combining the two
modelsmay yield better results (Ning et al., 2023). Thus, vegetation cover
trends can be analyzed more accurately.

6 Conclusion

Erhai Lake, the largest plateau lake in the National Nature
Reserve, has important ecological functions. This research
examined the spatiotemporal dynamic features and driving
mechanisms of FVC in this area during 2000–2022 by using
NDVI datasets and 15 driving factor data sources. The results
show that:

(1) The FVC of the Erhai Lake Basin was low in the middle and
south but high around the basin. Regions with high FVC were
primarily concentrated in the Cangshan region west of the
Erhai Lake Basin. The changes in XG, TJ, MJ, and HD in the
south of the Erhai Lake Basin fluctuated greatly, and the FVC
in the northern Erhai Lake Basin was more evident.

(2) The q values for land cover and soil type were the highest.
Various factors showed significant interactions, and the q
value indicated that the interaction exceeded the interaction
related to individual factors. The interaction between land
cover and night light had a stronger impact.

(3) There was a correlation between each factor and
vegetation cover. The trends and average vegetation

cover changes were related to elevation, land cover,
population, and terrain. The correlation coefficients
between the annual maximum temperature and FVC
indicated a negative relationship, which significantly
impacted ecosystem dynamics.
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