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Improving urban land use eco-efficiency (ULUEE) is of great significance for
promoting high-quality economic development and promoting the
modernization of harmonious coexistence between humans and nature. In
this study, the super efficiency SBM model with undesirable output was used
to measure the level of ULUEE at the county scale in Zhejiang province from
2006 to 2022. Based on this, the spatial-temporal evolution and spatial
agglomeration characteristics were analyzed by using spatial analysis
techniques, kernel density analysis, and spatial autocorrelation model. Finally,
the driving mechanisms were revealed by using the geographical detector model
and GWR model. The results were as follows: (1) From 2006 to 2022, the ULUEE
of Zhejiang province rose from 0.34 to 0.73, with an average annual growth rate
of 2.44%. The degree of efficiency differences between counties gradually
converged. (2) The ULUEE at the county level exhibited a significant spatial
positive correlation, with Moran’s I index increasing from 0.3219 to 0.3715. On
the local scale, the cold spot significant area was mainly distributed in the north
and south of Zhejiang province, and significant spatial and temporal variations
were observed within the hot spot significant area. (3) The results of factor
detection showed that altitude (X1), topographic relief (X2), and forest cover (X3)
always played a strong role in affecting ULUEE. Among the socioeconomic
factors, foreign trade (X8) had the strongest explanatory power in the early
period, and GDP per capita (X5) and industrial structure (X6) played the
strongest role in the later period. The explanatory power of all influencing
factors decreased over time. (4) At the local scale, GDP per capita (X5),
industrial structure (X6), and fiscal expenditure scale (X7) presented positive
effects on ULUEE, and development vitality (X9) presented a negative effect.
Future endeavors should encompass a multifaceted approach, which includes
the facilitation of industrial modernization and the enhancement of external
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economic engagement. Concurrently, it is imperative to capitalize on the region’s
inherent economic strengths and to foster a low-carbon, environmentally
sustainable economic model.

KEYWORDS

urban land use eco-efficiency (ULUEE), super efficiency SBM model, geodetector model,
sustainable development, Zhejiang province

1 Introduction

Human activities have now warmed global temperatures by an
average of 1.1°C, CO2 concentrations are at their maximum in nearly
2million years, and all regions of the world are facing unprecedented
changes in the climate system (Agnew, 2024). The high incidence of
extreme weather is leading to excess deaths in the population (Lou
et al., 2023), melting glaciers, and rising sea levels (Nerem et al.,
2018). To promote sustainable development, scientific regulation of
greenhouse gas emissions and slowing down the pace of global
warming have become important issues facing the world today.
China is the largest carbon emitter in the world since 2016. As a
responsible country, China proposed to achieve the goal of carbon
peaking in 2030 and carbon neutrality in 2060. In addition, China
has accelerated ecological civilization construction, proposing an
ambitious blueprint for building a beautiful China since 2012. A
series of significant measures have been implemented to reduce
pollutant emissions, protect ecological environments, and enhance
ecosystem service levels, yielding substantial achievements. In 2022,
China put forward the modernization road of harmonious
coexistence of humans and nature, which means abandoning the
unsophisticated model and enhancing the quality of economic and
social systems. Land is the spatial carrier of socioeconomic activities
and an important carbon source, enhancing ULUEE can facilitate
high-quality socioeconomic development and address resource and
environmental challenges. However, since the reform and opening
up, China’s rapid industrialization and urbanization have led to the
continuous and disorderly expansion of urban land. Numerous
farmlands, forests, and wetlands have experienced encroachment,
leading to the disruption of the functionality of territorial
ecosystems (Liu et al., 2014). Simultaneously, the issue of urban
land idleness is rather pronounced, and inefficient land use
significantly hinders sustainable development. Consequently,
achieving ecological land use has become imperative for China’s
sustainable development.

Extensive research has been conducted on ULUEE. In terms of
research contents, scholars primarily focus on the measurement (Lu
et al., 2020; Liu et al., 2021), spatiotemporal changes, and
convergence characteristics of ULUEE (Ma D. L. et al., 2023; Yu
et al., 2019; Yang and Wu, 2019). Scholars have identified various
factors influencing ULUEE, such as land use management policy
(Den and Gibson, 2020), land urbanization (Tang et al., 2020), land
marketization (Yu and Luo, 2023), population urbanization (Zhou
Y. et al., 2020), environmental regulation (Yang et al., 2019), urban
shrinkage (Sun and Zhou, 2023),new-type urbanization (Zhao et al.,
2018), urban agglomerations (Huang et al., 2018), technological
innovations (Chen et al., 2020). Additionally, some scholars have
investigated agricultural land use eco-efficiency (Hu et al., 2022). In
terms of research scale, studies on urban land eco-efficiency

primarily concentrate on the national level (Zhou L. et al., 2020;
Liu et al., 2022; Fan and Jiang, 2023), urban agglomerations (Ge
et al., 2021; Ge et al., 2023; Hong andMao, 2023), river basins (Chen
et al., 2022; Cui et al., 2023; Li et al., 2023; Ma D. L. et al., 2023),
provincial areas (Liu et al., 2019; Zhang and Lu, 2022), and
prefecture-level (Huntington et al., 2021). In terms of research
methods, the data envelopment analysis (DEA) (Cook and
Seiford, 2009), stochastic frontier approach (SFA) (Liu et al.,
2020), slacks-based measure model (SBM) (Fan and Jiang, 2023),
epsilon-based measure model (EBM) (Cui et al., 2023), Super-EBM
model (Li et al., 2023; Ma D. L. et al., 2023; Ma et al., 2024),
Malmquist index method (Zhao et al., 2018) were mainly utilized.
To analyze the driving mechanism of influencing factors, the Tobit
regression model (Chen et al., 2022), geographically weighted
regression model (GWR) (Huntington et al., 2021),
geographically and temporally weighted regression model
(GTWR) (Ge et al., 2023; Li et al., 2023), fixed effects model
(Zhou et al., 2018; Hong and Mao, 2023) were mostly used.

The existing studies have the following deficiencies. (1) The
county serves as the basic unit of China’s national governance and is
the primary financial unit, spatial unit, and industrial carrier for the
country’s socioeconomic development. Enhancing county-level
ULUEE can positively contribute to green and sustainable
development, but relevant research is insufficient. (2) At the
measurement level of ULUEE, the targeted evaluation index
system for the national dual-carbon goal and ecological
civilization construction is relatively lacking, and there is an
urgent need to incorporate undesirable outputs such as PM2.5,
CO2, SO2, etc., (3) The traditional efficiency measurement model
cannot differentiate the disparity between the research units when
the efficiency value is over 1, and the super-efficiency SBM model
can overcome this deficiency (Li and Shi, 2014), which can better
reveal the differences in ULUEE among counties.

Zhejiang Province is a demonstration area of the common
wealth and a pioneer area of ecological civilization construction
in China, which has achieved outstanding results in socio-economic
development for many years. However, the development mode of
high energy consumption, high pollution, and low income still exists
in some areas. Exploring the driving mechanism of ULUEE at the
county level and putting forward targeted suggestions for
improvement will help to support the national strategic goal of
high-quality development. Therefore, this study adopts the super-
efficient SBM model approach considering undesirable outputs to
measure ULUEE at the county level in Zhejiang province from
2006 to 2022 and reveals its spatial clustering characteristics by using
GIS spatial analysis. In addition, the geodetector model and GWR
model are utilized to analyze the driving mechanisms at global and
local scales and finally put forward targeted countermeasure
suggestions.
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2 Study area and data sources

2.1 Study area

Zhejiang Province is located in the south of China’s Yangtze
River Delta urban agglomeration, with a land area of 105,500 km2.
The topography of Zhejiang Province exhibits a stepped inclination
from southwest to northeast, characterized by a distinctive
landscape progression. The southwestern region is predominantly
mountainous, transitioning to hilly terrain in the central area, and
culminating in low-lying alluvial plains in the northeastern sector
(Figure 1). In 2022, the GDP of Zhejiang province was 7,771.5 billion
yuan, ranking fourth in the country. The permanent population is
65.77 million, and the urbanization rate is 73.4%. The air conditions
in Zhejiang Province have continued to improve in recent years,
with an average annual concentration of PM2.5 of 39 μg/m

3 in 2022.
Zhejiang Province comprises 90 districts and counties. Among
them, Hangzhou boasts a highly developed digital economy and
a concentration of high-tech industries, Taizhou and Ningbo cluster
High-end manufacturing industries, and Lishui forms a highly
effective eco-industrialization model. Conversely, Jiaxing and
Wenzhou encounter challenges related to industrial upgrading
and idle land use. As a leading demonstration area for ecological
civilization construction and shared prosperity in China, Zhejiang
Province strives to improve the ULUEE to promote coordinated
development of efficient resource utilization, ecological and
environmental protection, and high-quality economic development.

2.2 Research methodology

2.2.1 Super-SBM model
The traditional DEA method cannot incorporate undesirable

output to evaluate the efficiency of DMU. Therefore, this study used

the super-SBM model, which can consider the undesirable output
and distinguish the units when the efficiency value equal to 1 (Huang
et al., 2021). Assume there are j = 1, 2, 3 . . . . . . N DMUs. Each of
them utilizes an input vector x ∈ Rm to produce a desirable output
vector yg ∈ Rs1 and an undesirable output vector yb ∈ Rs2 . The
production possibility set can be defined as Equation 1:

p � x, yg, yb x≥Xλ, yg ≥Ygλ, yb ≥Ybλ, λ≥ 0
∣∣∣∣( ){ } (1)

which X,Yg, Yb are defined as the matrices of the input vector,
desirable output vector, and undesirable output vector respectively.
λ is the weight vector. The optimal solution for solving the DEA-type
model can be expressed by Equations 2, 3:

ρ* � 1 − 1
m∑m

i�1
s−i
xi0

1 + 1
s1+s2 ∑s1

r�1
sgr
ygr0

+∑s2
r�1

sbr
ybr0

( ) (2)

Subject to: x0 � xλ + S−

yg0 � Ygλ − Sg

yb
0 � Ybλ + Sg

S− ≥ 0, Sg ≥ 0, Sb ≥ 0, λ≥ 0
(3)

where S � (S−, Sg, Sb) are the corresponding slacks of inputs,
desirable outputs, and undesirable outputs? The DMU is efficient,
if and only if the objective function value ρ* � 1, S− � 0, Sg � 0, Sb �
0 is. If ρ*< 1, it indicates that DMU is inefficient.

2.2.2 Spatial autocorrelation model
Spatial autocorrelation measures the potential interdependence

between the same spatial attribute values, including global and local
autocorrelation. Global spatial autocorrelation is used to judge
whether attribute values are spatially clustered. Still, it cannot
accurately measure the specific cluster region, so it is necessary
to use local spatial autocorrelation to determine the cluster region
(Ye et al., 2018). The formula is as Equation 4:

FIGURE 1
County administrative divisions in Zhejiang Province.
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Moran′sI � n∑n
i�1∑n

j�1wij Yi − �Y( ) Yj − �Y( )
S2∑n

i�1∑n
j�1wij

i ≠ j( ) (4)

where i and j denote different cities, S2 � 1
n∑n

i�1(Yi − �Y)2 and
�Y � 1

n∑n
n�1Yi, YiYj and represent the observations on the spatial

cell, wij is the spatial weight matrix, and I take values
between −1 and 1. The larger the absolute value of I is, the
stronger the spatial correlation. Getis-Ord Gi* was used to
analyze the cold spots and hot spots of ULUEE (Tang et al.,
2020). The formula is as Equation 5:

G*
i d( ) � ∑n

j�1
wij d( )Pj/∑n

j�1
Pj (5)

where n denotes the number of counties, Pj represents the observed
values of ULUEE on spatial units, wij is the spatial weight matrix,
and G*

i is close to 0, which means that the observed values are
randomly distributed. The larger the absolute value G*

i , the more
likely it is to form a hot spot area or a cold spot area.

2.2.3 Kernel density analysis
Kernel density analysis is an essential non-parametric

estimation method to study data distribution characteristics. This
method does not require the prior information of the model and can
describe the distribution form of random variables by estimating
their continuous density curves, thus possessing robustness (Liu
et al., 2023).

In this paper, the Gaussian kernel function is used to construct
kernel function K(x). The estimation formulas are shown in
Equations 6, 7. f(x) is the density function of random variable X.
N, Xi, and h denote the number of observations, independent and
identically distributed observations, and broadband, respectively.

f x( ) � 1
Nh

( )∑N

i�1K
Xi − x

h
( ) (6)

K x( ) � 1���
2π

√( ) exp
−x2

2
( ) (7)

2.2.4 Geodetector model
Geodetector is used to detect spatial differentiation and reveal

the driving forces behind it, including factor detection, interactive
detection, and ecological detection (Wang et al., 2010). The
calculation formula for factor detection is shown as Equations 8, 9:

q � 1 −
∑L
h�1

Nhσ2h

Nσ2
� 1 − SSW

SST
(8)

SSW � ∑L
h�1

Nhσ
2
h, SST � Nσ2 (9)

where h = 1, . . . , L is the strata of variable Y or factor X, that is,
classification or partition, Nh and N are the number of units in layer
h and the whole region, respectively. Moreover, σ2h and σ2 are the
variances of the Y values of layer h and the entire region,
respectively. SSW and SST are Within the Sum of Squares and
the Total Sum of Squares, respectively. The range of q is [0, 1], and
the larger the value, the more pronounced the spatial differentiation
of Y. If the stratification is generated by the independent variable X,

the larger the q value, the stronger the explanatory power of the self-
variable X to the attribute Y, and the weaker the reverse. In extreme
cases, a q value of 1 indicates that factor X completely controls the
spatial distribution of Y, and a q value of 0 indicates that factor X has
no relationship with Y, and the q value indicates that X explains
100×q% of Y.

The interaction detector is used to identify the interaction
between different risk factors Xs, that is, to assess whether the
cooperation of factors X1 and X2 will increase or decrease the
explanatory power of the dependent variable Y or whether the
effects of these factors on Y are independent of each other.
Interactions are divided into five types: nonlinear-weaken, uni-
weaken, bi-enhance, independent, and nonlinear-enhance.

2.2.5 GWR model
The GWR model is a spatial analysis technique that replaces

global parameter estimation with local parameter estimation during
regression calculations, which can reflect the non-stationarity of
parameters in different spaces so that the relationship between
variables can vary with spatial location. Therefore, it can be used
to explore the spatial heterogeneity of the mechanism of action of the
influencing factors (Cao et al., 2019). The formula is as Equation 10:

yi � β0 ui, vi( ) +∑
m
βm ui, vi( )xim + εi (10)

where yi is the explanatory variable, the coordinates of the target
region (ui, vi) I am β0(ui, vi) is the intercept term, xim is the value of
the explanatory variable xim on the target region i, βm(ui, vi) has a
value of βm(ui, vi) on geographic location i. m is the number of
explanatory variables and βi is the randomized disturbance term.

2.3 Index system construction

2.3.1 Evaluation index system of county-
level ULUEE

In this study, we selected urban land, labor, and capital as input
indicators. Specifically, county urban construction land, urban
employment in secondary and tertiary industries, and fixed
investment in secondary and tertiary sectors are input variables
(Sun and Zhou, 2023). The desirable output index considers
economic, social, and ecological aspects. The GDP of secondary
and tertiary industries and financial budget revenue are selected as
representative indicators for economic output (Liu et al., 2021). The
disposable income of urban residents is used as social output, while
ecological production is represented by NDVI(Liu et al., 2021).
PM2.5, CO2, and SO2 are selected as the main undesirable output
indicators (Zhao et al., 2018; Ma L. D. et al., 2023), considering the
objective phenomenon of environmental pollution caused by land
use (Table 1).

2.3.2 Index system of influencing factors of
county-level ULUEE in Zhejiang province

Previous research has demonstrated that the ULUEE was
influenced by natural geographical conditions and socioeconomic
development. Considering the mountainous natural environment in
Zhejiang province and referring to the relevant research, we have
selected elevation (X1) (Cao et al., 2019; Li et al., 2024), topographic
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relief (X2) (Yu and Liu, 2024), forest coverage rate (X3) (Zhu et al.,
2019; Xue et al., 2023) and precipitation (X4) (Li et al., 2024) as
indicators at the physical geography level. GDP per capita (X5)
(Zhou et al., 2018; Cao et al., 2019; Sun and Wang, 2022), industrial
structure (X6) (Bai et al., 2018; Sun and Wang, 2022), fiscal
expenditure scale (X7) (Zhu et al., 2019; Xue et al., 2023), foreign
trade (X8) (Zhou et al., 2018; Ma M. et al., 2023) and development
vitality (X9) (Li et al., 2024) were selected as indicators at the socio-
economic level (Table 2).

2.4 Data resources

The data sources utilized in this research are detailed in Tables
1, 2. Missing data were addressed through imputation methods.
The NDVI dataset was derived from MODIS 16-day 250 m
continuous time-series NDVI and EVI data products and was
generated using the Maximum Value Composite (MVC) method.
Artificial intelligence techniques were employed to produce CO2,
SO2, and PM2.5 measurements from various big data sources,

TABLE 1 Evaluation index system of county-level ULUEE in Zhejiang province.

Type Variable Description Unit Data sources

Inputs Land resource County urban construction land Km2 Resource and environment science and data center
(https://ww.resdc.cn/)

Labor force Urban employment in secondary and tertiary industries 104 persons Zhejiang Statistical Yearbook (2007–2023)

Capital Fixed investment in secondary and tertiary sectors 108 CNY Zhejiang Statistical Yearbook (2007–2023)

Desirable outputs Economic output GDP of secondary and tertiary industries 108 CNY Zhejiang Statistical Yearbook (2007–2023)

Economic output Financial budget revenue 108 CNY Zhejiang Statistical Yearbook (2007–2023)

Social output Disposable income of urban residents CNY Zhejiang Statistical Yearbook (2007–2023)

Ecological output NDVI — Resource and environment science and data center
(https://www.resdc.cn)

Undesirable outputs Air pollutants PM2.5 μg/m3 National Earth System Science Data Center (http://nnu.
geodata.cn)

CO2 mg/m3 Carbon Emission Accounts and Datasets (https://www.
ceads.net.cn/)

SO2 µg/m3 A big Earth Data Platform for Three Poles (https://poles.
tpdc.ac.cn/)

TABLE 2 Index system of influencing factors of county-level ULUEE in Zhejiang province.

Indicators Indices Spatial
resolution

Data sources References

Elevation (X1) DEM/m 1000 m Resource and environment science and data
center (https://www.resdc.cn)

Cao et al. (2019), Li et al. (2024)

Topographic
relief (X2)

Topographic relief/m 1000 m Global change research data publishing and
repository (https://geodoi.ac.cn)

Yu and Liu (2024)

Forest coverage
rate (X3)

Forest land area/total area 30 m National Tibetan plateau data center
(https://data.tpdc.ac.cn/),Resource and
environment science and data center
(https://www.resdc.cn)

Zhu et al. (2019), Xue et al. (2023)

Precipitation (X4) Annual precipitation/mm 1000 m National Tibetan Plateau Data Center
(https://data.tpdc.ac.cn/)

Li et al. (2024)

GDP per capita (X5) GDP/permanent population/CNY — Zhejiang Statistical Yearbook (2007–2023) Zhou et al. (2018), Cao et al. (2019),
Sun and Wang (2022)

Industrial
structure (X6)

Value of tertiary production/Value of
secondary production

— Zhejiang Statistical Yearbook (2007–2023) Bai et al. (2018), Sun andWang (2022)

Fiscal expenditure
scale (X7)

General public budget expenditure/
108CNY

— Zhejiang Statistical Yearbook (2007–2023) Zhu et al. (2019), Xue et al. (2023)

Foreign trade (X8) Total export-import volume/104

dollar
— Zhejiang Statistical Yearbook (2007–2023) Zhou et al. (2018), Ma et al. (2023c)

Development
vitality (X9)

Nighttime Lighting Index 1000 m Harvard Dataverse (https://dataverse.
harvard.edu/)

Li et al. (2024)
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including ground-based observations, satellite remote sensing
products, atmospheric reanalysis, and model simulation data.
The Chinese land use data was primarily interpreted using
Landsat 8 OLI satellite imagery with 30 m resolution spectral
bands, supplemented by GF-2 satellite imagery. The interpretation
was conducted using an object-oriented, human-computer
interactive land-use interpretation platform, maintaining a 30 m
spatial resolution. Topographic relief is calculated as the product of
the elevation difference between the highest and lowest points in a
region and the area of non-flat terrain, representing regional
topographic characteristics (Feng et al., 2008). This metric was
derived from DEM data using GIS spatial analysis methods. The
nighttime light index was computed using an autoencoder-based
cross-sensor approach, integrating data from DMSP-OLS and
NPP-VIIRS sensors. To ensure spatial consistency across all
datasets, preprocessing steps including clipping, projection,
resampling, and normalization were performed. All data were
projected to the WGS84_Albers coordinate system with a
standardized 1,000 m grid resolution.

3 Results and analysis

3.1 Spatial-temporal changes of ULUEE in
Zhejiang province

3.1.1 Temporal evolution analysis
As shown in Figure 2, the ULUEE of Zhejiang Province

increased from 0.34 in 2006 to 0.73 in 2022, with an average
annual growth rate of 2.44%. To further investigate the temporal
evolution of ULUEE, kernel density estimation was performed
(Figure 3). From 2006 to 2022, the kernel density curves
demonstrated a progressive rightward shift, indicating a gradual
improvement in Zhejiang Province’s ULUEE levels. The continuous
decline in the primary peak amplitude suggests a reduction in
absolute efficiency disparities among counties. The curves exhibit
pronounced right-skewed tailing with expanding distributional
spread, indicating that counties with higher ULUEE showed an
upward trend, with their deviation from the provincial average
increasing year by year. From 2006 to 2022, the kernel density
curves consistently exhibited a double-peak pattern, indicating a
polarization in county-level ULUEE across Zhejiang Province.
However, the primary peak gradually decreased in height, while
the secondary peak steadily increased, suggesting that the disparities
in ULUEE among counties in Zhejiang Province have progressively
diminished.

At the municipal level, the ULUEE demonstrated an increasing
trend across all cities over time (Figure 4). Zhoushan, Ningbo, and
Hangzhou exhibited the most rapid growth rates. Notably,
Zhoushan’s ULUEE value increased from 0.33 in 2006 to 1.04 in
2022, representing a remarkable growth rate of 213%, making it the
only municipality to exceed a value of 1.0 in 2022. Lishui, benefiting
from its abundant natural resources of mountains and waters, led
the municipal ULUEE rankings in 2006 and 2010 with efficiency
values of 0.47 and 0.53, respectively. Zhoushan, leveraging its
advantageous marine resource endowment and successful
ecological industrialization model, has maintained the leading
position in ULUEE since 2014. Its efficiency value progressively

increased from 0.76 in 2014 to 1.04 in 2022, significantly
outperforming other municipalities. In contrast, Jiaxing
consistently recorded the lowest efficiency levels during the study
period, with ULUEE values rising modestly from 0.25 in 2006 to
0.43 in 2022. This relatively poor performance can be attributed to
its dominant textile and garment industry, which ranks as the
second most polluting sector after the petroleum industry,
characterized by high water and energy consumption. To address

FIGURE 2
Overall characteristics of ULUEE in Zhejiang Province from
2006 to 2022.

FIGURE 3
Kernel density curve changes of county-level ULUEE in Zhejiang
province from 2006 to 2022.

FIGURE 4
ULUEE changes at the municipal level in Zhejiang province from
2006 to 2022.
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these challenges, Jiaxing needs to continue advancing industrial
structure upgrades, promote ecological transformation of industries,
optimize urban land use structure, and facilitate high-quality
economic and social development.

3.1.2 Spatial evolution analysis
As time progressed, a distinct upward trend in efficiency values

was observed across counties (Figure 5). This temporal progression
demonstrates a systematic improvement in land resource utilization
across the province’s administrative regions. We divided ULUEE
into five categories: low-value zone (0.2–0.4), lower-middle value
zone (0.4–0.6), middle-value zone (0.6–0.8), upper-middle value
zone (0.8–1.0), and high-value zone (1.0–1.2).

In 2006, 74 counties (82.2%) were in the low-value zone,
15 counties (16.7%) in the lower-middle zone, and only Chun’an
County reached the high-value zone. By 2010, the number of
counties in the low-value zone decreased to 57 (63.3%), while
those in the lower-middle zone increased to 29 (32.2%). Three
counties were classified in the middle-value zone, with Chun’an
County remaining the sole representative of the high-value zone. A
dramatic shift occurred in 2014, with only 15 counties (16.7%)
remaining in the low-value zone, while 62 counties (68.9%) moved
to the lower-middle zone. Eight counties (8.9%) occupied the
middle-value zone, and five counties reached the high-value zone,
including the newly added districts of Yuecheng, Dinghai, Putuo,
and Haishu, alongside Chun’an County. The 2018 data revealed
further evolution, with only two counties remaining in the low-value
zone. The lower-middle zone contained 53 counties (58.9%), while

the middle-value zone experienced substantial growth to 23 counties
(25.6%). Notably, four counties emerged in the upper-middle zone,
and eight counties achieved high-value status, including new
additions such as Beilun District, Yiwu City, Yuhang District,
and Wenling City. By 2022, Zhejiang province demonstrated
significant advancement in ULUEE, driven by enhanced green
development and ecological civilization initiatives. The
distribution pattern showed greater differentiation, with most
counties concentrated in the middle and high-value zones.
Counties with ULUEE exceeding 1.0 in 2022 were predominantly
clustered in Zhoushan, Lishui, and Hangzhou cities.

3.2 Spatial agglomeration characteristics of
ULUEE in Zhejiang province

3.2.1 Global autocorrelation analysis
The global Moran’s I for ULUEE across Zhejiang Province’s

counties was calculated using ArcGIS 10.6. Results revealed that
the global Moran’s I exhibited a fluctuating upward trend from
2006 to 2022, with all values achieving statistical significance at the
1% level (Table 3). This pattern indicates significant positive
spatial autocorrelation in ULUEE at the county level. From
2006 to 2014, the Moran’s I index decreased from 0.3219 to
0.2316, indicating a reduction in spatial autocorrelation.
However, from 2018 to 2022, the index increased substantially
to 0.3715, demonstrating enhanced spatial clustering and club
convergence characteristics.

FIGURE 5
Spatio-temporal evolution of county-level ULUEE in Zhejiang province from 2006 to 2022.
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3.2.2 Local autocorrelation analysis
From 2006 to 2018, the number of significant cold spots for

ULUEE decreased from 17 to 9. However, by 2022, the number
increased to 14. Notably, the counties of Nanxun in Huzhou City
and Haiyan, Jiashan, Nanhu, Pinghu, and Xiuzhou in Jiaxing City
have consistently remained within the significant cold spot category.
The persistent presence of these cold spots can be attributed to
Jiaxing’s failure to timely upgrade its industrial structure in light of
ongoing market economic developments, alongside the notable
inefficiencies in land use. In terms of spatial distribution,
significant cold spots have gradually evolved from being
concentrated in the northern part of Zhejiang Province to
coexisting in both the northern and southern regions. The north
has exhibited a trend of continuous contraction, while the south has
shown a pattern of initial contraction followed by subsequent
expansion. From 2006 to 2022, the number of significant hot
spots across the counties remained relatively stable. However,
their spatial distribution underwent marked changes. The
distribution shifted from being mainly concentrated in the cities
of Hangzhou, Lishui, and Quzhou in the western and southwestern
regions of Zhejiang to a gradual contraction and relocation towards

Ningbo and Zhoushan in the northeastern region. Hangzhou has
consistently maintained its status as a significant hot spot due to its
advantages in the digital economy and high-tech industry
agglomeration. Moreover, with advancements in economic and
social development, Zhoushan and Ningbo have effectively
leveraged their marine resource endowments for rapid
transformation and growth, thus becoming significant hot spots
as well (Figure 6).

In 2006, significant cold spots were predominantly concentrated
in 17 counties across northern Zhejiang Province, encompassing
regions within Jiaxing, Hangzhou, Huzhou, and Ningbo. Notably, all
seven counties in Jiaxing and six counties in Hangzhou were
classified as cold spots. Conversely, significant hot spots were
primarily clustered in 11 counties across western and
southwestern Zhejiang, specifically within Hangzhou, Lishui,
Quzhou, and Wenzhou. Among these, Lishui contained six
counties within the significant hot spot zone, while Wenzhou’s
representation was limited to Taishun County. By 2010, the
significant cold spots had consolidated into 15 counties, with
11 in northern Zhejiang (Jiaxing, Hangzhou, and Huzhou) and
four newly designated counties in southern Wenzhou. This
distribution reflected a pattern of northern contraction and
southern expansion. The hot spot configuration remained
relatively stable, encompassing 10 counties across western and
southwestern regions, with Lishui maintaining five counties in
the significant hot spot category. In 2014, there were
13 significant cold spots, comprising nine counties in the north
and four in Wenzhou. The northern region continued its

TABLE 3 Results of Moran’s I and its significance test from 2006 to 2022.

Year 2006 2010 2014 2018 2022

Moran’s I 0.3219 0.2739 0.2316 0.2458 0.3715

P-value 0.0000 0.0000 0.0008 0.0005 0.0000

FIGURE 6
Cold and hot spot areas of county-level ULUEE in Zhejiang province from 2006 to 2022.
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contracting trend while the southern distribution remained stable.
The significant hot spots shifted to include nine counties across
western Hangzhou, southwestern Quzhou and Lishui, and
northeastern Ningbo and Zhoushan, with Zhoushan contributing
three counties to this classification. In 2018, cold spots were
primarily concentrated in seven northern counties and two
southern counties, demonstrating simultaneous contraction in
both regions. The significant hot spots encompassed six counties
across western Hangzhou and northern Shaoxing. Notably,
Shaoxing emerged as a new hot spot through effective land stock
activation, improved urban land use coordination, and promotion of
intensive, green development. By 2022, significant cold spots
expanded to 14 counties, distributed across northern, southern,
and eastern regions. This pattern reflected stability in the north,
expansion in the south, and the emergence of new eastern zones.
Wenzhou contained seven cold spot counties, and Linhai City in
Taizhou was newly designated as a cold spot. Significant hot spots
were primarily distributed across northern Hangzhou, southern
Lishui, and northeastern Ningbo and Zhoushan, with all four
counties in Zhoushan classified as significant hot spots.

3.3 Driving mechanism analysis

The geodetector model was conducted to investigate the driving
force of these driving factors at a global scale from 2006 to 2022.
Additionally, the GWR model was employed to examine the
direction and intensity of driving factors across Zhejiang
Province’s 90 counties.

3.3.1 Global scale
3.3.1.1 Factor detection

From 2006 to 2022, statistical analysis revealed that a greater
number of natural geographical factors demonstrated statistical
significance compared to socioeconomic factors (Table 4). Over
time, the q-values of all driving factors showed a declining trend,
indicating a diminishing influence of these factors. Among the
natural geographical factors, precipitation (X4) ceased to be
significant in later periods, while elevation (X1), topographic

relief (X2), and forest coverage rate (X3) maintained substantial
impacts on ULUEE throughout the study period. Notably, elevation
(X1) exhibited the strongest driving force, with explanatory power
exceeding 0.5 in both 2006 and 2010. This pattern suggests that
county-level ULUEE in Zhejiang Province is largely constrained by
natural geographical conditions, with this relationship becoming
more pronounced over time. Regarding socioeconomic factors,
foreign trade (X8) demonstrated the strongest explanatory power
in the early stages and remained the only consistently significant
socioeconomic factor throughout the 5 years. As time progressed,
GDP per capita (X5) and industrial structure (X6) emerged as
increasingly influential socioeconomic factors with substantial
explanatory power.

In 2006, all nine variables demonstrated significant influence on
ULUEE. Development vitality (X9) and forest coverage rate (X3)
emerged as the most influential factor, with q-values of 0.6566 and
0.5244, respectively. A high-vitality state facilitates the elimination
of outdated production capacities and reduces pollutant emissions.
Simultaneously, it enhances corporate efficiency through
technological empowerment. These factors contribute to
increasing the expected land output while mitigating negative
environmental impacts. A high forest coverage rate indicates
superior ecological benefits within a county. Healthy forest
ecosystems not only produce and protect soil but also diminish
natural disaster risks and mitigate environmental pollution. This
multifaceted role of forests underscores their importance in
maintaining ecological balance and promoting sustainable
development.

In 2010, eight factors overall showed substantial effects on
ULUEE. Among them, development vitality (X9) maintained the
strongest explanatory power (q = 0.5498), followed by precipitation
(X4) with a q-value of 0.5037. Development vitality emerged as the
most explanatory socioeconomic factor; however, its q-value
decreased compared to 2006, indicating a decline in its influence.
Precipitation (X4) emerged as the most influential natural
geographic factor, attributed to its role in air purification and
vegetation growth promotion.

In 2014, eight factors overall showed substantial effects on
ULUEE. Among them, industrial structure (X6) emerged as the

TABLE 4 Factor detection results of county-level ULUEE in Zhejiang province from 2006 to 2022.

Influencing factors 2006 2010 2014 2018 2022

Elevation (X1) 0.4827*** 0.3860*** 0.2148** 0.2560*** 0.2550***

Topographic relief (X2) 0.3573** 0.3432*** 0.1934** 0.2349*** 0.1245*

Forest coverage rate (X3) 0.5244*** 0.4446*** 0.1936** 0.1791** 0.1487*

Precipitation (X4) 0.2145*** 0.5037*** 0.1675** 0.0301 0.1040

GDP per capita (X5) 0.1255* 0.1648** 0.0530 0.0913 0.1786**

Industrial structure (X6) 0.1397* 0.0575 0.3425** 0.2224** 0.1291*

Fiscal expenditure scale (X7) 0.3557*** 0.2506*** 0.1089** 0.0830 0.0978*

Foreign trade (X8) 0.4637*** 0.4596*** 0.1260* 0.2002** 0.1185**

Development vitality (X9) 0.6566*** 0.5498*** 0.1355** 0.0989 0.0585

Note: *p < 0.1, **p < 0.05, and ***p < 0.01.
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most influential factor, with the highest explanatory power (q =
0.3425). This prominence can be attributed to its role in determining
land-use intensity, patterns, and structural composition. Elevation
(X1) ranked second in explanatory power (q = 0.2148). The diverse
topography of Zhejiang Province’s counties indicates that lower-
elevation regions facilitate large-scale land utilization and superior
transportation accessibility, enabling more extensive resource
development. This positions elevation (X1) as the most
influential natural geographic factor. Fiscal expenditure scale (X7)
demonstrated the lowest explanatory power (q = 0.1089).

In 2018, five factors overall showed substantial influence on
ULUEE. Industrial structure (X6) and elevation (X1) exhibited
notably high driving intensities, with q-values of 0.3425 and
0.2148, respectively. Among these, elevation (X1) and
topographic relief (X2) emerged as the most influential natural
geographical factors, with q-values of 0.2560 and 0.2349. Ranking
third was industrial structure (X6), with a q-value of 0.2224,
representing the most explanatory socio-economic factor.

In 2022, seven factors overall show substantial influence on
ULUEE. Elevation (X1) and GDP per capita (X5) demonstrated
notably high driving intensities, with q-values of 0.2550 and 0.1786,
respectively. GDP per capita, representing the regional economic
development level, increasingly reveals its impact on land ecological
utilization efficiency as social and economic development
progresses, emerging as the most influential socio-economic factor.

3.3.1.2 Interaction detection
From 2006 to 2022, the interaction detection analysis revealed

several notable trends (Figure 7). First, there was an observed
increase in the number of nonlinear enhancement relationships
over time, accompanied by a declining trend in q-values from the
interaction detection results. The five socioeconomic factors

demonstrated a pronounced nonlinear enhancement trend when
interacting with other factors. Among the physical geographic
factors, only precipitation (X4) exhibited nonlinear enhancement
patterns in its interactions with other variables. These findings
indicate that socioeconomic factors exerted a substantial
influence on county-level ULUEE in Zhejiang Province.
Moreover, when these socioeconomic factors interacted with
physical geographic factors, their explanatory power for ULUEE
significantly increased. This pattern underscores that the ULIUEE at
the county level in Zhejiang Province is jointly constrained by both
socioeconomic and physical geographic factors.

In 2006, interaction detection results identified 25 bi-
enhancement relationships and 11 nonlinear enhancement
relationships. Foreign trade (X8) demonstrated bi-enhancement
relationships in all its interactions with other factors, indicating
that when foreign trade (X8) interacted with other variables, it
strengthened the explanatory power for ULUEE at the county level
in Zhejiang Province. GDP per capita (X5) and industrial structure
(X6) exhibited numerous nonlinear enhancement relationships when
interacting with other factors. This suggests that the ULUEE at the
county level in Zhejiang Province results from the combined effects of
regional natural environment and socioeconomic development.
Considering natural environmental factors alone cannot adequately
explain the underlying driving mechanisms. The interaction between
development vitality (X9) and precipitation (X4) showed the strongest
explanatory power, with a q-value of 0.9057.

In 2010, interaction detection analysis revealed 28 bi-
enhancement relationships and eight nonlinear enhancement
relationships. Industrial structure (X6) exhibited nonlinear
enhancement relationships in all its interactions with other
factors, while the remaining factor interactions demonstrated bi-
enhancement relationships. The interaction between development

FIGURE 7
Interaction detection of influencing factors of county-level ULUEE from 2006 to 2022. Note: The * in the figure indicates bi-enhancement, and ** is
non-linear enhancement.
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vitality (X9) and forest coverage rate (X3) showed the strongest
explanatory power, with a q-value of 0.8078.

In 2014, the analysis identified seven bi-enhancement
relationships and 29 nonlinear enhancement relationships. GDP
per capita (X5), industrial structure (X6), fiscal expenditure scale
(X7), and foreign trade (X8) all displayed nonlinear enhancement
relationships in their interactions with other factors. Development
vitality (X9) showed nonlinear enhancement relationships with all
factors except elevation (X1), with which it exhibited a bi-
enhancement relationship. These findings suggest that
interactions among natural geographical factors had relatively
minor effects, whereas interactions between natural
geographical and socioeconomic factors demonstrated nonlinear
enhancement characteristics, which were more decisive in
determining the ULUEE at the county level in Zhejiang
Province. The strongest explanatory power was observed in the
interaction between industrial structure (X6) and elevation (X1),
with a q-value of 0.7156.

In 2018, interaction detection analysis revealed three bi-
enhancement relationships and 33 nonlinear enhancement
relationships. Precipitation (X4), GDP per capita (X5), industrial
structure (X6), fiscal expenditure scale (X7), foreign trade (X8), and
development vitality (X9) all exhibited nonlinear enhancement
relationships in their interactions with other factors. The interactions
among elevation (X1), topographic relief (X2), and forest coverage rate
(X3) demonstrated bi-enhancement relationships exclusively. This
pattern suggests that interactions among regional geographical
elements were insufficient to fully explain the distributional
characteristics of county-level ULUEE. The interaction between
industrial structure (X6) and topographic relief (X2) demonstrated
the strongest explanatory power, with a q-value of 0.6954.

In 2022, the analysis identified four bi-enhancement
relationships and 32 nonlinear enhancement relationships. The
interactions involving precipitation (X4), GDP per capita (X5),
industrial structure (X6), fiscal expenditure scale (X7), foreign
trade (X8), and development vitality (X9) predominantly showed
nonlinear enhancement relationships, with two exceptions: the
interaction between fiscal expenditure scale (X7) and foreign
trade (X8), precipitation (X4) and development vitality (X9),
which exhibited bi-enhancement relationships. The strongest
explanatory power was observed in the interaction between GDP
per capita (X5) and forest coverage rate (X3), with a q-value
of 0.5630.

3.3.2 County scale
The GWR model was subsequently employed for local spatial

regression analysis to investigate the spatial variations in both the
direction and magnitude of the nine influencing factors across
different counties. The analysis yielded an adjusted R2 value of
0.4252, indicating strong model fitness and validating the
reliability of the factor detection results. While all independent
variables exhibited spatial non-stationarity, their degrees of
variation and characteristic patterns showed distinct
differences (Figure 8).

The regression coefficients for elevation (X1) ranged
from −0.26 to 0.23. Sixty-five counties passed the 5% significance
test, with 26 demonstrating positive effects and 39 showing negative
effects. In Ningbo, Wenzhou, Zhoushan, and Taizhou (specifically

in Sanmen County, Jiaojiang District, Luqiao District, and Linhai
City), elevation (X1) exhibits a significant positive effect. This
suggests that in coastal counties, higher elevation is conducive to
improving ULUEE. Conversely, in Hangzhou, Jinhua, Lishui, and
Quzhou, a significant negative effect was observed, indicating that
lower elevations in western Zhejiang are more favorable for ULUEE
enhancement.

The regression coefficient for terrain ruggedness (X2) ranged
between −0.1 and 0.09, characterized by a spatial distribution
pattern of higher elevation in the west and lower elevation in
the east. Thirty-four counties passed the 5% significance test, with
only one demonstrating a positive effect and 33 showing negative
effects. Chun’an County exhibited a significant positive effect.
Surrounded by mountains and characterized by hilly terrain,
Chun’an County is the sole special ecological function zone in
Zhejiang Province and the only mountainous county in Hangzhou.
Larger terrain ruggedness implies higher forest coverage and a
superior ecological environment. Chun’an County leverages its
ecological advantages for industrial development, thereby
significantly promoting ULUEE. Conversely, significant negative
effects were observed in Ningbo, Wenzhou, Taizhou, and
Zhoushan. Coastal counties predominantly develop industrial
economies based on marine resources, and flatter terrain
facilitates industrial agglomeration and marine resource
development, rendering terrain ruggedness (X2) a significant
negative factor.

The regression coefficient for forest coverage (X3) ranged
between −0.47 and 0.11. Forty-six counties passed the 5%
significance test, with 29 demonstrating positive effects and
17 showing negative effects. Significant positive effects were
primarily observed in Taizhou, Zhoushan, Ningbo, and Jinhua.
Conversely, significant negative effects were predominantly found
in Wenzhou and Lishui in southern Zhejiang. High forest coverage
restricts available land resources for urban development, hindering
industrial expansion and resource agglomeration. Consequently,
this impedes further economic and social development, ultimately
reducing the ULUEE.

The regression coefficient for precipitation (X4) ranged
between −0.65 and 0.54. Out of 52 counties that passed the
significance test at the 5% level, 35 exhibited a positive effect,
while 17 showed a negative effect. Notably, significant positive
effects were observed in Jinhua City, Lishui City, Taizhou City,
and Wenzhou City. Abundant rainfall can promote vegetation
growth and enhance the removal rate of PM2.5, thereby
significantly improving the level of ULUEE. In contrast,
significant negative effects were primarily found in Jiaxing City,
Ningbo City, and Zhoushan City in the northeastern part of
Zhejiang Province. Ningbo City and Zhoushan City are
particularly affected by heavy rainfall brought on by typhoons,
which have a considerable negative impact on social production,
hence precipitation exhibits a significant negative effect in
these areas.

The regression coefficient for GDP per capita (X5) ranged from
0.1 to 0.46, exhibiting a positive correlation with ULUEE across all
counties, with a spatial distribution characterized by lower values in
the northwest and higher values in the southeast. A total of
82 counties have passed the 5% significance test, all of which
demonstrate a significant positive effect. This indicates that GDP
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per capita, as a crucial indicator of economic development, exerts a
significant influence on the ULUEE.

The regression coefficients for industrial structure (X6) ranged
from 0.0 to 0.34, exhibiting a positive correlation with ULUEE across
all counties, with a spatial distribution characterized by higher
values in the north and lower values in the south. Seventy-five
counties have passed the 5% significance test, all of which show a
significant positive effect. The upgrading of industrial structure,
characterized by an increasing service sector, significantly promotes
ULUEE in the associated counties.

The regression coefficients for the fiscal expenditure scale (X7)
ranged from 0.0 to 0.2, exhibiting a positive correlation with ULUEE
across all counties, with a spatial distribution characterized by lower
values in the northeast and higher values in the southwest. Seventy-
three counties have passed the 5% significance test, all of which

demonstrated a significant positive effect. Counties with larger fiscal
expenditure scales can concentrate financial advantages for the
redevelopment of urban abandoned and idle land, thereby
contributing to enhanced ULUEE.

The regression coefficients for foreign trade (X8) ranged
from −0.06 to 0.12, exhibiting less variability compared to the
other eight influencing factors, with only marginal spatial
differences in effect, and its impact on ULUEE was positive in
more than seven-ninths of the counties. Sixty-eight counties have
passed the 5% significance test, with 54 showing a positive effect and
14 showing a negative effect. Significant positive effects were
primarily observed in Hangzhou City, Jiaxing City, Jinhua City,
Ningbo City, Quzhou City, Shaoxing City, and Zhoushan City. In
contrast, significant negative effects were mainly found in Wenzhou
City (10 counties and cities) and Lishui City (3 counties and cities).

FIGURE 8
GWRmodel results of county-level ULUEE in Zhejiang province. Note: Counties denoted by diagonal lines represent passing the 5% significance test
(p< 0.05).
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Wenzhou City’s private economy constitutes its main economic
force, and a high total volume of import and export trade reflects the
high scale and level of regional foreign trade. However, it also brings
about higher negative externalities, such as environmental pollution,
which suppresses the enhancement of ULUEE in Wenzhou City.

The regression coefficient of development vitality (X9) ranged
from −0.34 to −0.1, exhibiting a consistently negative correlation
with ULUEE across Zhejiang Province’s county domains. Spatially,
the intensity of this effect demonstrated a gradient of Eastern <
Central < Western regions. Notably, 88 counties passed the 5%
significance test, all characterized as statistically significant negative
impact zones. This finding suggests that as regional development
vitality increases, human activity intensity escalates, consequently
elevating undesired outputs, which substantially constrains the
advancement of the ULUEE.

4 Discussions

4.1 Driving mechanism of county-level
ULUEE in Zhejiang province

Urban land use systems function as complex, open systems
characterized by extensive material cycling, energy flows, and
information exchange with their external environment. The
ULUEE is influenced by both regional natural environmental
conditions and external socioeconomic forces. These dual
driving forces collectively determine both the direction and
intensity of evolution in ULUEE. In this study, a
comprehensive evaluation index system was established. Based
on the measurement of county-level ULUEE, the geodetector
model and GWR model were employed to reveal the driving
effects at global and local scales.

Overall analysis reveals that natural geographic factors,
surpassing socioeconomic factors in number, demonstrated
statistical significance. The declining q-values of driving factors
indicate diminishing explanatory power as socioeconomic
development progresses. Among natural geographic factors,
precipitation (X4) exhibited strong explanatory power, while
elevation (X1), topographic relief (X2), and forest coverage rate
(X3) maintained consistent significant influences on ULUEE. The
findings suggest that county-level ULUEE in Zhejiang Province is
substantially constrained by natural geographic conditions, with
this relationship becoming more pronounced over time. Among
socioeconomic factors, foreign trade (X8) demonstrated the
strongest initial explanatory power, while GDP per capita (X5)
and industrial structure (X6) showed stronger explanatory power
in later periods. The interaction detection results for the five
socioeconomic factors exhibited a distinct non-linear
enhancement trend when combined with other factors. Among
natural geographic factors, only precipitation (X4) showed non-
linear enhancement in interaction detection results. This indicates
that socioeconomic factors strongly influence county-level ULUEE
in Zhejiang Province, with their explanatory power significantly
enhanced when interacting with natural geographic factors,
reflecting the open and complex nature of urban land use
systems. Regression analysis revealed that GDP per capita (X5),
industrial structure (X6), and fiscal expenditure scale (X7)

positively impacted county-level ULUEE in Zhejiang Province.
Foreign trade (X8) showed both positive and negative effects, albeit
with limited intensity, while development vitality (X9)
demonstrated negative impacts. Natural geographic factors
exhibited both positive and negative directional effects,
indicating a more complex influence pattern compared to the
generally consistent directional effects of socioeconomic factors.
This suggests that adjusting socioeconomic factors could
effectively regulate regional ULUEE.

4.2 Policy implications for improving
county-level ULUEE of Zhejiang province

Due to the constraints imposed by its mountainous topography,
Zhejiang Province faces significant urban land resource scarcity.
Enhancing ULUEE has been identified as a critical factor in
promoting sustainable development across the province. Based
on the preceding analysis, the following policy recommendations
are proposed.

(1) Enhance the utilization of existing construction Land. The
optimization of existing construction land utilization requires
a comprehensive approach focused on restructuring and
promoting conservation-oriented, intensive land use. On
the one hand, continue to push forward the reform of the
land supply mechanism, establish an incentive mechanism for
the comprehensive remediation and redevelopment and
utilization of inefficient land, increase the renovation of
old residential areas, old factory areas, and old commercial
areas, and fully explore the potential of idle and inefficient
land utilization, to increase the stock of land supply. On the
other hand, the optimization of land use structure should be
enhanced through upgrading of industrial structure,
promoting the enhancement of eco-efficiency of land use,
and advancing the digital transformation of traditional
industries, to promote the reduction of pollution and
carbon emissions.

(2) Advance ecological restoration and environmental
protection. The enhancement of ecosystem stability
requires a multifaceted approach encompassing several
critical dimensions: ecosystem management, urban
environmental governance, environmental enhancement
initiatives, and technological integration. To improve
ecosystem management, the government should strengthen
ecosystem protection measures, promote harmonious
development among ecological, productive, and residential
spaces, and increase regional forest coverage rates. To
strengthen urban environmental governance, the
government should optimize urban land-use patterns,
integrate economic, social, and ecological benefits, and
enhance municipal environmental management
capabilities. To improve environmental enhancement
initiatives, the government should enhance the habitat
quality and living environment standards, and implement
beautification and greening programs. To enhance
technological integration, we should leverage scientific and
technological support for green, low-carbon development,
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deepen the application of digital technologies, particularly
artificial intelligence, and establish an intelligent digital eco-
civilization framework. These comprehensive approaches aim
to create a sustainable balance between environmental
preservation and urban development while incorporating
advanced technological solutions.

(3) Further enhancement of Opening-up Policies. As a province
characterized by a robust private economy, Zhejiang’s active
participation in import and export trade significantly elevates
regional economic performance and the ULUEE. The
increased degree of economic openness facilitates the
utilization of foreign capital and technology, thereby
enhancing land productivity. Priority should be given to
modernizing industrial and supply chains, continuing to
strengthen the foundation for high-quality foreign trade
development. The business environment should be
optimized to attract foreign investment by benchmarking
against successful international practices. The negative list
for foreign investment access should be rationalized and
reduced, directing foreign capital toward advanced
manufacturing, modern services, high-tech industries, and
energy conservation and environmental protection sectors.

(4) Innovate economic development models. It is necessary to
adapt to local conditions, explore the advantages of location
and special industries, and create green leading industries.
Relying on local resources and location advantages to
develop leading industries, the layout of high-tech
industries, ecological industries, and actively explore the
development mode of industrial integration to achieve high-
quality economic and social development. For counties with
relatively rich agricultural resources, it is necessary to make
full use of the advantages of agricultural resources and
ecological resources, on the one hand, vigorously develop
green agricultural products planting, sightseeing agriculture,
and picking agriculture, on the other hand, rely on the
advantages of green water and green mountains,
agricultural planting, etc., and vigorously develop rural
tourism and leisure agriculture. At the same time, actively
promote the integration of the digital economy and leading
industries, increase the digital transformation and
upgrading of industries, improve the efficiency of element
allocation, and promote high-quality economic
development.

(5) Promote the upgrading of industrial structure. Guide further
optimization of the industrial structure, increasing the
proportion of tertiary industry while reducing the share
of primary and secondary industries, thereby establishing a
modernized industrial pattern characterized by a “tertiary-
secondary-primary” configuration. Continuously upgrade
the internal structure of the industry. Industry remains
the largest contributor to Zhejiang’s GDP. Using the
development of advanced manufacturing as a key lever,
continuously promote transformation and upgrading to
achieve a metamorphosis of the industrial economy from
“leading in speed” to “leading in quality.” Accelerate the
development of modern service industries, vigorously

develop the financial sector, real estate industry, and
other service industries such as information transmission.
Maintain high-speed growth of new momentum, promote
the development of new industries, new forms of business,
and new business models, leverage the advantages of digital
economic development, drive deep bidirectional integration
between advanced manufacturing and modern service
industries, and cultivate new business forms and models
of cross-industry integration.

4.3 Limitations and prospects

The key to evaluating the county-level ULUEE is to construct a
proper index system. Based on previous studies, we selected labor,
capital, and land as the input indicators (Zheng et al., 2023),
considered economic, social, and ecological benefits in terms of
desired outputs (Kong et al., 2023), and atmospheric pollution
conditions in terms of undesirable outputs. The indicator system
includes both statistical data remote sensing data and geospatial
data, which can comprehensively reflect the ULUEE. In the selection
of driving factors, most of the current studies choose socio-
economic factors, however, the county-level ULUEE cannot be
separated from the natural background conditions, so this paper
also includes natural geographic factors. The results of the analyses
show that the driving effect of the natural geographic factors is
significant, and when the natural geographic factors and socio-
economic factors interact, they are more capable of determining the
level of county-level ULUEE. Consistent with previous studies, the
level of economic development, industrial structure, and total
amount of imports and exports had a significant effect on ULUEE.

However, there are some shortcomings in this study. Firstly,
although 2006–2022 was chosen as the study interval, larger
time scales are still necessary, such as conducting a study of the
past 40 years, which can help to better reveal the evolution of
the county-level ULUEE, and then discover the universal laws.
In addition, although this study was refined to the county scale,
it still did not break through the limitations of administrative
boundaries, and future studies at the raster scale are needed to
support the optimization of land space and precise governance.

5 Conclusion

(1) From 2006 to 2022, the county-level ULUEE of Zhejiang
Province continued to improve, increasing from 0.34 to 0.73,
with an average annual growth rate of 2.44%. At the same
time, the absolute gap between counties decreased. At the
municipal level, Zhoushan and Lishui had higher levels of the
ULUEE, while Jiaxing was lower.

(2) From 2006 to 2022, the county ULUEE in Zhejiang Province
showed a significant positive spatial correlation, with the
global Moran’ I increasing from 0.3219 to 0.3715. At the
local scale, the cold spot significant area gradually evolved
from the northern part to the coexistence of the northern part
and the southern part. At the same time, the northern part
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showed a continuous contraction, and the southern part
shrank and then expanded. The number of counties in the
hot spot area did not change much, but it showed obvious
changes in space, and the distribution was gradually
contracting from the main cluster in Hangzhou, Lishui,
and Quzhou in western and southwestern Zhejiang
while shifting to Ningbo and Zhoushan in
northeastern Zhejiang.

(3) From 2006 to 2022, the number of natural geographic factors
that passed the significance test was more than the socio-
economic factors, and the q-value of the driving factors
showed a decreasing trend. Among the natural geographic
factors, precipitation (X4) had the strongest explanatory
power in the early period, and elevation (X1), topographic
relief (X2), and forest coverage rate (X3) always played a
stronger role in ULUEE. Among the socio-economic factors,
foreign trade (X8) had the strongest explanatory power in
the early period, and GDP per capita (X5) and industrial
structure (X6) had stronger explanatory power in the
later period. The interaction detection results of the five
socio-economic factors with other factors showed an
obvious non-linear enhancement trend and only
precipitation (X4) showed a non-linear enhancement
trend in the interaction detection. In the regression
analysis, GDP per capita (X5), industrial structure (X6),
and financial expenditure scale (X7) showed positive effects
on county-level ULUEE in Zhejiang Province, foreign trade
(X8) had both positive and negative effects but with weaker
intensity, and development vitality (X9) showed negative
effects. The natural geography factors had both positive
and negative effects. It showed that the county-level
ULUEE of Zhejiang province was more complicated by the
role of natural geographic factors, the effects of socio-
economic factors are consistent, and the adjustment of
socio-economic factors can effectively regulate the ULUEE
of the region.
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