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Amidst global climate challenges, carbon emission trading has become the most
important market-based environmental policy tool, attracting widespread
attention for mitigating price volatility caused by extreme risks. This study
applies the multivariate multi-quantile conditional autoregressive value-at-risk
(MVMQ-CAVIaRX) model to measure extreme market risk and modifies the
Diebold Yilmaz (DY) spillover index calculated using the time-varying
parameter vector autoregressive model with exogenous variables (TVP-VARX)
to examine the extreme risk structures and its time-varying characteristics of the
European carbon emissions trading market. The relevant results are threefold. (1)
Significant extreme risk spillover effects exist between the carbonmarket and the
stock, commodity, exchange rate, and interest rate markets, influenced by
economic risks and geopolitical risks. (2) In the average extreme risk structure
of the carbon market, aside from itself, geopolitical risks contribute the most,
followed by the stock and commodity markets, while the contributions of the
exchange rate and interest rate are relatively small, with economic risks exerting a
slow and steadily increasing influence on extreme risks in the carbonmarket over
the forecast period. (3) The extreme risk structure of the carbon market exhibits
significant time-varying characteristics, with contributions from related extreme
market risks, geopolitical risks, and economic risks showing significant variations
during important periods such as the COVID-19 pandemic and the
Russia–Ukraine war. These findings have implications for carbon market
policymakers to manage extreme risks.
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1 Introduction

Over the past decade, the global carbon emissions trading market has significantly
expanded in size, coverage, and market vitality, becoming a crucial environmental policy
tool widely adopted by countries to control greenhouse gas emissions and address climate
change. As of 2024, 36 carbon emissions trading systems (ETS) are operating worldwide,
covering 9.9 billion tons of CO2 equivalent greenhouse gas emissions, accounting for over
18% of total global greenhouse gas emissions. The European Union’s ETS, the earliest and
largest in terms of trading volume and value, has experienced a continuous rise in allowance
prices since 2020, remaining above $70 from 2022 to 2023 and exhibiting significant price
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fluctuations amid global economic and political instability1. The
scarcity, liquidity, and storability of carbon emission rights make
them a special environmental asset with both commodity and
financial attributes, and they are an effective channel for
investment and risk diversification (Zhang and Wei, 2010;
Subramaniam et al., 2015).

The participants in the carbon and related markets such as the
stock market and commodity market do not conform to the rational
investor hypothesis of classical financial theory, but rather exhibit
irrational behaviors under asymmetric information conditions, such
as herding and convergence. These irrational behaviors can easily
emerge in one market and then influence other markets through
capital flow and expectations, especially in the context of market
integration, where this transmission effect is even closer (Zhang
et al., 2010). As a result, there is a varying degree of risk transmission
or spillover effect between markets. The carbon market and related
markets commonly have heterogeneous investors, and information
will not be transmitted among investors homogeneously and
instantaneously, making the diffusion of information a non-
stationary and non-uniform process, exhibiting time-varying
characteristics of information or risk spillover (Boisot, 2013). At
the same time, the carbon market, along with the stock market and
commodity market, constitutes a complex system with time-varying
risk spillovers. The impact of macroeconomic fundamentals and
major crisis events, particularly geopolitical risks, cannot be ignored.
Macroeconomic fundamentals can affect the complex system by
influencing trade, finance, and industry, whereas geopolitical risks
influence inter-market risk spillover and its time-varying structure
within the system through investor expectations, investor sentiment,
and adjustments in investment strategies (Zeng et al., 2017).
Therefore, identifying the effects of political and economic risk
factors, as well as related markets, on carbon market risks and
studying the risk structure of the carbon market and its time-varying
characteristics are of significant theoretical value and practical
significance for maintaining the price stability of carbon assets
and pretending and resolving risks in a timely manner. Previous
studies have provided empirical evidence for the contemporaneous
interdependence of markets and extensively discussed the intensity
and direction of spillover effects due to lagged influences. However,
the research on the risk spillover effects between carbon and other
related markets still has certain limitations. First, existing research
lacks further exploration of the extreme risk time-varying structure
of carbon markets within the risk spillover framework. Second, in
the construction of spillover networks, a strict distinction between
bidirectional spillovers among endogenous variables within the
system and unidirectional transmission from exogenous variables
is lacking, resulting in a model setup that does not align with reality.
Finally, the measurement of extreme risks still mainly relies on
higher moments or quantiles of the single variable, without
incorporating the dependent structure between different markets
into the model.

This study primarily focuses on the structure of extreme risk and
its time-varying problems in the carbon market, is further research
of the risk spillover problem in the carbon market. First, anMVMQ-

CAViaRXmodel with exogenous variables is constructed to measure
extreme risks in the carbon and related markets, and the dependence
on extreme risks between markets is tested. Second, based on the
TVP-VARX-DY model, and assuming that the exogenous variables
follow an ARMA (1, 1) –GARCH (1, 1) process, the contributions of
each market and exogenous shocks to extreme risks in the carbon
market are separated, and both the average and time-varying
structures of extreme risks in the carbon market are examined.

The marginal contributions of this study are as follows. First,
from a theoretical perspective, this study is the first to examine the
extreme risk structure and time-varying problems in the carbon
market from the risk spillover perspective, measuring the
contributions of various risk factors, especially exogenous
political and economic risks. Second, from a methodological
perspective, this study is the first attempt to derive a modified
DY spillover index that considers the effects of exogenous variables
within the TVP-VARXmodel framework based on the specific data-
generating process (DGP) followed by exogenous variables,
enriching the literature on research methodologies.

The remainder of this paper is organized as follows. Section 2
provides the literature review and research framework. Section 3
introduces the data sources and research methods. Section 4
presents the empirical estimations, including the results of
extreme risk measurement, dependence test, extreme risk
structure measurement, robustness test, and discussions Section 5
provides the conclusions and policy implications.

2 Literature review and
research framework

2.1 Literature review

Research on risk spillover in the carbon and related markets is
extensive, concentrated on: (1) returns and volatility (lower-order
moments) spillover; (2) higher-order moments spillover and tail risk
dependence between markets, specifically extreme risk spillover.

2.1.1 Returns and volatility spillover effects
between carbon and related markets

With the development of financial markets, traders’ investment
and speculative behaviors have become primary drivers in forming
complex spillover and risk transmission networks across the stock,
energy, and carbon markets. Tao et al. (2024) integrated the carbon,
stock, and energy markets into a unified framework, utilizing
dynamic time-varying autoregressive models to investigate the
spillover effects of returns and volatility in the New Zealand
carbon, stock, and energy markets. Their findings indicate that
the volatility spillover between the stock and energy markets is
predominantly influenced by the ETS, with long-term effects
constituting the largest portion of cross-market spillover. Liu and
Yan (2024) analyzed the spillover effects and heterogeneity of total,
short-term, and long-term volatility in the EU carbon, energy, and
stock markets using the GJR-GARCH(1,1)-MIDAS model, and
assessed the impact of policy economic uncertainty on these
spillover effects. Ren et al. (2023) examined the third phase of
the EU ETS, employing causality-in-quantiles test and quantile
impulse response analysis to explore the spillover effects and1 Data source: “Emissions Trading Worldwide: 2024 ICAP Status Report.”

Frontiers in Environmental Science frontiersin.org02

Mi et al. 10.3389/fenvs.2024.1499743

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1499743


information transmission between the carbon, crude oil, and stock
markets. They discovered a unidirectional spillover effect from the
crude oil market to the carbon market, with variability under bull
and bear market conditions.

The industrial chain creates a special transmission channel
linking the commodity market and the carbon market. Energy,
chemical products, etc., are at the front of the industrial chain,
whereas carbon emissions are at the end. Through this indirect
mechanism of industrial chain transmission, risk in the commodity
market can affect the supply and demand of carbon emission rights
for the carbon market’s reduction entities, thereby transferring price
risk to the carbon market (Lin and Li, 2023). Chen et al. (2022a)
employed a quantile connectedness approach to analyze the
dynamic relationships between energy, metal commodity markets
and the carbon market. Their findings indicate that the dynamic
connectivity among these markets differs significantly during
extreme upward and downward market conditions,
i.e., displaying asymmetry. Tian et al. (2022) focused on
emerging economies and investigated the correlation mechanism
of the “carbon-commodity-finance” system using vector
autoregression and spillover index models. They identified that
the relationships between the carbon, commodity markets
(including silver, copper, and gold commodities), and financial
markets are heterogeneous and are influenced by the foreign
exchange market.

Moreover, interest rates and exchange rates can influence the
pricing and settlement of assets such as stocks, carbon, and
commodities. Commodity prices can further impact monetary
policy through inflation. The inflow and outflow of hot money
create shocks to exchange rates and interest rates, forming risk
linkages (Chai and Zhou, 2019). Huang et al. (2024) employed time-
varying parameter vector autoregression (TVP-VAR) to examine
the dynamic nonlinear risk spillover effects between exchange rates
and the Chinese carbon market. They found that carbon prices and
the EUR/CNY exchange rate primarily act as risk contributors, with
significant correlations observed between different exchange rates.
Wang (2020) analyzed the frequency dynamics of volatility spillover
effects between crude oil and international stock markets using the
implied volatility index, finding that low interest rates are the main
driver of volatility spillovers.

2.1.2 Extreme risk spillover effects between carbon
and related markets

Considering the enormous destruction caused by extreme
risks in financial markets, existing research has made great
progress in the field of high-order moment risk spillovers and
the measurement of tail risk dependencies between markets.
First, in terms of high-order moment risk spillovers, relevant
literature has confirmed the spillover effects of skewness and
kurtosis risk between the carbon and related markets from
different perspectives. Liu et al. (2023) examined the high-
order moment risk spillover effect between China’s carbon
market and industry stocks based on the GARCH-S model,
time-varying spillover index model, and quantile regression,
reporting that these spillover effects are bidirectional and
analyzing their influencing factors. Dai et al. (2021) studied
the multi-scale interaction of higher-order moments spillovers
(skewness and kurtosis) between the carbon and the energy

market. They found that the bidirectional higher-order
moments spillover effects are weaker at the short-run
timescales, while the long-run effect is greatly enhanced.
Second, in terms of tail risk dependence, some studies have
revealed tail dependence between different markets through
methods such as the Copula framework and quantile
regression. Su et al. (2023) studied the spillover effects
between fossil fuels, renewable energy, and the carbon markets
based on the quantile VAR network, finding that the impact of
the extreme market conditions on the connectedness network
proves to be more pronounced compared to the standard
conditions. Zhao and Xu (2023), combining extreme value
theory, copula functions, and conditional value at risk
(CoVaR), studied the tail risk spillover effects of the Chinese
carbon and stock markets, showing a significant positive
correlation of extreme risk between markets.

Extreme risks can be transmitted between markets, forming a
network of extreme risk connections, and are also more sensitive to
exogenous shocks such as geopolitical events. Cao and Xie (2024)
developed a quantile vector autoregression with the extended joint
connectedness method to study the spillover effects of extreme
risks between the carbon, fossil energy and clean energy markets.
Their findings indicate that extreme events strengthen market
connections. Naeem and Arfaoui (2023) employed the
conditional autoregressive value at risk (CAViaR) and TVP-
VAR models to examine the dependence and impact of
exogenous shocks on extreme downside risks in energy and
carbon markets, revealing significant effects on risk contagion
during periods of external turmoil, such as the global economic
crisis, shale oil revolution, COVID-19 outbreak, and Russia-
Ukraine war. Chen et al. (2022b) investigated the correlations
between the Shenzhen carbon, energy, commodity, and financial
markets in China from the perspective of tail risk transmission
based on quantile spillovers, discovering that the COVID-19
significantly increased the tail risk transmissions.

2.2 Research framework

Based on the comprehensive literature review, risk spillover
behaviors are present between the carbon market and financial
market factors (e.g., stock prices, exchange rates, and interest
rates, hereinafter referred to as the stock market, exchange rate
market, and interest rate market), as well as the commodity
market, which also includes extreme risk spillover, is time-
variant and is influenced by exogenous shocks from economic
and geopolitical risks. Therefore, sources of extreme risk in the
carbon market can be divided into three categories: endogenous
risk sources, risk sources from spillover or transmission from
different markets, and exogenous risk sources. Endogenous risk
sources mainly originate from the carbon market itself, such as
the supply and demand of carbon assets, market liquidity, carbon
trading policies, and emission-reduction constraints. The risk
source spillovers from different markets include extreme risk
spillover effects from the stock, commodity, exchange rate, and
interest rate markets on the carbon market. The exogenous risk
sources are primarily economic and geopolitical risks. The
research framework is shown in Figure 1.
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3 Data sources and research methods

3.1 Data sources

Based on the research design, the data selected for this study is
mainly divided into two categories: endogenous and exogenous
variables. The study period spans from 2 January 2019, to
16 October 2023, with a sample size of 1,224. All data were
obtained from the Wind database, and Table 1 provides
descriptions of the variables.

The variables ECIX, EU100, RCRB, and EDEX have been
transformed into returns through a log-differential and
multiplied by 100 (i.e., rit � 100 × ln( Pit

Pit−1), where Pit represents
the prices of the variables). Considering that EURIBOR takes
negative values in some sample intervals, this study follows the

approach of Nakajima et al. (2011) and Chen et al. (2023), and uses
the HP filter method to determine the trend of interest rate changes,
where the interest rate change is the difference between the current
interest rate and the trend value. CESI andGPR are divided by 100 to
scale them down, and GPR data are centralized. Table 2 presents the
descriptive statistics after the processing procedure described above.

The descriptive statistics of the variables (Table 2) indicate that
all variables exhibit significant “leptokurtic and heavy-tailed”
characteristics and the lagged sixth-order ARCH-LM tests are
significant at the 1% level, suggesting that all variables have
significant conditional heteroscedasticity. All series except the
rRCRB series exhibit long-term correlations. The PP test results
suggest that all variables are significant at the 5% or 1% level,
and the null hypothesis of non-stationarity in the series can
be rejected.

FIGURE 1
The research framework.

TABLE 1 Data descriptions for this study.

Variable types Variable names Variable descriptions Data source

Endogenous
variables

ECIX European Carbon Index This index is calculated based on the European Energy Exchange (EEX) EUA spot
prices and is the benchmark price for trading in the EU carbon market.

EEX

EU100 Euronext 100 index The index comprises the top 100 companies by market capitalization on Euronext,
determined through a market value-weighted process. It reflects the level and
trends of trading prices for listed stocks in Europe

London Stock
Exchange (LSE)

RCRB Commodity Research Bureau Compiled by the United States Commodity Research Bureau, it encompasses
futures contracts including energy and metals, serving as an important reference
indicator for international commodity price fluctuations

Compiled based on news

EDEX EUR to USD exchange rate The EUR to USD exchange rate reflects the fluctuations between the Euro and the
US dollar

European Central Bank

RATE EURIBOR: 3 months The EURIBOR rate is one of the most important financial benchmarks in the
European financial market.

European Banking
Union

Exogenous
variables

CESI Citi Economic Surprise Index
of Eurozone

Developed by Citibank and Merrill Lynch, it measures the degree of deviation
between economic expectations and reality in the European region, and is used to
measure the level of economic risk

Compiled based on news
sources

GPR Geopolitical Risk Index Constructed through automatic text searches for eight categories of geopolitical
factors including threats of war, outbreak of war, and acts of terrorism, based on
the electronic archives of 10 newspapers such as the New York Times

Dario Caldara and
Matteo Iacoviello
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3.2 Research methods

3.2.1 Extreme risk measurement and dependence
test in the carbon market

Among the various extreme risk measurement models, the
MVMQ-CAViaR model proposed by White et al. (2015) has
many advantages. First, it is an extension of CAViaR model to
multivariate and multiple-quantile scenarios and can measure
extreme risks under the condition of dependence among multiple
markets. Second, this model is a semiparametric technique that
imposes minimal distributional assumptions on the DGP and has
excellent robustness (Meng et al., 2023). This study considers the
bidirectional spillover effects between the carbon, stock, commodity,
foreign exchange, and interest rate markets, as well as the effects of
exogenous factors, such as geopolitical and economic risks, on the
system. Based on the MVMQ-CAViaR model, we propose the
MVMQ-CAViaRX model, which retains the original model’s
basic structure, where the quantile of each endogenous variable is
determined by its lagged endogenous variables and lagged quantiles.
By introducing exogenous variables into each equation, we examine
the effects of exogenous variables on extreme risks in each market.
The selected MVMQ-CAViaRX2 model is as follows:

q1,t θ( ) � c1 +∑n
i�1
a1i ri,t−1

∣∣∣∣ ∣∣∣∣ +∑n
i�1
b1iqi,t−1 θ( ) +∑m

j�1
φ1jXj,t

q2,t θ( ) � c2 +∑n
i�1
a2i ri,t−1

∣∣∣∣ ∣∣∣∣ +∑n
i�1
b2iqi,t−1 θ( ) +∑m

j�1
φ2jXj,t

..

.

qn,t θ( ) � cn +∑n
i�1
ani ri,t−1

∣∣∣∣ ∣∣∣∣ +∑n
i�1
bniqi,t−1 θ( ) +∑m

j�1
φnjXj,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where qi,t(θ) represents the quantiles of the probability of the i-th
endogenous variable used to express the market’s extreme risk. ri,t−1
and qi,t−1 are the lagged values of endogenous variables and their
quantiles, respectively, i � 1, 2,/, n. Xj,t are exogenous variables,

j � 1, 2,/, m. Equation 1 can be simplified as a matrix
representation as follows:

qt � c + A rt−1| | + Bqt−1 +ΦXt (2)

In Equation 2, the main diagonal and off-diagonal elements of
coefficient matrix Ameasure the effects of the endogenous variables’
own values lagged by one period and other endogenous variables’
values lagged by one on the current tail risk, respectively. Similarly,
the main diagonal elements of coefficient matrix B assess the effects
of the previous risk on the current period, whereas the off-diagonal
elements capture the influence of the previous risks of other
variables on the current risks of the current variables. The
exogenous variable coefficient matrix Φ quantifies the effect of
external shocks on the risk of each endogenous variable. The
MVMQ-CAViaRX model primarily estimates the parameters
using the quasi-maximum likelihood estimation method (QMLE).

Based on the estimated results of the MVMQ-CAViaRX model,
further joint significance tests need to be conducted on the tail risk
dependence between variables. Following the construction approach
of the asymptotic distribution of the MVMQ-CAViaRX model’s
QMLE and Wald statistic, we construct Equation 3:

Rα̂T − r( )′ R × V̂ c × R′( )−1 Rα̂T − r( ) 












→d
χ2 k( ) (3)

where R represents a k × m constraint matrix, α̂T is am × 1 vector of
estimated coefficients, and k is the number of constraints. V̂c �
1
TQ̂

−1
T V̂TQ̂

−1
T denotes the estimated value of the parameters’ variance–

covariance matrix, where V̂T � T−1∑T
t�1η̂tη̂

′
t, η̂t � ∑n

i�1∇qit(θ, α̂T)
[θ − Irit < qit(θ,α̂T)], ∇qit(θ, α̂T) are gradients, and Q̂T � (2ĉTT)−1
∑n

i�1∑T
t�1I[−ĉT ≤ rit−qit(θ,α̂T)≤ ĉT]∇qit(θ, α̂T)∇′qit(θ, α̂T). The bandwidth

ĉT is calculated according to the methods of Koenker (2005) and,
Machado and Silva (2013). T represents the sample size.

3.2.2 Time-varying structure measurement of
extreme risks in the carbon market

We take the extreme risk measured by the MVMQ-CAViaRX as
the endogenous variable, with the exogenous variables remaining
unchanged; the lag order is set to be consistent with the MVMQ-
CAViaRX model, which is lagged by one order. Referring to
Primiceri (2005), Antonakakis et al. (2020), and Liu et al. (2023),
the TVP-VARX model adopts non-recursive identification
as follows:

TABLE 2 Descriptive statistics for the study variables.

Variables Mean Min Max SD Skewness Kurtosis Q (20) PP (6) ARCH-LM (6)

rECIX 0.0982 −28.5888 27.3847 3.1056 −0.4260 17.6308 55.8885*** −38.7324*** 197.9415***

rEU100 0.0300 −12.7517 7.8590 1.2409 −1.2452 17.0008 61.8535*** −35.2419*** 228.5434***

rRCRB 0.0414 −11.0438 5.4919 1.2318 −1.1087 12.3755 27.0191 −32.8060*** 135.1060***

rEDEX −0.0064 −1.8349 3.4946 0.4689 0.2375 6.7311 30.3876* −35.3319*** 77.7783***

rRATE 0.0001 −25.1963 11.9649 2.0809 −1.3215 27.7298 1413.7*** −14.7932*** 334.1102***

CESI 0.0632 −3.0460 2.1240 0.8881 −0.3731 4.0626 1959.9*** −2.3521** 1,182.5***

GPR 0.0000 −1.0743 4.2573 0.6224 2.2736 12.0274 58,717*** −15.2849*** 808.7963***

Note:*, **, and*** indicate significance at the 10%, 5%, and 1% levels, respectively. Q (20) is the Ljung–Box Q statistic, with a lagged order of 20. Considering the heteroscedastic characteristics of

the data, we adopt a PP, stability test adjusted by heteroscedasticity and the Newey–West default lagged order.

2 According to the theoretical framework proposed by White et al. (2015),

the MVMQ-CAViaR model allows the inclusion of covariates of interest.

White et al. have provided proofs related to the asymptotic theory of the

MVMQ-CAViaRX model.
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qt � Atqt−1 + DtXt + ut, ut

∣∣∣∣Ωt−1 ~ N 0,Σt( ), t � 2,/, T (4)

In Equation 4, At and Dt are the n × n and n × m dimensional time-
varying coefficient matrices, respectively. Ωt−1 represents all
information sets at t − 1, and n and m represent the numbers of
endogenous and exogenous variables, respectively, and
Σt � diag([σ1,t, σ2,t,/, σn,t]). The time-varying parameters of
the TVP-VARX model can be estimated using the Markov Chain
Monte Carlo simulation (MCMC) method within a
Bayesian framework.

Considering the effects of exogenous variables on the system and
assuming that the exogenous variables follow an ARMA (1, 1) -
GARCH (1, 1) process, we refer to the generalized error
decomposition method of Koop, Pesaran, and Potter (1996) and
Pesaran and Shin (1998) and modify the generalized error
decomposition method for exogenous variables. After the
modification, the contribution (i.e., the cross-variance share) of
endogenous variable j to the forecast mean square error (MSE) of
variable i is as follows:

θij H( ) �
σ−1jj ∑H−1

h�0
ei′ΨhΣtej( )2

∑H−1

h�0
ei′ ΨhΣuΨ

′
h +ΨhD ∑H−h−1

p�0
ΓpΣεΓ

′
p( )D′Ψ ′

h[ ]ei{ }
(5)

The contribution of the exogenous variable k to the forecastMSE
of the endogenous variable i is:

θik H( ) �
σ−1kk ∑H−1

h�0
ei′ΨhD ∑H−h−1

p�0
ΓpΣε( )ek[ ]2

∑H−1

h�0
ei′ ΨhΣuΨ

′
h +ΨhD ∑H−h−1

p�0
ΓpΣεΓ

′
p( )D′Ψ ′

h[ ]ei{ }
(6)

where (10), Ψh (n × n dimensional), and Γp (m × m dimensional)
denote the coefficient matrices of the moving-average models for
endogenous variables lagged by h periods and exogenous
variables lagged by p periods, respectively. Where
Γp � diag([Γ1,p, Γ2,p,/, Γm,p]), Σε � diag([hx1, hx2,/, hxm]), and
hxj represent the conditional variance of the j-th exogenous variable;
σjj � (Σt)jj, σkk � (Σε)kk, and ei is the selection vector with the i-th
element equal to 1, and all other elements equal to 0, i � 1, 2,/, n.
The derivations of Equations 5 and 6 are presented in detail in
Supplementary Appendix SI.

Following the methodology proposed by Diebold and Yilmaz
(2012) to construct a spillover index model, the cross-variance
shares for each endogenous variable need to be normalized to
ensure that all variables explain 100% of the forecasted MSE of
these endogenous variables. Thus, the pairwise directional
spillover effect of endogenous variable j on endogenous
variable i is as follows:

~θij H( ) � θij H( )
∑n
j�1
θij H( ) + ∑m

k�1
θik H( )

(7)

Similarly, the pairwise directional spillover effect of exogenous
variable k on endogenous variable i is as follows:

~θik H( ) � θik H( )
∑n
j�1
θij H( ) + ∑m

k�1
θik H( )

(8)

Considering the specific meaning of the spillover index, if i
represents the extreme risk of the carbon market, then ~θij(H) and
~θik(H) represent the contribution shares of the extreme risks to
the carbon market of the j-th endogenous variable and k-th
exogenous variable in H prediction period, respectively. Both
~θij(H) and ~θik(H) are not only functions of prediction period H
but also integrate the advantages of the TVP-VARX model with
time-varying properties. This study applies the following two
analytical strategies. First, fixH and calculate the means of ~θij(H)
and ~θik(H) at different times t to obtain the average extreme risk
structure of the carbon market during H prediction period.
Second, when both H and t change, calculate the time-varying
extreme risk structure of the carbon market (i.e., the three-
dimensional time-varying spillover effects of the endogenous
and exogenous variables).

4 Empirical estimations

4.1 Extreme risk measurements and
dependence testing

4.1.1 Estimation results of the MVMQ-
CAVIaRX model

The MVMQ-CAViaRX model is constructed using CESI and
GPR as exogenous shocks and rECIX, rEU100, rRCRB, rEDEX, and rRATE
as endogenous variables. Table 3 presents the estimation results.

Table 3 shows a complex correlation between the extreme
risks of the carbon market and the stock, commodity, exchange
rate, and interest rate markets, and is subject to exogenous shocks
from economic surprises and geopolitical risks. When i � j, all bij
reject the null hypothesis that the parameters are zero at the 1%
significance level, indicating that the lag values of extreme risks in
various markets can significantly affect the current value of
extreme risks, and the estimated values are between 0.6 and
0.9, which is in line with theoretical expectations. Regarding the
Wald test for the joint significance of aij and bij, when i ≠ j, the
null hypothesis is rejected at the 1% significance level, indicating
that the extreme risks of endogenous variables are affected by the
lagged values of other endogenous variables and extreme risks. In
the Wald test for the joint significance of bij, i ≠ j also rejects the
null hypothesis at the 1% significance level, indicating that
extreme risks have a significant dependency across various
markets. Moreover, the Wald test for the joint significance of
the extreme risks of the carbon market (i.e., b12, b13, b14, and b15)
rejects the null hypothesis at the 5% significance level, suggesting
that the extreme risks in other markets have significant effects on
the extreme risks in the carbon market. Most coefficients of the
exogenous shocks CESI and GPR are significant at the 1%, 5%, or
10% level, confirming that the system of extreme risks constituted
by endogenous variables is subject to the effects of
exogenous variables.
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4.1.2 Extreme risks in the carbon market
Themeasurement results for the 1% quantile of the carbonmarket

rECIX sequence are shown in Figure 23. The results show that the
extreme loss in the carbon market was approximately 10%,
particularly in March 2020 March 2022, and September 2022,
when the extreme risk levels were higher, with the maximum
extreme loss reaching 34.25%. In 2020, the COVID-19 pandemic
spread globally, triggering rare massive shocks in the financial
markets, with numerous stock markets experiencing unprecedented
intensive circuit breakers inMarch, most notably in the United States,
which triggered circuit breakers four times. Coupled with the impact
of Brexit, economic and geopolitical uncertainties increased, leading
to heightened risk in the carbon market. After experiencing violent
short-term fluctuations, the carbon market returns returned to
normal levels, reflecting the strong price resilience of the carbon
emissions trading mechanism under external shocks. In February
2022, the Russo–Ukrainian war broke out, and in August, Russia
halted the natural gas supply of Nord Stream 1, Europe faced an
unprecedented energy crisis with energy prices rising significantly,
along with the effects of high inflation and the UK bond crisis, the
carbon market risk exhibited two extreme points. In 2023, the
operation of the European carbon market was generally stable.

4.2 Analysis and results of the time-varying
structure measurement of extreme risks in
the carbon market

4.2.1 Estimation results of TVP-VARX parameters
In this study, when using MCMC to estimate the parameters of

the TVP-VARX model, we refer to Nakajima et al. (2011) method,
and discard the initial 1,000 samples, while retaining the subsequent
10,000 relatively effective samples. The parameter estimation results
are shown in Supplementary Table A1 and Supplementary Figures
A1, A2 in Supplementary Appendix SII.

The estimated results of Σβ and Σh in Supplementary Table A1
show that the values of the Geweke statistics (i.e., CD) do not exceed
1, which is less than the critical value of 1.96, and that the
inefficiency factors (i.e., inefficiency) are less than 100, indicating
that the parameter estimation results are valid. Supplementary
Figures A1, A2 show the autocorrelation coefficients, sample
values, and posterior density functions of samples Σβ and Σh.
The autocorrelation coefficients decrease rapidly and eventually
approach 0, and the sample fluctuation path is stable, indicating
better convergence. The model is reliable when the parameter
estimation results are combined.

4.2.2 Average extreme risk structure of the
carbon market

Based on the estimation results of the TVP-VARX model, the
overall effects of other markets and exogenous shocks on the
extreme risk in the carbon market are examined using Equations
7 and 8. Figure 3 reports the results of the calculations of the average

TABLE 3 Estimation results of the MVMQ-CAVIaRX model.

Parameters j↓, i→ i � 1 i � 2 i � 3 i � 4 i � 5

ci −0.1861 (0.5679) −0.6664*** (0.1739) 0.1189 (0.2100) −0.1718*** (0.0467) −0.1080* (0.0650)

ai1 −0.4204** (0.2078) 0.0710*** (0.0198) 0.0516 (0.0549) −0.0124** (0.0056) −0.0105 (0.0111)

ai2 0.1100 (0.3834) −0.7538*** (0.1281) −0.0464 (0.1753) −0.0117 (0.0183) −0.0001 (0.0219)

ai3 −0.2049 (0.2412) <-0.0000 (0.1391) −0.2094 (0.1384) 0.0338** (0.0158) 0.0165 (0.0292)

ai4 −0.3910 (0.7453) 0.0002 (0.1854) 0.0239 (0.4350) −0.0001 (0.0661) −0.2318*** (0.0541)

ai5 0.0249 (0.1671) −0.2528*** (0.0752) −0.0840 (0.1165) 0.0172 (0.0139) −0.6843*** (0.1089)

bi1 0.9171*** (0.0627) 0.0047 (0.0112) 0.0438 (0.0303) 0.0220** (0.0105) −0.0155 (0.0096)

bi2 0.2645* (0.1480) 0.8067*** (0.0345) 0.1065* (0.0553) 0.0329** (0.0154) 0.0098 (0.0153)

bi3 −0.3837** (0.1786) −0.0700 (0.0543) 0.7610*** (0.0511) −0.0092 (0.0156) −0.0003 (0.0173)

bi4 −0.4687 (0.7112) −0.3803** (0.1830) 0.1319 (0.2257) 0.6610*** (0.0687) 0.1590* (0.0932)

bi5 0.0226 (0.0837) −0.0469** (0.0200) −0.0338 (0.0472) 0.0234** (0.0091) 0.7422*** (0.0367)

di1 −0.1656** (0.0806) −0.0689*** (0.0267) −0.0775* (0.0414) −0.0119 (0.0103) 0.0048 (0.0098)

di2 −0.4696 (0.3711) −0.1810 (0.1444) 0.2021** (0.0863) −0.1888*** (0.0296) 0.0917** (0.0439)

H0: aij � bij � 0, i ≠ j 1078.4830*** Reject H0

H0: bij � 0, i ≠ j 327.9025*** Reject H0

H0: b12 � b13 � b14 � b15 � 0 12.7840** Reject H0

Note: ** and *** indicate significance at 5% and 1% levels, respectively. The last three lines present the results of theWald test for the joint significance of the related parameters. The bold values

represent the main diagonal elements of A and B in Equation 2, as well as the Wald statistic.

3 Figure 1 only reports the 1% quantile measurement results for the

European Carbon Index return series (rECIX). The measurement results

for the other endogenous variables are omitted here. If necessary, please

contact the corresponding author of this paper.
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contribution of extreme risks in various markets and exogenous
shocks to the carbon market’s extreme risk based on different
forecasting periods (H � 1 ~ 30 days).

As Figure 3 shows, as the prediction period increases, the
structure of extreme risk in the carbon market exhibits
significant changes. For the extreme risks in the carbon market,
the proportion of extreme risk contributed by the market itself
declines from approximately 89.80% when H = 1–28.25% when H =
30, with an average of approximately 45.90%. The risk incentives
within the market are very important sources of risk, including the
market supply–demand level, the liquidity of carbon assets, emission
reduction policies, and climate change. Geopolitical risk is the factor
with the most significant influence on extreme risks to the carbon
market, apart from the carbon market itself. Its average contribution
rate increases from 10.15% when H = 1 to approximately 52.94%
when H = 30 and surpasses the contribution of the carbon market
itself at H = 15. First, when geopolitical risks are heightened, panic
can ensue among trading participants in the carbon market, which
occurs not only in the production processes of high-emission
companies but also within the trading processes of market
participants, subsequently leading to intensified extreme risk.
Second, elevated geopolitical risks can exacerbate fluctuations in
the prices of commodities, such as energy and industrial products,
and have a profound impact on exchange rates, thereby increasing
extreme risks facing the carbon market. The significant contribution
level of high geopolitical risks also supports the typical
characteristics of extreme risks with high sensitivity to sudden
events and external shocks, such as geopolitics. The spillover
effect of extreme risks in the stock market on extreme risks in
the carbon market ranges from 3.11% to 15.07%, reaching a
maximum at H = 8 and then gradually decreasing. The high

contribution of extreme risk in the stock market to extreme risk
in the carbon market is mainly due to the stock market’s active
trading, strong liquidity, diversified market participation, and higher
efficiency in information transmission. Consequently, the spillover
of extreme risks in the stock market is faster and more intense. The
average impact of extreme risks in the commodity market on the
carbonmarket is similar to that of the financial market, but it reaches
its maximum value at H = 11, at approximately 4.35%. The effect
during each forecast period is smaller, with an average proportion of
approximately 3.09%, which is significantly less than the 11.08%
contribution level of the stock market. Regarding the main reasons
for these differences, first, the financial attributes of the commodity
market are weaker than those of the stock market; hence, the direct

FIGURE 3
Average contribution ratios of various markets and external
shocks to extreme risk in the carbon market over different
forecast periods.

FIGURE 2
Risk measurement results of European carbon index returns. (Note: the COVID-19 time point is 30 January 2020, and WHO declared it a global
emergency; the Russia–Ukraine war time point is 24 February 2022, when Russia launched a “special military action” against Ukraine; Nord Stream
1 halted time point is the end of August 2022, when Russia suspended “Nord Stream 1” service; the Strasbourg Climate Bill time point is 18 April 2023,
when the EU passed the climate bills).
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transmission mechanisms of investment and speculative behavior
are somewhat restricted. Second, the commodity market’s indirect
mechanisms of influencing the carbon market through inflation and
industrial chain transmission require a longer time. The average
contribution of economic risk to the extreme risk of the carbon
market steadily increased from 0.49% (H = 1) to 5.97% (H = 30),
indicating that adverse macroeconomic changes are primarily
transmitted to the carbon market through an industrial chain
transmission mechanism. The effect of economic risk on the
extreme risk in the carbon market requires considerable time to
accumulate. The contribution of extreme risks in the foreign
exchange and interest rate markets to extreme risks in the carbon
market is relatively low, averaging 0.22% and 0.51%, respectively.
The main participants in the European carbon market are high-
emission companies or other institutions from European countries
conducting transactions and settlements in Euros, while the interest
rate market is mainly affected by macroeconomic conditions and the
monetary policy of the European Union. Thus, the contribution of
the foreign exchange and interest rate markets to the extreme risk of
the carbon market is limited. However, it cannot be ignored that the
foreign exchange and interest rate markets are both affected by
economic and geopolitical risks, which will cause them to form a
complex network of extreme risk spillovers along with
other markets.

To further validate the results of the above analysis, Table 4
reports the average extreme risk spillover intensity and direction
among various markets over a forecasting period of 10 days (i.e.,H =
10). It also calculates the average contribution level of two exogenous
variables, CESI and GPR, to the extreme risks in each market.

Table 4 shows that geopolitical risk contributes significantly to
extreme risk in all markets, further validating the high sensitivity
characteristic of extreme risk to sudden exogenous shocks like
geopolitics. Even more remarkably, over a forecasting period of
10 days, the effect of geopolitical risk on the extreme risk of the
foreign exchange market averages 71.04%. When geopolitical risk
factors such as wars, political turmoil, and tensions in international
relations occur, safe-haven capital flows, international trade, and
international energy prices will be significantly affected. Under a
global exchange rate and transaction settlement system dominated
by the US dollar, the Euro to US dollar exchange rate will inevitably
suffer a substantial impact. The stock market is the largest net
spillover source of extreme risk, while the commodities market is the

largest net spillover recipient. This finding is consistent with most
research and aligns with the theoretical analysis discussed earlier.
First, on the direct path, when the stock market experiences
significant fluctuations, investors may shift their capital from the
stock market to the commodities market in search of more stable
returns. Second, on the indirect path, the stock market can affect
global commodity prices through market liquidity and the US dollar
exchange rate channels, especially for commodities priced in US
dollars. Economic risk has a relatively low impact on extreme risks
across all markets, with the two largest contributions being 6.02%
and 1.10% for the commodities and carbon markets, respectively.
This conclusion is consistent with the pathways of economic risk
impact. Economic risk generally affects the pricing system through
trade, finance, and industry pathways, thus having limited influence
on extreme risks in markets over a shorter forecasting period (H =
10). Additionally, the average spillover effect of economic risk on the
extreme risk of the carbon market is approximately 1.10%, which
does not exclude the possibility that during certain specific stages,
such as the stage of the COVID-19 epidemic, when economic
expectations and reality diverge significantly, the impact on
extreme risks in the carbon market could be exacerbated.
Although the contributions of the foreign exchange and interest
rate markets to extreme risk in the carbon market are very small,
based on the results in Table 4, the foreign exchange market plays a
very important role as a net recipient of extreme risk under
exogenous shocks, while the interest rate market contributes
significantly by both bring a recipient and proving a spillover of
market extreme risk. This indicates that the foreign exchange and
interest rate markets constitute very important indirect pathways for
the transmission of extreme risk between markets under the
influence of exogenous risks.

4.2.3 Time-varying extreme risk structure in the
carbon market

Unlike the average extreme risk structure of the carbon market
in each forecast period, referred to as variableH in Section 4.2.2, this
section primarily presents an analysis of the main features of the
time-varying extreme risk structure in the carbon market from
January 2019 to September 2023. Figure 4 presents the three-
dimensional forecast MSE decomposition results at different time
points under different forecast periods (i.e., H and t both change),
indicating the contribution level of exogenous risk shocks and

TABLE 4 Average spillover index of economic risk, geopolitical risk, and extreme risk among markets (H � 10, %).

i↓;j,m→ ECIX EU100 RCRB EDEX RATE CESI GPR From others

ECIX 49.49 14.31 4.32 0.31 0.44 1.10 29.93 19.39

EU100 3.81 84.41 0.19 0.24 0.68 0.22 10.36 4.92

RCRB 13.60 41.13 16.59 0.14 1.08 6.02 21.36 55.95

EDEX 8.80 12.71 0.74 1.08 4.71 0.84 71.04 26.96

RATE 3.35 2.50 0.20 0.14 83.49 0.20 10.03 6.19

To Others 29.56 70.66 5.45 0.83 6.91 — — Total Spillover 22.68

Net 10.18 65.79 −50.54 −26.15 0.72 — —

Note: “From Others” refers to the spillover index of extreme risk from other markets into the i-th market, excluding the contribution of exogenous variables to extreme risk in the i-th market.

The bold value represents the total spillover index, which is the average of "From Others" or "To Others".
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extreme risks from various markets to the extreme risk of the carbon
market. To facilitate the analysis of the time-varying structure, this
section also fixes the forecast period at 10 days and measures the
contribution results of extreme risks to the carbon market at
different time points, as shown in Figure 5.

Figures 4, 5 show that the carbon market exhibits significant
time variability in its extreme risk structure under the influence of

extreme risks from other markets and exogenous shocks.
Specifically, the contribution of internal factors within the carbon
market to its own extreme risk ranges from 12.65% to 96.97% over a
10-day forecast period, showing considerable fluctuations, and is the
most significant contribution most of the time. This indicates that in
the management of extreme risks, attention should be paid to
preventing tail risks caused by internal market factors. Consistent

FIGURE 4
Time-varying prediction error decomposition of extreme risks in the carbon market.
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with previous results, geopolitical risk is the external factor with the
greatest impact on the carbon market’s extreme risk, apart from the
market itself, contributing between 0.90% and 85.61% over a 10-day
forecast period. Notably, geopolitical risk contributed significantly
to the carbon market’s extreme risk during the period before and
after the COVID-19 outbreak, as well as during the tense situation
before the Russia–Ukraine war. The impact of extreme risks in the
stock market on the extreme risk of the carbon market shows certain
regularities. For example, during the periods before and after the
COVID-19 outbreak, Russia–Ukraine war, and halting of Nord
Stream 1, a higher extreme risk spillover effect was observed.
This further indicates that, when hit by exogenous shocks, stock
markets are more likely to act as net spillers of extreme risk, which
adversely affects the carbon market. The economy was significantly
affected during the COVID-19 prevention and control period after
the outbreak, causing a severe deviation between actual economic
development and expectations. Consequently, the contribution of
economic shocks to the carbon market’s extreme risk significantly
increased and persisted. Similarly, after the COVID-19 outbreak, the
contributions of the commodity, exchange, and interest rate markets
to the carbon market’s extreme risk increased; however, unlike
economic risk, the duration was relatively short. During the
Russia–Ukraine war and when Nord Stream 1 was halted, the
contributions of extreme risks from the commodity and exchange
rate markets to the extreme risk of the carbon market intensified
significantly, mainly because of the energy tension and regional
instability caused by external factors, which had a significant impact
on exchange rates. The contribution of extreme risks from the
interest rate market to the carbon market’s extreme risk also
noticeably increased during this period. Combined with policy
changes in European interest rates, in July 2022, Europe ended

its eight-year “negative interest rate” era, and the European Central
Bank’s interest rate increases were far beyond expectations, implying
higher debt pressure and financing costs for high-emission
companies and concerns about a new round of sovereign debt
crises. Additionally, in April 2023, after the European Union
passed the “Strasbourg Climate bills”,’ the contribution level of
the carbon market to its own extreme risk showed a slight
downward trend, proving to some extent that this reform has a
positive effect on stabilizing the carbon market and mitigating
endogenous extreme risks. However, owing to data limitations,
the long-term effects require further validation.

4.3 Robustness tests

To examine the robustness of the MVMQ-CAViaRX and TVP-
VARX-DY models, this study utilized EUA futures price data from
2 January 2019, to 16 October 2023, replacing the ECIX for robustness
testing. Both are carbon allowance price series, with the difference being
that the former is futures prices, the latter is the spot price index, and the
other variables remain unchanged. The MVMQ-CAViaRX model
estimation results with the replacement variable are shown in
Table 5, the TVP-VARX model parameter results can be found in
Supplementary Appendix SIII, and the forecast of the 10-day average
extreme risk spillover results are presented in Table 6.

The results in Table 5 are fairly similar to those in Table 3, with
the main estimation results maintaining consistent signs and
significance levels and the Wald test results for extreme risk
dependence remaining the same. This indicates that the
conclusions of the MVMQ-CAVIaRX model regarding extreme
risk measurement and tail dependence testing are robust.

FIGURE 5
Time-varying structure of extreme risks in the carbon emissions trading market (H � 10, time points①–④ in the figure are the COVID-19 outbreak,
Russia–Ukraine war, Nord Stream 1 halted, and Strasbourg Climate bill, respectively).
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In Supplementary Appendix SIII, the MCMC estimation results
presented in Supplementary Table A2 and Supplementary Figures
A3, A4 are generally consistent with those of the model before
variable replacement, reflecting the good convergence and
effectiveness of this parameter estimation method. Moreover,
when measuring the intensity of the extreme risk spillovers
between markets and from exogenous shocks, the main
conclusions remain similar to those of the model before variable
replacement. As Table 6 shows, with the forecast period fixed at
10 days, the average intensity and direction of extreme risk spillovers
from other markets and exogenous shocks to the EUA futures
market show no significant changes compared to Table 4, and
the values are very close. Owing to space limitations, further
results of the robustness checks are not presented here.

4.4 Discussions

Unlike many studies focusing on risk spillovers between carbon
markets and directly related sectors such as fossil energy, renewable
energy, and electricity markets (Ding et al., 2022; Su et al., 2023; Zhang
et al., 2022), this paper constructs a comprehensive theoretical
framework that considers the carbon market and related markets as
an extreme risk transmission system with complex interrelationships,
influenced by exogenous economic and geopolitical risks. A key issue in
studying the extreme risk spillover effects between carbon and related
markets is accurately measuring extreme risks. Current methods, such
as CAViaR and CoVaR (Naeem and Arfaoui, 2023; Zhao and Xu, 2023;
Siddique et al., 2023), typically focus on single-market risk
measurement and do not incorporate the dependency structure of

TABLE 5 Estimated results of the MVMQ-CAVIaRX model after replacing ECIX with EUA futures prices.

Parameters i � 1 i � 2 i � 3 i � 4 i � 5

ci −0.6200 (1.2603) −0.7149*** (0.2357) 0.0669 (0.2974) −0.0821** (0.0324) −0.0263 (0.0703)

ai1 −0.3116** (0.1375) −0.0001 (0.0470) 0.0118 (0.0250) −0.0026 (0.0078) −0.0417*** (0.0114)

ai2 0.1691 (0.8619) −0.7502*** (0.1570) 0.0009 (0.1678) −0.0371* (0.0190) −0.0005 (0.0280)

ai3 −0.0370 (0.4697) −0.0807 (0.2197) −0.0898 (0.0910) 0.0466* (0.0240) 0.0357 (0.0288)

ai4 −0.0158 (1.2201) 0.4680 (0.3758) 0.0865 (0.2586) −0.0156 (0.0833) −0.0262 (0.1166)

ai5 −0.1670 (0.3896) −0.0385** (0.0180) −0.0583 (0.1083) −0.0261* (0.0143) −0.6812*** (0.1079)

bi1 0.8810*** (0.0865) −0.0349 (0.0257) 0.0043 (0.0178) 0.0011 (0.0056) −0.0159 (0.0132)

bi2 0.2548 (0.3010) 0.8365*** (0.0829) 0.0591 (0.0985) 0.0050 (0.0091) −0.0001 (0.0184)

bi3 −0.1741 (0.4116) −0.0512 (0.1642) 0.8695*** (0.2131) 0.0034 (0.0171) 0.0421 (0.0511)

bi4 −0.6954 (1.0308) −0.2915 (0.2357) 0.1197 (0.1591) 0.8723*** (0.0522) −0.0500 (0.0841)

bi5 0.0078 (0.1403) 0.0022 (0.0203) −0.0122 (0.0329) −0.0013 (0.0075) 0.7580*** (0.0338)

di1 −0.0739 (0.1996) −0.0526 (0.0645) −0.0445 (0.0899) −0.0100 (0.0094) 0.0166 (0.0263)

di2 −0.6428** (0.2922) −0.0809 (0.1216) 0.0214 (0.0999) −0.0680*** (0.0220) −0.0656* (0.0356)

H0: aij � bij � 0, i ≠ j 1520.6756*** Reject H0

H0: bij � 0, i ≠ j 323.9230*** Reject H0

H0: b12 � b13 � b14 � b15 � 0 10.9516** Reject H0

Note: ** and *** indicate significance at 5% and 1% levels, respectively. The bold values represent the main diagonal elements of A and B in Equation 2, as well as the Wald statistic.

TABLE 6 Average spillover index of economic risk, geopolitical risk, and extreme risk among markets after replacing variables (H � 10, %).

i↓;j,m→ ECIX EU100 RCRB EDEX RATE CESI GPR From others

ECIX 49.42 14.35 4.32 0.32 0.44 1.10 29.97 19.43

EU100 3.77 84.42 0.19 0.25 0.68 0.21 10.41 4.88

RCRB 13.62 41.16 16.59 0.14 1.07 5.96 21.38 55.99

EDEX 8.74 12.69 0.73 1.09 4.72 0.83 71.11 26.89

RATE 3.38 2.51 0.20 0.14 83.54 0.20 9.94 6.24

To Others 29.51 70.72 5.44 0.84 6.90 — — Total Spillover 22.68

Net 10.09 65.90 −50.59 −26.07 0.67 — —

Note: The bold value represents the total spillover index, which is the average of "From Others" or "To Others".
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different markets or external shocks into the models. This paper
employs the MVMQ-CAViaRX risk measurement model, which
considers both risk contagion between markets and the impact of
external shocks. The Wald test confirms the existence of extreme risk
dependencies between the carbon and related markets, influenced by
external economic and geopolitical risks. These conclusions align with
the findings of Yang et al. (2023) and Tao et al. (2024).

For the study of time-varying extreme risk structures, this paper
uses the TVP-VARX model, which is consistent with the theoretical
framework and extreme riskmeasurementmodel settings. Additionally,
using the DY spillover index model modified by external variables, the
paper examines the contributions of related markets and external
shocks to the extreme risk of the carbon market. Unlike most
existing research methods in the literature review, the extreme risk
transmission in the related market is bidirectional, whereas external
shocks are unidirectional. Short-term extreme risks are primarily driven
by endogenous risks within the carbon market, exogenous shocks from
geopolitical factors, and risk contagion from the stock and commodity
markets. In contrast, for long-term extreme risks, the external shocks of
economic risks, as well as the risk contagion effects from interest rate
and exchange rate markets, have been significantly enhanced. These
conclusions confirm that extreme risks are highly sensitive to external
shocks, such as geopolitical factors (Gong et al., 2024; Jiang et al., 2024),
and provide empirical evidence for the risk transmission mechanisms
within the theoretical framework to some extent.

However, this paper follows research conventions and
considering the “dimensionality” issue of the TVP-VARX model,
and still uses a single market variable to characterize the carbon and
related markets, failing to incorporate more variables into the model
to fully reflect the overall market situation. Additionally, the study
does not include critical external shocks such as extreme weather
and climate policy uncertainties (Dong et al., 2024; Chen and Sun,
2022), which we plan to explore in future research.

5 Conclusion and policy implications

5.1 Conclusion

Based on an analysis of the risk spillover mechanism between the
carbonmarket and the stock, commodity, exchange rate, and interest rate
markets under the effects of economic and geopolitical risks, this study
first employs theMVMQ-CAViaRXmodel to measure the extreme risks
of the carbon market and test the dependence of extreme risks in each
market under exogenous risk shocks. Then, the TVP-VARX-DY model
is constructed to study the average extreme risk structure of the carbon
market in different prediction periods and the time-varying extreme risk
structure at different time points. The main conclusions are as follows.

First, significant extreme risk dependency was observed among the
carbon, stock, commodity, exchange rate, and interest rate markets,
which are also influenced by exogenous shocks. The extreme risk
measurement results of the carbon market considering the above
effects show that the extreme risk in the carbon market was
relatively high after periods such as the COVID-19 outbreak,
Russia–Ukraine war, and halting of Nord Stream 1.

Second, the results of the average extreme risk structure
measurement in the carbon market indicate that the carbon market’s
extreme and geopolitical risks contribute the most to the market’s

extreme risk, confirming that extreme risk is more sensitive to
sudden external shocks. In terms of extreme risk spillovers between
markets, the stock market contributes significantly to the carbon
market’s extreme risk, followed by the commodity market. Although
foreign exchange and interest rate markets make a limited contribution
to the carbonmarket’s extreme risk, they play an important intermediary
role in the entire risk spillover system. Economic risk has a relatively slow
but continuously increasing effect on extreme risk in the carbon market.

Third, the analysis of the time-varying extreme risk structure of the
carbon market shows that in most periods, geopolitical risks have a
significant impact on the extreme risk of the carbon market. During the
COVID-19 outbreak, Russia–Ukraine war and halting of Nord Stream
1, and economic risks and the extreme risks of the stock, commodity,
and foreign exchange markets showed significant variability in their
contributions to the extreme risk of the carbon market, along with
evidence of heterogeneity. The contribution of the interest rate market
to the extreme risk of the carbonmarket has notably increased following
the end of the “negative interest rate” era in Europe.

5.2 Policy implications

Based on the above research conclusions, regulatory authorities of
the carbon market should address extreme risks from a systemic
perspective. First, extreme risks in the carbon market mainly stem
from its own contributions. Carbon market policies should consistently
aim to stabilize market supply and demand, enhance market liquidity,
and implement effective emission reduction policies tomitigate extreme
risks from endogenous sources. Secondly, in the external environment,
especially when there are significant fluctuations in geopolitics, stock
and commodity markets, the carbon market will be greatly impacted in
the short term. It is crucial to prevent price volatility from leading to
extreme losses for participants. In the long term, economic risksmust be
considered, and carbon market policies should incorporate economic
cycle considerations, with timely adjustments to adapt the changes of
economic conditions. Thirdly, interest rate and exchange rate markets
also influence extreme risks in the carbon market. Therefore, carbon
market policies should account for regional monetary policy changes,
particularly during significant shifts in interest rate policies and major
external political and economic events, and adjust corresponding
policies in a timely manner to ensure the stability of the carbon market.
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