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Introduction: The factors that significantly and negatively impact carbon dioxide
(CO2) emissions and coastal water quality (CWQ) must be continuously
monitored and thoroughly evaluated. Among these, tourism (TR) volume
stands out as one of the primary contributors to such effects. In contrast,
green fiscal policy (GFP) and fintech (FT) can be considered proactive and
modern efforts contributing to the improvement of these environmental
indicators. Exploring whether the impacts of these factors exhibit uniformity
across quantiles will greatly benefit strategic solutions aimed at avoiding
resource waste.

Methods: This paper aims to calibrate procedures to apply the method of
moment quantile regression (MMQR) model to address this issue. Firstly,
cross-sectional dependence (CSD) among the variables is examined. Next, a
stable long-term relationship between the variables is assessed using stationarity
analysis. Finally, the MMQR estimation is conducted to thoroughly investigate the
impact of independent variables on CWQ and CO2 across different quantiles.

Results: The results from both the fixed effects (FE-OLS) and dynamic ordinary
least squares (D-OLS) models reveal stable and significant correlations between
the regressors and response variables. The research findings indicate that GFP
and FT exert a significant impact on improving both CWQ and reducing CO2. In
contrast, the favorable growth of the TR sector contributes negatively to CWQ
and CO2.

Discussion: The paper recommends that the government increase spending and
investment in green projects utilizing renewable energy, green transportation,
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blockchain technology, and advanced techniques. It also advocates for a strategic
approach to controlling TR, focusing on enhanced waste management, in order to
improve CWQ and CO2 indicators across most quantiles.

KEYWORDS

green fiscal policy, coastal water quality, tourism, environmental emissions, method of
moment quantile regression, cross-sectional dependence, panel cointegration and
estimation

1 Introduction

Coastal water quality (CWQ) and the reduction of
environmental emissions (EE) are two of the most critical
priorities for sustaining ecosystems and the viability of human
habitats (Bierman et al., 2011; Kai et al., 2024). China, despite
being the 6th largest nation in terms of total water resources,
ranked the 13 most water-scarce nations globally, with per capita
water availability falling below 300 m³ (Liu et al., 2021). The
overexploitation of both surface and groundwater, combined with
the gradual degradation of water quality, has compounded water
security challenges, impeding both economic growth and ecological
recovery (Gao et al., 2020). Over the past decade, China’s surface
water quality has been clustered as poor and severely degraded due
to the rapid pace of economic growth. The ecosystems, public health,
soil quality, and environment have all suffered greatly as a result of
this degradation (He and Perloff, 2016). Recognizing the significance
of surface water quality, the Chinese government has undertaken
numerous efforts through various campaigns and initiatives aimed
at improving this indicator. As a result, notable achievements in
water quality have been realized. In 2022, the percentage of CWQ
meeting the standard Grade I and II reached 81.9%, an increase of
0.6% points compared to 2021. Specifically, the area matching the
Grade I standard declined by 4.9%, while the area satisfying the
Grade II grew by 5.5%. The proportion of CWQ below Grade IV
dropped by 0.7 percentage points to 8.9%, with inorganic nitrogen
and active phosphate remaining the primary pollutants (Ministry of
Ecology and Environment People’s Republic of China, 2022).

In terms of emissions, in 2022, China emitted 12.7 billion metric
tons of carbon dioxide (CO2) (Statista, 2024), accounting for 32,9%
of global emissions. As part of its approach to combat air pollution
and decrease carbon footprint, China has methodically
implemented a range of carbon neutrality campaigns and the
emissions trading scheme (Du et al., 2022). Research has
demonstrated that these policy measures have been essential in
enabling China to reach its goal of reducing its carbon footprint.
China’s “National Comprehensive Demonstration of Energy Saving
and Emission Reduction Fiscal Policy” was studied using a lagged
dif-ference-in-differences model to investigate the comprehensive
effect of green fiscal policy (GFP) on the reduction of CO2 and other
pollutants (Fan and Liang, 2023). They indicated that GFP could
considerably mitigate CO2 and the more pronounced synergistic
effect was recognized in cities experiencing lower fiscal pressure.
Another study expanded policy discussions by examining the
influences of energy generation and GFP measures on the
exhausted CO2 of BRICS nations (Ma et al., 2023). Based on the
study’s findings, it can be observed that government spending
exacerbated energy consumption and increased emissions. Li
et al. (2023) analyzed the influence of GFP and stringent

regulations on consumption-based CO2 (CCO2). The findings
indicated that economic development, nonrenewable energy, and
government spending exacerbated CCO2, whereas tax revenue, the
stringency of environmental policies, and renewable energy helped
reduce CCO2. This provides critical evidence for a more detailed
understanding of how economic development impacts energy
decomposition and CCO2 emissions across different quantiles.
Consequently, it supports the integration of renewable energy
development policies with economic growth strategies to mitigate
negative effects on CCO2 emissions.

Tourism (TR), as one of the major economic drivers, contributes
significantly to environmental deterioration, negative social and
cultural effects, and the fragmentation of natural habitats
(Lukoseviciute and Panagopoulos, 2021). Furthermore, coastal
sites, which are frequently at the forefront of the TR sector, face
the brunt of water pollution caused by improper disposal of solid
trash and food residues. This pollution manifests as eutrophication,
in which nutrient overloads, mainly nitrogen and phosphorus, cause
algal blooms, resulting in oxygen depletion in coastal waters and
harming marine biodiversity. The link between TR-induced
emissions and water pollution puts additional strain on
ecosystems, particularly in coastal places that are already sensitive
to the variations of climate change. The massive flood of visitors not
only increases demand for food and energy, resulting in higher
carbon emissions, but it also hastens the deterioration of water
quality due to increasing rubbish production. For example, cruise
liners, a major means of transportation, are renowned for releasing
massive amounts of untreated sewage and greywater directly into the
ocean, adding to coastal ecosystem degradation (Lloret et al., 2021;
Vu-Thi-Minh et al., 2024). This not only upsets the natural
equilibrium of marine habitats but also poses long-term dangers
to the livelihoods of coastal people, tying economic and ecological
interests together in a web of interdependence. Xu et al. (2024)
identified the effects of fintech (FT), TR, and investment in natural
resources on environmental sustainability in leading tourist arrival
countries. This study successfully identifies the inverse impact and
quantifies the effects of FT and TR on CO2 across different quantiles.
Additionally, it recommends the adoption of CO2 emission
standards for the TR and hospitality sector to ensure that
companies within this industry are compelled to transition
toward sustainable practices.

FT involves the integration of artificial intelligence applications,
blockchain, and other robust information technologies into the field
of finance, which is currently transforming financial services (Cheng
et al., 2023). In addressing interwoven challenges of CO2 emissions,
the role of FT as a financial enabler for sustainable environmental
practices becomes increasingly apparent (Leng et al., 2024). By
facilitating carbon credit trading systems and enabling
decentralized financing for clean energy projects within the TR
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industry, FT can support the reduction of emissions at a systemic
level. At the same time, FT innovations in traceability and
transparency of food production and waste streams can bridge
the gap between TR operators and sustainable resource
management, fostering a more resilient and eco-friendlier TR
ecosystem. FT has been increasingly recognized as a supportive
and driving mechanism for promoting renewable energy and
biomass energy sources (Bui-Duy et al., 2023). The intersection
of FT with environmental sustainability thus offers a promising
avenue for tackling the complex dynamics between TR, water
pollution, and emissions, ensuring a balanced approach to
economic growth and environmental stewardship. The National
Development and Reform Commission of China and theMinistry of
Finance jointly released a financial policy on energy conservation
and pollution elimination, which promised to help pilot city
governments better integrate financial policies for energy
generation and pollution elimination while also making it easier
to achieve sustainable development objectives (Miao et al., 2023).

In this study, we examine the factors, including GFP, FT, and
TR, for some reasons. First, GFP integrated with FT can fund
sustainable TR projects, providing opportunities for small and
medium-sized enterprises in the TR sector to access advanced
capital and technology, potentially leading to positive
environmental impacts. Second, FT reduces transaction and
monitoring costs associated with GFP implementation, enabling
TR businesses to more effectively meet sustainability requirements.
Third, the simultaneous consideration of these three factors remains
underexplored in previous studies.

Our review highlights some gaps in the literature. First, studies
exploring the relationship between FT and CWQ are lacking.
Second, while some studies examined the impacts of green fiscal
policies (GFP) and TR on CO2 emissions across quantiles, these
studies have not extended their scope to CWQ and do not consider
FT’s simultaneous effects on CWQ. Consequently, the government
and local authorities may lack an accurate assessment of whether the
current policies are more effective in addressing air pollution or
marine water pollution, or the extent of their effectiveness under
varying levels of pollution—low, moderate, or high. This is crucial
for evaluating whether resources allocated to these policies are being
used efficiently or wasted.

Another gap can be recognized in considering detailed insights
into short-term heterogeneity, as the AMG (augmented mean
group) and CCEMG (common correlated effect means group)
methods rely on assumptions of uniform short-term dynamics
across units and group-averaged effects. Moreover, previous
methods are well-suited for normal distributions, whereas our
dataset exhibits asymmetry. By employing MMQR, we effectively
address this asymmetry, mitigate the impact of outliers, better
capture nonlinear relationships, and handle cross-sectional
dependence (CSD) with greater flexibility. Consequently, the
effects of explanatory variables on the dependent variable across
different quantiles can be comprehensively examined. Given that
GFP, FT, and TR do not always exhibit linear impacts on CO2

emissions and CWQ, the utilization of MMQR provides valuable
insights for developing more precise and targeted policy
interventions.

This paper aims to investigate the asymmetric relationship
between three independent factors—GFP, TR, and FT—and two

environmental indicators, namely, CO2 emissions and CWQ. Also,
we explore whether the current GFP policies and FT activities are
more effective in addressing air or marine water pollution, and
which environmental indicator is more adversely affected by TR
activities. Additionally, their effectiveness is investigated
corresponding to varying levels of pollution. The study makes
some novel contributions. First, we examine whether the impacts
of these independent factors on the environment are positive or
negative. Second, we investigate the extent of their influence on the
two environmental indicators across different quantiles. Third,
based on our findings, we identify the key measures necessary for
the sustainable implementation and management of GFP, TR, and
FT to foster more positive environmental outcomes. This paper is
structured as follows. Section 2 begins with a fundamental
theoretical foundation, develops the research procedures, and
establishes hypotheses. Section 3 describes the research
methodologies, and analyzes the data. The discussions of the
findings are implemented in Section 4. Finally, Section 5 highlights
the theoretical and practical significance. Also, the limitations and
directions for future research are discussed and suggested.

2 Conceptual framework and
hypothesis establishment

By enabling sustainable practices and prohibiting
environmentally destructive actions, the GFP can accelerate
carbon neutrality. Governments can shift economic activity to
low-carbon alternatives by introducing policies such as carbon
taxes, renewable energy subsidies, and green infrastructure
projects. These regulations stimulate not just the use of clean
technologies, but also the reduction of greenhouse gas emissions
by industries and consumers (Fan and Liang, 2023). Furthermore,
GFP can enhance public awareness and engagement in sustainability
initiatives, leading to a collective reduction in carbon footprints
across various sectors (Benkhodja et al., 2023). It can employ
environmental taxes and fees as penalties to raise the cost of
emissions for polluting businesses, thereby internalizing the
external costs associated with environmental damage (Fan and
Liang, 2023). One significant impact of GFP is its potential
influence on the renewable energy sector (Zhang et al., 2022).
Alongside monetary policy, tight fiscal policies have been
identified as effective measures for mitigating CO2 emissions
(Chishti et al., 2021). Numerous studies also advocate for
governments to adopt policies that impose higher taxes on
petroleum and major polluting sources while increasing subsidies
for renewable energy industries and green technologies (Li et al.,
2024; Ran et al., 2024). One of GFP’s tools, environmental taxes, has
garnered significant attention in Europe and other developed
economies as a means to encourage investment in renewable
energy. In developing countries, 78.64% of environmental tax
revenue comes from energy taxes, which account for 6% of total
tax revenue and 4% of GDP (Orlov and Aaheim, 2017). Current
research emphasizes that to promote investment in environmentally
friendly energy sources, governments must impose taxes on
activities that harm the natural environment. Such environmental
taxes are expected to boost investment in renewable energy, thereby
enhancing ecological efficiency.
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Based on previous literature, we develop the below hypothesis.

Hypothesis 1. GFP plays an essential role in contributing to EE.
In terms of the CWQ, GFP has been implemented in a

diversified manner. Measures such as subsidies for eco-friendly
technologies, taxes on pollution-intensive activities, and
investments in waste management and water treatment
infrastructure can effectively decrease the discharge of pollutants
into coastal areas. By encouraging industries and municipalities to
adopt cleaner technologies and practices, GFP enables the reduction
of coastal water pollution, including runoff from agriculture,
industrial discharges, and untreated sewage (Wang et al., 2022).
Additionally, these policies can incentivize the protection and
restoration of coastal ecosystems, further enhancing water quality
and contributing to the overall health of marine environments
(Zhang et al., 2021). The GFP is believed to be an indirect
regulatory tool to support the monitoring, management, and
control of environmental impacts in the Yucatan Peninsula
(Mexico) (Vidal-Hernández et al., 2021). After decades of
economic development accompanied by severe water quality
degradation, the Chinese government has implemented green
fiscal policies in various forms to improve water quality. To
evaluate the achievement of “10-Point Water Plan”, Zhou et al.
(2021) indicated that this policy created a significantly positive
impact on industrial water quality, as evidenced by an analysis of
industrial water pollution levels before and after the policy’s
adoption. Using the comprehensive feasible generalized least
squares method, Jiang and Li (2021) argued that the promotion-
driven motivations of local officials significantly influenced marine
environmental degradation. Although GFP was not directly
addressed, they also indicated that local authority incentives
positively impact marine ecosystems. Naturally, the instruments
of GFP do not have uniform impacts. This heterogeneity reduces the
effectiveness of environmental tax/subsidy policies in surrounding
contexts. Wu S et al. (2021) examined the impact of four types of
firm heterogeneity and three methods of processing social norm
information on the effectiveness of environmental tax/subsidy
policies. The authors concluded that informational nudges can
enhance outcomes even in the presence of significant
heterogeneity within the policy environment. These arguments in
the literature reinforce the existence of a research gap in examining
the effectiveness of GFP on CWQ across different quantiles.

Based on previous literature, we develop the below hypothesis.

Hypothesis 2.GFP plays an essential role in contributing to CWQ.
In terms of EE, research has demonstrated that the TR industry

contributes notably to environmental degradation on a global scale.
TR activities, including transportation, accommodation, and
excessive consumption, rely heavily on fossil fuels or electricity
(UN Tourism, 2024). The amount of CO2 emissions that TR
generates serves as a key metric for evaluating its environmental
impact. This topic has been central to research on the interaction
between humans and the environment within the TR sector in the
21st century. Gössling (2000) pioneered a method for estimating
CO2 emissions specifically associated with TR. Since then, this issue
has garnered increasing attention. TR heavily relies on energy, with
the majority being derived from fossil fuels. The combustion of these
fuels results in the emission of various greenhouse gases,

predominantly CO2. The TR industry generates carbon emissions
through both direct and indirect channels (Ullah et al., 2022). Direct
emissions arise from the energy consumption directly associated
with the TR system, while indirect emissions stem from embodied
CO2 linked to the energy use involved in producing intermediate
goods and services by TR-related businesses. The volume of carbon
emissions from the TR sector serves as a crucial indicator for
evaluating its environmental impact (Mishra et al., 2022). Ullah
et al. (2022) demonstrated that TR contributes to CO2 emissions
through both positive and negative shocks by employing nonlinear
ARDL estimations.

Based on relevant literature, we develop the following
hypothesis.

Hypothesis 3. TR plays an essential role in contributing to EE.
The hypothesis regarding the impact of TR on CWQ posits that

increased TR activities are likely to harm coastal ecosystems. As TR
grows, particularly in coastal regions, the demand for infrastructure,
recreational activities, and waste management intensifies, which can
lead to pollution from wastewater discharge, litter, and increase
nutrient runoff. These factors may degrade water quality,
threatening marine biodiversity and ecosystem health. Some
studies have highlighted this relationship across various
geographical regions. A notable impact of TR on the CWQ index
was demonstrated in the marine TR Park in Indonesia (Ministry of
Land, Infrastructure, Transport and Tourism, 2024). It confirmed
that extensive TR expansion in marine protected areas and small
islands could lead to declining water quality and heightening
environmental vulnerability. A different study highlighted the
adverse effects of TR on water quality in Tara National Park in
Serbia, with senior and highly educated residents and visitors
particularly stressing this issue (World Bank Group, 2024).
Vidal-Hernández et al. (2021) provided evidence demonstrating
the gradual decline in coastal ecosystems, including fauna, flora, and
natural coastal appeal, due to the effects of TR. Drius et al. (2019)
indicated that specific studies investigating the primary threats
posed by coastal TR and their interactions with other human
activities affecting marine ecosystems and water quality
remain potential.

Based on previous literature, we develop the below hypothesis.

Hypothesis 4. TR plays an essential role in contributing to CWQ.
FT has the potential to significantly reduce carbon footprints by

promoting the adoption of digital financial services and enhancing
efficiency in various sectors. FT facilitates more efficient energy
usage, streamlined processes, and lower reliance on traditional
financial institutions, which are often resource-intensive.
Moreover, FT-enabled platforms can foster investment in green
technologies, enable carbon tracking, and promote transparency in
emissions reporting. This shift not only aids in reducing operational
carbon footprints but also encourages environmentally responsible
behaviors among consumers and businesses. Studies revealed a
substantial positive impact of FT in mitigating carbon footprint
across seven resource-rich developing (Leng et al., 2024) and BRICS
nations (Kai et al., 2024). Previous studies indicated that policies
including additional deductions, scientific financial subsidies, and
tax incentives should be implemented to promote FT, thereby
advancing core technologies for green innovation and enabling
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cities to achieve carbon neutrality goals (Teng and Shen, 2023). FT
demonstrates substantial strength in addressing environmental
issues, exerting a bidirectional impact on the environment. It not
only fosters innovative solutions but also contributes to minimizing
environmental pollution. For instance, blockchain-based
applications enhance supplier transparency and promote healthy
consumer habits through virtual transactions. Moreover, FT plays a
pivotal role in facilitating green credit operations (Liu et al., 2022). It
also enables the development of advanced financial products such as
carbon trading and green bonds, providing new avenues for funding
climate change mitigation projects (Rahman et al., 2023).
Additionally, FT’s emphasis on digitalization reduces the negative
environmental impact associated with traditional banking while
creating opportunities to maximize economic outcomes (Goel,
2022). This encourages businesses to adopt environmentally
conscious practices and transform corporate operations through
the use of cryptocurrencies.

Based on relevant literature, we develop the following
hypothesis.

Hypothesis 5. FT plays an essential role in contributing to EE.
The relationship between FT and CWQ represents a critical yet

underexplored area in existing literature. FT’s potential to influence
CWQ lies in its ability to facilitate green financing mechanisms, such
as crowdfunding and green bonds, which can be directed toward
projects aimed at coastal preservation and pollution mitigation.
Blockchain technology, a subset of FT, offers possibilities for
improving transparency in supply chain practices, particularly in
industries contributing to marine pollution. Chhipi-Shrestha et al.
(2023) argued that AI and supply chain applications were essential
for autonomous digital water quality management. These methods
have primarily been utilized to predict, assess, and regulate water
quality more precisely. Dong et al. (2024) initially supposed that FT,
encompassing mobile payments, online banking, blockchain
technology, cryptocurrency, and crowdfunding platforms,
enhances and democratizes financial activities but may have
unintended environmental consequences, including impacts on
water quality. However, their study does not delve deeply into
this relationship. Jiang et al. (2019) examined and concluded that
there is an inverted U-shaped relationship between the development
of FT and non-point source agricultural pollution, a major
contributor to surface water quality degradation. Generally,
studies linking these capabilities to measurable improvements in
CWQ are scarce. This gap is significant given the urgent need for
innovative solutions to address coastal degradation driven by TR,
urbanization, and industrial discharges.

Based on previous literature, we develop the below hypothesis.

Hypothesis 6. FT plays an essential role in contributing to CWQ.

3 Methodologies

In this paper, our model is constructed based on the widely
recognized STIRPAT (Stochastic Impacts by Regression on
Population, Affluence, and Technology) framework proposed by
Dietz and Rosa (1997) and extended including FT by Leng et al.
(2024). Additionally, due to the nonlinear exponential relationship

between GFP and TR with environmental factors as demonstrated by
several studies (Ehigiamusoe, 2020; Aldama and Creel, 2019), we
apply natural logarithms and incorporate them into the STIRPAT
model. The relationship between FT and ecological degradation is
suggested to follow an inverted U-shaped pattern (Murshed, 2024).
We then quantify CWQ using the widely recognized single-factor
indexmethod proposed by Debels et al. (2005) and then apply natural
logarithms. The selection of this method is based on the availability of
data accessible to the authors. Additionally, this approach is both
widely used and suitable for assessing water quality characteristics, as
evidenced by its application in numerous studies conducted in China
(Tian et al., 2019; Wu Z et al., 2021; Wang et al., 2019).

CWQ � I1.I2I3I4 (1)
where I1 × I2 averages the single-factor CWQ tagging variable of all
estimated indicators; I3 denotes the number of single indexes in the
full-scale CWQ assessment falling short of the functional zone target
for the water environment; I4 denotes the comparative result
between the complete CWQ group and the overall functional
zone target for the water environment. CWQ represents the
complete level of coastal water pollution.

The single-factor index Q specializes in exceeding the target
CWQ degree using a single index that applies weight modification
(see Equations 2–4).

I1.I2 � ∑n
i�1
Qi × wi (2)

wi � mi∑mi
(3)

mi � I1 − μ( ) + 1 (4)
where n represents the number of single indexes to measure the
CWQ; Qi is the single-factor indicator of the ith CWQ variable
rounded to two decimal digits; wi denotes the weight; μ is the target
CWQ benchmark; whereas mi is the exceedance degree of a single
CWQ standard.

In this study, to calculate the CWQ index, we utilized the
indicators of salinity and density of total nitrogen, total
phosphorus, and chlorophyll a (Chl.a), and applied Equation 1 to
compute the CWQ index.

To implement the MMQR model for robust test estimation, we
undertake the following three-step procedure: Cross-sectional
dependence (CSD) test, Panel cointegration test, and panel
estimation using MMQR.

3.1 CSD tests

The CSD test aims to detect interdependencies among cross-
sectional units (Kai et al., 2024). This is essential because panel data
encompasses multiple cross-sectional units recorded across time and
space. Often, these cross-sectional units may exhibit
interdependencies due to common shocks, shared influences, or
spillover effects. The CSD test determines whether such
interdependencies exist among the cross-sectional units. Identifying
CSD is vital, as it can significantly impact the consistency and
efficiency of standard panel data estimations. Also, ignoring CSD
can create biased parameter estimates and inferences (Leng et al.,
2024). In the presence of CSD, the traditional MMQR estimatesmight
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not be robust, leading to misleading estimations. Understanding the
CSD informs the researcher to adopt more suitable adjustment
techniques for the estimation model.

3.2 Panel cointegration tests

The panel cointegration tests are deployed to diagnose the
appearance of a stable, long-term association despite short-term
deviations. It increases the power of cointegration analysis by
pooling information across cross-sectional units, thereby providing
more reliable results compared to single time series tests. This is
particularly beneficial when dealing with heterogeneous panels where
individual units may exhibit diverse behaviors (Chakraborty and
Mazzanti, 2021). further emphasized the robustness of panel
cointegration tests in the presence of CSD, a common feature in
panel datasets. By accounting for such dependencies, these tests
provide more reliable estimates and inferences about the long-term
equilibrium relationships. Also, the advantages of panel cointegration
tests are believed to reduce the risk of spurious regression results,
which can occur when analyzing non-stationary data (Herzer, 2019).
By confirming the presence of cointegration, researchers can be more
confident that their models reflect genuine long-term relationships
rather than transient correlations.

We calibrate the Augmented Dickey-Fuller (ADF) test and the
Phillips-Perron (PP) method for this analysis. Consider a panel data
model with N cross-sectional units and T periods, where yt is the
dependent variable and xit is the independent variable (see
Equation 5):

yit � ai + βixit + εit (5)
where i � 1, . . . , N and t � 1, . . . , T. The ADF test can be
implemented as Equation 6:

Δε̂it � ρiε̂it−1 +∑p
j�1
ϒijΔε̂it−j + uit (6)

where Δ denotes the first difference operator, εit represents the time
series being tested for stationarity, ρiε̂it−1 is the term used to test for
the unit root (null hypothesis: ρi = 0), ∑p

j�1ϒijΔε̂it−j represents the
sum of the lagged differences of the time series. The lagged
differences are included to account for autocorrelation in the
residuals. The number of lags included (denoted by p) is
determined based on AIC (Akaike Information Criterion) or BIC
(Bayesian Information Criterion), uit represents the error term in
the regression equation, capturing the random shocks or
innovations to the time series. The panel PP-statistic could be
formulated as in Equation 7:

PPNT � 1
N

∑N
i�1

1
T
∑T
t�1
û2
it

⎛⎝ ⎞⎠ (7)

3.3 Panel estimation using MMQR

In this study, we implement panel estimation methods,
including Fixed Effects OLS (FE-OLS) and Dynamic OLS

(D-OLS), alongside MMQR for a comprehensive quantile
estimation analysis. Firstly, by using FE-OLS, we control for
unobserved characteristics that remain constant over time
within each unit, eliminating between-unit variation due to
fixed factors to control for fixed heterogeneity. As emphasized
by Pedroni (2004), the FE-OLS method effectively addresses
the mentioned issues. Similarly, the D-OLS approach, proposed
by Kao and Chiang (2000), is extended through Monte
Carlo simulations and delivers efficient estimates even with
small sample sizes. D-OLS can examine the long-term
relationships between variables in the panel data, especially
when there may be cointegration between independent and
dependent variables for capturing long-term relationships.
D-OLS effectively addresses autocorrelation and endogeneity by
incorporating lags and leads, providing clarity on long-term
effects. Subsequently, the use of MMQR expands our analysis
by capturing the differential effects of predictor variables across
quantiles of the dependent variable. This capability is essential
when independent variables have non-uniform impacts across
different levels of the dependent variable. MMQR reveals how
specific factors may have a stronger influence at higher or lower
quantiles. Finally, Reducing Bias and Fully Characterizing Data:
This combination allows us to capture both short-term and long-
term effects accurately while addressing potential endogenous
factors. MMQR further adds value by assessing variations in
impact across quantiles, helping us avoid biases often seen in
traditional mean-based models.

Quantile regression estimates the conditional quantile function
QY(τ | X) for a given quantile τ. The quantile regression
formulation can be as Equation 8.

QY τ | X( ) � Xβ τ( ) (8)
where β(τ) is the vector of quantile-specific coefficients, X is the
matrix of xit. The quantile regression estimator β̂(τ) minimizes the
quantile loss function (see Equation 9):

β̂ τ( ) � argminβ∑n
i�1
ρτ Yi −Xiβ( ) (9)

where ρτ(u) is the check function (Equation 10):

ρτ u( ) � u τ − I u< 0( )( ) (10)
The moment conditions are used to estimate the parameters.

The moment condition can be written as Equation 11:

E ψ Y,X, β τ( )( )[ ] � 0 (11)
where ψ is the moment function.

The GMM (Generalized Method of Moments) estimator is often
deployed to solve the moment conditions. GMM estimator β̂ is given
by Equation 12:

β̂ � argminβĝ β( )′Wĝ β( ) (12)

where ĝ(β) is the sample analog of the moment conditions, andW
is a weighting matrix. To estimate the entire quantile process, one
can compute the regression for a grid of quantiles τ ∈ (0, 1).
Confidence intervals for the quantile coefficients can be derived
using bootstrapping or asymptotic normality.
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We establish the econometric functional modeling of dependent
and independent variables as follows in Equations 13, 14.

LCWQ � f LGFP + LTR + LFT( ) (13)
LEE � f LGFP + LTR + LFT( ) (14)

where α is constant; i, j, t represent company, time (month), and
department, respectively. The notation L preceding the variables
denotes the natural logarithm of these variables.

4 Analysis results

4.1 Data reliability and validating test

The data were generated frommultiple data sources presented in
Table 1 from 2001 to 2020. Based on the summary statistics provided
in Table 2, we can make several observations. Firstly, the descriptive
statistics for the variables LGFP, LTR, LFT, LCWQ, and LEE show a
range of values, with means and medians differing significantly,
indicating potential skewness and kurtosis in the distributions. For
instance, the variable LTR has a median of 9.781 and a mean of
11.431, suggesting positive skewness. The skewness and kurtosis
values highlight some deviations from normality. For instance,
LCWQ shows a highly negative skewness of −1.551, indicating a
slightly highly skewed distribution, while LEE has a positive

skewness of −0.778 and kurtosis of −0.51, suggesting a
distribution with lighter tails than normal. The Jarque-Bera (JB)
test results confirm non-normality across all variables, with p-values
of 0.000 or very close to zero, reinforcing the need for methods that
handle non-normal distributions. Given these characteristics,
MMQR could be a suitable modeling approach. The method’s
robustness to non-normality and its ability to model different
quantiles of the dependent variable align well with the observed
skewness and kurtosis in the data. MMQR allows for the
examination of the impact of explanatory variables at various
points of the conditional distribution, making it well-suited to
handle the variability and non-normality evident in this dataset.
Therefore, considering the non-normality and distributional
properties of the data, MMQR appears appropriate for further
analysis to capture the complex relationships between the variables.

4.2 CSD test results

Table 3 shows the CSD test outcomes for various variables. The
test statistics for all variables—LGFP, LTR, LFT, LCWQ, and
LEE—are significant at the 1% level, with p-values of 0.000.
Specifically, the CSD test statistics range from 5.112 for LGFP to
53.927 for LEE, all indicating evidence of CSD among the variables.
This presence suggests that the errors in the panel data are correlated
across cross-sectional units. The existence of CSD is attributed to the
globalization effects associated with these variables. The spillover
effects of disturbances are the underlying cause of the presence of
CSD in the panel data.

Table 4 provides the stationarity analysis outcomes for the
variables using both the ADF and PP methods, under different

TABLE 1 Variables measurement.

Series Acronym Measurement Data sources

Green fiscal policy GFP Government expenditure on investment for green projects
(million USD)

Guard (2024), Institute National Geography Information - Ministry of
Land Infrastructure and Transport (2023)

Tourism TR The number of foreign tourist arrivals WEPA (2024)

Fintech FT Number of Internet users, domestic banking credit, and
number of mobile phone users

Institute National Geography Information - Ministry of Land
Infrastructure and Transport (2023)

Coastal water quality CWQ Identification of pollution level based on the single factor
index

Kurniawan et al. (2023), Brankov et al. (2021), Erdoğan et al. (2022)

Environmental
emissions

EE Total amount of carbon dioxide (in metric tons) Statista (2024), Institute National Geography Information - Ministry of
Land Infrastructure and Transport (2023)

TABLE 2 Descriptive statistics.

LGFP LTR LFT LCWQ LEE

Min 0.112 0.504 19 3.85 4.265

Median 9.345 9.781 29.3 12.774 10.73.4

Mean
SDa

10.436
2.343a

11.431
6.834a

31.01
9.274a

18.828
6.837a

28.396
21.345a

Max 31.278 48.576 54 40.837 77.847

Skewness −0.463 −0.852 −0.614 −1.551 −0.788

Kurtosis 2.423 0.381 0.424 0.57 −0.51

JB test 34.973 15.227 16.784 17.835 27.373

Probability 0.000 0.000 0.000 0.000 0.001

aSD, standard deviation.

TABLE 3 CSD test results.

Variables CSD test/probability

LGFP 5.112*** (0.000)

LTR 12.118*** (0.000)

LFT 19.984*** (0.000)

LCWQ 8.886*** (0.000)

LEE 53.927*** (0.000)

Significant level: (* 10%); (** 5%); (*** 1%).
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deterministic components: constant (C) and constant and trend
(C&T). For the ADF method, the variables LGFP, LTR, and LFT are
all non-stationary at level I (0) under both specifications, as their test
statistics do not surpass the critical values at conventional
significance levels. For instance, the ADF statistics for LGFP
are −3.223 and −3.765 under the C and C&T models,
respectively, which are insufficient to reject the non-stationarity
null hypothesis. Notwithstanding, after first differencing, the test
statistics for LGFP become −8.663 and −9.499 under both
specifications, significant at the 1% level, indicating that LGFP is
integrated of I (1). Similarly, LTR and LFT exhibit the same pattern,
where they fail to be stationary at levels but achieve stationarity after
first differencing, confirming their integration order as I (1).

The results from the PP method corroborate the findings from
the ADF tests. For LGFP, the PP test statistics at level I (0)
are −3.458 and −4.063, indicating non-stationarity. However, at
the first-differenced I (1) form, the values
become −8.726 and −9.781, significant at the 1% level,
confirming that LGFP is I (1). Similarly, LTR and LFT
demonstrate non-stationarity at levels but become stationary at I
(1) across both C and C&T specifications, with significant test
statistics at the 1% level. The integration order of all three
variables—LGFP, LTR, and LFT—is determined to be I (1) under
both the ADF and PPmethods, as they exhibit stationarity only after
first differencing. This suggests that the variables are non-stationary
in their levels but achieve stationarity in their first-
differenced forms.

The test statistics in Table 5 report that the Gt stat has a value
of −7.003, with a z-value of −7.001 and p-values of 0.000 (both
standard and robust), indicating the appearance of CSD among the
factors and strong evidence of rejecting the null hypothesis.
Similarly, the Ga stat, with a value of −20.397, a z-value
of −17.638, and p-values of 0.000, further confirms the presence
of CSD. The Pt stat, showing a value of −24.736, a z-value of −20.063,
and p-values of 0.000, strongly proves that the null hypothesis can be
rejected, indicating significant CSD at the 1% level. Lastly, the Pa stat
has a value of −34.108, a z-value of −36.286, and p-values of 0.000,
robustly rejecting the null hypothesis and confirming significant
CSD at the 1% level.

Table 6 indicates the consistent significance of all statistics
across both panels, thus, demonstrating robust evidence of
cointegration and confirming the long-term equilibrium
relationships between the factors despite possible short-term
fluctuations. The Westerlund and Pedroni tests with Driscoll-
Kraay standard errors (Driscoll and Kraay, 1998), demonstrate

TABLE 4 Stationary analysis performance.

Variables I (0) I (1) Integration order

C C&T C C&T

ADF method

LGFP −3.223 −3.765 −8.663*** −9.499*** I (1)

LTR −1.228 −1.984*** −3.440*** −3.639*** I (1)

LFT −2.886 −3.106 −6.728*** −7.579*** I (1)

PP method

LGFP −3.458 −4.063 −8.726*** −9.781*** I (1)

LTR −1.653*** −2.197*** −3.541*** −3.925*** I (1)

LFT −0.941*** −1.286*** −4.020*** −4.819*** I (1)

Significant level: (* 10%); (** 5%); (*** 1%).

TABLE 5 Cointegration test (Westerlund, 2007).

Stats Value z-value p-value robust p-value

Gt −7.003 −7.001 0.000 0.000

Ga −20.397 −17.638 0.000 0.000

Pt −24.736 −20.063 0.000 0.000

Pa −34.108 −36.286 0.000 0.000

Null hypothesis: no cointegration.

TABLE 6 Panel Cointegration test (Pedroni, 2004) with Driscoll-Kraay
standard errors.

Estimates Stats Driscoll-kraay p-value

LCWQ � f(LGFP + LTR + LFT)
v stat −2.784 0.014

rho stat −3.876 0.029

PP stat −4.097 0.022

ADF stat −4.767 0.013

LEE � f(LGFP + LTR + LFT)
v stat −3.563 0.007

rho stat −4.777 0.018

PP stat −4.921 0.009

ADF stat −5.046 0.006
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that CSD has been effectively controlled, as all robust p-values and
Driscoll-Kraay p-values are below 0.05.

4.3 Heterogeneous panel and MMQR
estimations

We can observe the heterogeneous estimators’ results using the
FE-OLS and the D-OLS models (see Table 7). A noteworthy adverse
impact of LGFP on LCWQ at the 1% significance level can be
observed from both FE-OLS and D-OLS models with p-values of
0.000 and statistics of −5.882 and −6.791, respectively. Similarly,
LFT has a significant negative relationship at the 1% level when
showing p-values of 0.000. The test statistics of LFT
are −5.837 and −7.105 for FE-OLS and D-OLS, respectively. The
results from both the FE-OLS and D-OLSmodels indicate consistent
and significant relationships between five independent variables and
LCWQ.Which, LGP and LFT consistently show significant negative
relationships, whereas LTR exhibits a significant positive
relationship. The statistical significance across both models, as
indicated by p-values less than 0.01, supports the robustness of
these findings. These results provide important insights into the
influence of the examined variables, suggesting that increases in LGP
and LFT tend to decrease the dependent variable, while the increase
in LTR tends to increase it.

For LEE, the results follow a similar trend (see Table 8). The FE-
OLS model shows a negative and significant effect of LGFP with a
coefficient of −6.532 and a t-statistic of −4.277. LTR again has a

positive and significant coefficient of 2.753, suggesting that TR
exacerbates environmental pollution. LFT has a negative impact,
with a coefficient of −3.996, implying that FT negatively affects EE.
The D-OLS model further confirms these findings, with LGFP
having a negative coefficient of −5.945, while LTR continues to
positively influence EE with a coefficient of 2.011. The negative
impact of LFT is more pronounced in the D-OLS model, with a
coefficient of −8.465, highlighting the detrimental effect of TR on
environmental efficiency, at the 1% significance level.

The MMQR outcomes for CWQ are given in Table 9. The
location parameter reflects the general impact of the variables on
CWQ across all quantiles. The LGFP coefficient is −0.832,
statistically significant at the 1% level, indicating that GFPs have
a robust negative impact on pollution, consistently improving water
quality. This result aligns with expectations, as environmentally
focused fiscal policies, such as taxes, subsidies, and current
investment in green projects promoting sustainability, tend to
reduce environmental degradation. LTR shows a positive and
statistically significant coefficient (0.073), indicating that TR
tends to have a detrimental effect on CWQ. The positive sign
reflects TR’s contribution to environmental stress, likely through
increased waste generation and resource use. LFT has a negative
coefficient (−0.363), also significant at the 1% level, suggesting that
FT contributes to reducing water pollution, by fostering innovation
in environmental management and green financing initiatives.

The scale parameter captures how the effect of these variables
varies across the distribution of CWQ. LGFP has a significant
negative scale coefficient (−0.229), implying that the impact of
GFP on improving water quality is stronger at lower levels of
pollution. This suggests that GFPs are effective in preventing
environmental degradation. LTR presents a small but significant
positive scale coefficient (0.027), indicating that TR’s negative
impact on water quality is more pronounced at higher levels of
pollution. As pollution worsens, the adverse effects of TR become
more evident. LFT has a significant negative scale coefficient

TABLE 7 Heterogeneous estimators result for LCWQ.

Models Variables

LGFP LTR LFT

FE-OLS Coefficient −3.883 2.034 −7.277

Stats −5.882 6.729 −5.837

p-value 0.000 0.000 0.000

D-OLS Coefficient −4.972 1.026 −10.031

Stats −6.791 7.356 −7.105

p-value 0.000 0.000 0.000

TABLE 8 Heterogeneous estimators result for LEE.

Models Variables

LGFP LTR LFT

FE-OLS Coefficient −6.532 2.753 −3.996

Stats −4.277 4.074 −4.427

p-value 0.000 0.000 0.000

D-OLS Coefficient −5.945 2.011 −8.465

Stats −7.026 5.983 −5.724

p-value 0.000 0.000 0.000

TABLE 9 Quantile regression (MMQR) results for LCWQ.

MMQR Variables

LGFP LTR LFT

Location −0.832*** 0.073*** −0.363***

Scale −0.229*** 0.027*** −0.276***

Quantiles grid 0.10 −0.123*** 1.273*** −0.552***

0.20 −1.434*** 1.022** −0.037

0.30 −0.783** 1.972** 1.992***

0.40 −0.982*** 1.129*** 1.118***

0.50 −2.392*** 0.827*** 2.865

0.60 −1.559*** 0.552* 0.884**

0.70 −0.082** 0.451*** 0.518***

0.80 −0.027* 3.287*** 1.234

0.90 −0.993 0.283*** 1.922**

Significant level: (* 10%); (** 5%); (*** 1%).
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(−0.276), indicating that FT’s positive effect on reducing pollution is
more substantial in areas with better water quality. This suggests that
FT solutions are more effective in maintaining environmental
standards rather than mitigating extreme pollution levels.

The quantile grid results provide further detail on how each
variable’s influence shifts across the spectrum of water pollution
levels. At the 0.10 quantile, LGFP exhibits a strong and significant
negative effect (−0.123), emphasizing its effectiveness at improving
water quality in areas where pollution is low. This effect becomes
more pronounced at the 0.40 quantile (−0.982) and peaks at the
0.50 quantile (−2.392), highlighting the substantial positive impact
of GFP in areas with moderate pollution. However, the effect
decreases at higher quantiles, such as at the 0.90 quantile, where
it becomes insignificant (−0.993), suggesting that GFPs may be less
effective in severely polluted areas. LTR shows more variable effects
across the quantiles. While it has no significant positive effect at
lower quantiles, TR shows a strong positive impact on pollution at
the 0.30 quantile (1.972) and 0.80 quantile (3.287), indicating that
TR contributes significantly to water quality deterioration at
moderate to higher levels of pollution. This aligns with
expectations that TR, especially in coastal regions with higher
pollution levels, exacerbates environmental stress on water
resources. LFT displays a positive and significant effect at the
0.30 quantile (1.992) and 0.40 quantile (1.118), indicating that FT
plays an important role in improving water quality at these levels of
pollution. However, at the 0.60 quantile (0.884) and 0.90 quantile
(1.922), FT continues to have a positive, though slightly diminished,
impact, showing that FT’s role in supporting water quality
management persists even at higher levels of pollution.

Table 10 offers key insights into how GFP, TR, and FT affect EE
across different quantiles. LGFP has a negative coefficient (−0.377)
with high statistical significance, suggesting that GFPs are effective
in reducing EE on average. LTR shows a positive and significant
coefficient (0.354), which indicates that TR contributes to an
increase in EE. This finding reflects the idea that TR activities
tend to exacerbate environmental degradation, potentially due to

increased waste, energy consumption, and resource utilization in
tourist areas. LFT demonstrates a negative and highly significant
coefficient (−1.287), indicating that FT has a strong mitigating effect
on EE. This may suggest that FT innovations facilitate greener
financial operations, possibly by improving energy efficiency or
promoting more sustainable investment practices.

The scale parameter captures how the influence of these
variables changes across different quantiles of the emissions
distribution. A statistically significant scale coefficient suggests
varying impacts at lower versus higher emission levels. The scale
coefficient for LGFP is −0.136, with significance at the 5% level,
indicating that the influence of GFP is stronger at lower emission
levels. As emissions increase, the relative impact of these policies
diminishes, suggesting that they are most effective when emissions
are initially lower. For LTR, the scale coefficient is 0.086, highly
significant at the 1% level, highlighting that the detrimental effects of
TR on emissions intensify as pollution levels rise. This suggests that
as tourist activity increases in more polluted areas, its environmental
toll becomes even greater. Similarly, LFT exhibits a negative scale
coefficient (−0.653), significant at the 5% level, suggesting FT’s
mitigating effects on emissions are more pronounced at higher
levels of environmental damage. This consistent negative impact
across the distribution underscores FT’s potential to foster
sustainability at both medium and high levels of emissions.

The quantile-specific coefficients further illustrate how the
effects of these variables vary at different points in the emissions
distribution. LGFP shows significant and negative effects in the
lower quantiles (e.g., −0.542 at the 0.10 quantile and −1.916 at the
0.30 quantile), indicating its strong ability to reduce emissions at
these levels. LTR exhibits a significant positive effect at the middle
quantiles, particularly at the 0.20 quantile (1.284) and 0.40 quantile
(1.748), indicating that TR activities significantly increase emissions
at these levels. Yet, its impact tapers off at higher quantiles, implying
that the contribution of TR to environmental degradation is less
pronounced as emissions rise. LFT shows strong and positive
impacts at key quantiles, such as the 0.30 quantile (1.008) and
0.50 quantile (2.387), illustrating FT’s capacity to reduce emissions is
most effective at these medium levels.

5 Discussion

It can be observed that the government’s current investment in
green projects, while effective in preventing environmental
degradation, demonstrates stronger efficiency at lower pollution
levels and weaker efficiency at higher pollution levels, particularly
concerning the CWQ index. In terms of CWQ, areas with severe
pollution levels experience even worse negative impacts. Conversely,
the adverse effects on heavily air-polluted regions are less
pronounced compared to those with moderate and low pollution
levels. This suggests that, for TR, CWQ should be a more prominent
policy priority than air pollution. FT, on the other hand, exhibits a
more significant impact on severe air pollution, while its effects on
heavy marine water pollution remain less evident. Therefore, further
development of FT solutions that positively influence CWQ
is necessary.

Theoretically, it is evident that government investments in green
projects have proven effective in improving air quality and CWQ.

TABLE 10 Quantile regression (MMQR) results for LEE.

MMQR Variables

LGFP LTR LFT

Location −0.377*** 0.354*** −1.287

Scale −0.136*** 0.086*** −0.653

Quantiles grid 0.10 −0.542*** 1.553* 0.287

0.20 −0.057 1.284*** −0.387

0.30 −1.916*** 0.386** 1.008***

0.40 −1.123*** 1.748*** 1.719

0.50 −2.555 2.998* 2.387***

0.60 −0.735** 2.102* 2.239*

0.70 −0.508*** 0.836** 0.486

0.80 −1.794 0.239*** 0.991

0.90 −1.002** 0.159* −0.286

Significant level: (* 10%); (** 5%); (*** 1%).
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However, government investments and fiscal tools aimed at
promoting green TR have not yet delivered the expected results.
Also, this paper demonstrates the existence of local thresholds at
which the expansion of FT reverses its impact on both EE and CWQ.
Therefore, the paper lays the groundwork and suggests exploring
these thresholds to provide more accurate recommendations for
proposing investment and development policies for FT.

Based on research findings, the author provides the following
policy recommendations. (1) The government’s portfolio of green
project investments should include the TR sector, with a balanced
allocation of weights relative to other sectors. Additionally, the
implementation of fiscal tools should be regularly monitored and
evaluated to prevent overinvestment beyond the point of
effectiveness, thereby avoiding waste. (2) The government should
gradually increase environmental taxes targeting the TR sector.
Currently, environmental taxes in China are in a phase of ‘tax
transformation-transition,’ with tax rates remaining below the
actual pollution emission levels. (3) Given the inevitable
development and expansion of TR and FT, local authorities may
hesitate to implement fiscal tools that could hinder this growth. They
might consider adopting a combination of innovative measures that
incentivize businesses to focus on green TR development, such as
carbon credit solutions. Exploring pilot programs that allow
cryptocurrency payments for businesses committed to green TR
is also worth investigating. The dual benefit of these solutions could
provide significant potential for businesses to contribute to
environmental quality improvement. (4) For FT, due to its
diverse forms of development and the rapid pace at which this
diversity continues to grow, it is essential to disaggregate these forms
and continuously monitor and examine their actual impacts on EE
and CWQ. (5) The impact of FT on environmental indicators shifts
depending on pollution levels and water quality, making the
identification of local thresholds (the peaks of the inverted
U-shape) critically important. If authorities fail to recognize these
thresholds, the expansion of FT could harm the environment. Since
each type of pollution has distinct thresholds, controlling FT
development must account for these variations.

6 Concluding remarks

6.1 Research findings

This paper explores the asymmetric relationship between TR,
GFP, and FT with CWQ level and CO2 emissions in China. Besides
considering the quantile effects of GFP and TR, this paper
contributes a novel aspect by examining the quantile effects of
FT on CWQ. The cointegration suggests that, despite possible
short-term variations, the variables are likely to move together
over the long term, maintaining a balance defined by their
cointegrating relationship. The estimation results reveal stable
and significant correlations between the regressors and response
variables. GFP exerts a substantial impact on improving both CWQ
and reducing CO2 emissions. In contrast, the favorable growth of the
TR sector contributes negatively to CWQ and air pollution,
highlighting the environmental challenges associated with TR
expansion. The MMQR results indicate that the relationship
between FT and CWQ with EE forms a series of inverted

U-shaped patterns that evolve across different phases of
environmental quality. This aligns with and further extends the
conclusions drawn by previous studies concerning EE (Murshed,
2024) and water quality in agriculture (Jiang et al., 2019).

6.2 Limitations and future directions

This study has some limitations. First, we only examine the
aggregated impact of GFP without disaggregating the specific forms
of GFP to infer the effectiveness of individual policy instruments.
For instance, it does not analyze whether one unit of subsidy or one
unit of tax yields greater effects across quantiles or compare the
efficiency of one unit of subsidy versus one unit of expenditure for
promoting green TR or green FT. Future studies will explore this
aspect further when more granular datasets are accessible. Secondly,
governments often favor the integration of monetary and fiscal
policies. However, this study does not examine the effects of
monetary policy due to data limitations, leaving room for future
research to address this gap. Furthermore, while traditional
regression methods are well-suited for explanatory analysis,
machine learning algorithms offer superior capabilities in
prediction and classification. Future research could leverage
machine learning to forecast emissions and CWQ, integrating
these insights with classical models to deliver more accurate
impact assessments and refined policy recommendations.
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