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Integrating territorial spatial planningwith the spatial autocorrelation of cultivated
land quality indices can enhance the optimization of farmland preservation and
food security. This study combines the “three lines” demarcation—basic farmland
protection line, ecological protection line, and urban development
boundary—with farmland spatial autocorrelation to propose an improved
model for optimizing farmland layout. We employed a four-dimensional
farmland quality evaluation system that includes the natural quality index,
utilization management index, ecological environment index, and economic
value index. Using Liuhe District as a case study, we applied the optimal
combination weighting method for quality assessment and conducted spatial
autocorrelation analysis to simulate the indices’ relationships at the plot scale. The
results indicate that: (1) The natural quality index is high in the west and low in the
east, while the other indices are high in the center and low at themargins. (2) Each
quality index exhibits positive geographic autocorrelation, withMoran’s I values of
0.89, 0.67, 0.65, and 0.83, respectively. (3) The optimization scheme increased
permanent basic farmland by 123.15 hm² and improved the quality grade by 1.45,
classifying land into four primary categories focused on protection and
development. The permanent basic farmland protection zone has the highest
quality and non-agricultural construction should be prohibited on it. The urban
development buffer zone, which has poor farmland quality and a locational
advantage, is ideal for urban growth. The ecological environmental protection
zone, despite its poor farmland quality, should be focused on conservation. The
comprehensive adjustment zone should address land obstructions and facilitate a
transition to permanent basic farmland.
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1 Introduction

Farmland is the material foundation for human survival and
development, being crucial for ensuring national food security,
encouraging sustainable socioeconomic development, and
maintaining national security and social stability (Xin and Li,
2018). According to the United Nations Food and Agriculture
Organization, the amount of global arable land has been
decreasing since the 1960s, with a reduction of approximately
30 million hectares between 2015 and 2020 (Mottaleb et al.,
2023). At the same time, as the world’s largest developing
country, China sustains nearly 20% of the global population with
only 9% of the world’s arable land and 6% of its freshwater, which
places tremendous pressure on its arable land (Zhu et al., 2022).
Alongside the reduction in arable land area, problems such as
environmental degradation and declining land quality have
become increasingly prominent. According to the “China Natural
Resources Bulletin 2023,” the current cultivated land area in China is
127.58 million hectares (Liu et al., 2024). Based on the national
standard “Grade of Cultivated Land Quality” (GB/T 33469-2016),
the cultivated land is classified into 13 grades from high to low, with
the average grade of cultivated land quality in China calculated to be
9.96 (Liu et al., 2023). This area decreased by 127,000 ha due to
construction, ecological land conversion, and other factors. The
overall low quality and spatial imbalance of arable land are both
increasingly evident. The reduction in arable land not only threatens
food production and supply, but it also can lead to environmental
degradation (Wang, 2015). The reasons for the gradual reduction in
arable land are varied, and include urban expansion, infrastructure
development, land degradation, and natural disasters (Kuang Y. P.
et al., 2022). Therefore, optimizing the layout of arable land and
improving land use efficiency have become pressing issues that need
to be addressed. Through the scientifically rational optimization of
arable land layout, we can effectively protect existing land resources
and improve overall land quality and output levels, thereby
providing a solid guarantee for food security. Additionally,
optimizing the spatial layout of arable land plays an important
role in improving rural environments and promoting
ecological health.

China has implemented various policy measures for farmland
protection, among which national spatial planning plays a key role.
In 2018, the Central Committee of the Communist Party of China
and the State Council issued the “Opinions on Establishing a
National Spatial Planning System and Supervising Its
Implementation,” which proposed optimizing the spatial
development pattern of land, delineating areas of permanent
basic farmland, and implementing the strictest possible farmland
protection system (Lichtenberg and Ding, 2008). Furthermore, in
2019, the General Office of the Central Committee of the Communist
Party of China and the General Office of the State Council issued the
“Guiding Opinions on the Overall Delineation and Implementation of
the Three Control Lines in the Land and Space Planning”,
emphasizing the significance of the permanent basic farmland
protection red line, the ecological protection red line and the
urban development boundary (hereinafter referred to as the
“three lines”) to ensure national food security, promote the
concentrated protection of cultivated land and promote the high-
quality protection and utilization of cultivated land (Zhang et al.,

2019). National spatial planning aims to achieve the sustainable use
and rational allocation of land resources through scientific land use
planning and management, ensuring the stability of the quantity of
arable land and the improvement of its quality (Ye et al., 2024).
However, current farmland protection planning has somewhat
overlooked the spatial correlation of farmland quality, resulting
in significant overlap between arable land areas, ecologically
fragile areas, urban expansion zones, and heavy metal pollution
zones. Specifically, the spatial autocorrelation of farmland quality
means that high-quality farmland tends to cluster in certain areas,
while low-quality farmland is distributed in other areas (Pang et al.,
2023). Ignoring this can lead to the uneven distribution of resources
and the reduced effectiveness of farmland protection. In light of this,
combining national spatial planning with the spatial autocorrelation
characteristics of farmland quality to implement differentiated
farmland protection strategies not only helps improve the
scientific and effective protection and utilization of farmland, but
it also provides strong support for national food security and
ecological protection. This approach can serve as a reference for
promoting coordinated regional economic development, fine-
tuning farmland management, and ensuring food security.

Many extensive studies have been conducted on the subject of
optimizing the layout of cultivated land, with most research
primarily focusing on the following aspects: theoretical
frameworks for farmland protection (Ma et al., 2020), the
evaluation and monitoring of farmland quality (Chen Y. M.
et al., 2021), spatial optimization models and methods (Gao
et al., 2017), and the impact and practical application of policies
(Qie et al., 2023). First, regarding theoretical frameworks,
researchers have generally found that farmland protection is not
only about protecting and maintaining the quantity of farmland, but
also about improving the quality of this land and ensuring its
sustainable use (Tang et al., 2021). Consequently, the concept of
farmland protection has gradually shifted from focusing on single-
dimensional quantity protection to integrated protection that
balances both quantity and quality (Qi et al., 2024). Some
scholars have proposed the concept of “farmland ecosystem
service value,” emphasizing that farmland is not only the
foundation of food production, but that it also has ecological and
social service functions (Song et al., 2022). This provides a broader
perspective for research on optimizing farmland spatial layout.
Second, the evaluation and monitoring of farmland quality are
essential foundations for achieving the optimal spatial layout of
arable land (Cheng et al., 2017). Extensive research has been
conducted in this area, mainly focusing on constructing indicator
systems, developing evaluation methods, and investigating their
applications. Common evaluation indicators include soil fertility,
soil structure, irrigation conditions, and environmental conditions
(Liang et al., 2022; Chen Y. et al., 2021; Kuang L. H. et al., 2022). In
recent years, the application of remote sensing technology and
Geographic Information Systems (GIS) has provided strong
support for the large-scale dynamic monitoring of farmland
quality (Yan et al., 2017). Third, in terms of spatial optimization
models and methods, researchers have developed various models
and algorithms for use in guiding the optimization of farmland
spatial layout. Commonly used models include multi-objective
planning models (Wang et al., 2014), genetic algorithms (Wang
et al., 2014), and simulated annealing algorithms (Gao et al., 2017).
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These models and algorithms can determine optimal farmland
layout schemes by considering multiple factors such as the
quantity, quality, and ecological protection of farmland. In
addition, optimization methods based on big data and artificial
intelligence technologies (Liu et al., 2011) have also begun to be
applied in farmland spatial layout research, demonstrating broad
application prospects. Lastly, policy impacts and practical
applications are important aspects of research on optimizing the
spatial layout of farmland. The academic community has extensively
studied the effects of various policy measures, analyzing their
effectiveness and shortcomings in practical applications. On the
one hand, research indicates that government-implemented
farmland protection policies have effectively curbed the loss of
farmland, although there is still room for improvement in
enhancing land quality (Zhang et al., 2018). On the other hand,
some local governments have accumulated rich experience in
farmland protection practices, providing useful references for
other regions (Ippolito et al., 2021).

Farmland quality encompasses natural, economic, locational,
and ecological dimensions. Current research on optimizing
farmland spatial layout is mostly based on the evaluation of
farmland quality and considers factors such as soil fertility,
infrastructure completeness, locational conditions, and policy
conditions. However, a widely accepted theoretical consensus has
yet to be reached. In the early 1920s, the United States proposed the
Land Capability Classification System, which became the first
international framework for identifying high-quality farmland
(Taveira et al., 2021). In 1981, based on this framework, the
United States proposed the LESA (Land Evaluation and Site
Assessment) system (Qian F. et al., 2021), which became a widely
recognized international standard for farmland quality assessment.
In summary, the aforementioned research lays the foundation for
scientifically evaluating farmland quality and optimizing the spatial
layout of arable land. However, there are still some deficiencies: (1)
While existing research has established a research approach to
evaluating farmland quality based on natural quality, locational
conditions, and landscape conditions (Chen et al., 2016; Guo and
Han, 2021), most studies on the spatial autocorrelation of farmland
quality lack depth. (2) Although a few studies have noted the impact
of the spatial autocorrelation of farmland quality on the
optimization of the spatial layout of farmland and have
conducted spatial correlation analysis on natural attributes,
grading, and usage conditions (Han et al., 2022), they do not
sufficiently consider its correlation with the ecological
environment. (3) Existing research mainly delineates farmland
protection zones from the perspectives of food security,
comprehensive food view, and form and structure (Badenhausser
et al., 2012; Huo et al., 2022), but it does not combine the spatial
autocorrelation attributes of farmland quality with national spatial
planning to deeply analyze the impact of the correlations of natural,
economic, utilization, and ecological dimensions with the spatial
layout of farmland. (4) Most existing studies analyze the spatial
autocorrelation of farmland quality at the village scale with counties
as the research object (Liu J. et al., 2022; Tan et al., 2020), while
studies using farmland plots as the research unit are relatively rare.

In light of this, this study incorporates the ecological
environment as the ‘fourth dimension’ within the spatial
autocorrelation analysis framework of farmland quality. Using

the delineation results from the national spatial planning of
Liuhe District, Jiangsu Province, China, this research adopts an
improved spatial autocorrelation model. Farmland plots serve as the
research unit to explore the spatial correlation patterns among
several key factors: the natural quality, management utilization,
economic value, and ecological environment index of farmland.
This analysis aims to identify effective protection strategies for
permanent basic farmland. The national spatial planning of
Liuhe District follows the “three-line’ system, which delineates
three key control lines: the ecological protection red line, the
permanent basic farmland line, and the urban development
boundary line. This study utilizes the results of these delineations
to inform the directions for urban development expansion and the
timing and challenges of ecological space remediation. Ultimately,
this work seeks to provide valuable references for enhancing
farmland quality and optimizing its layout.

2 Study area and data collection

Liuhe District is part of the city of Nanjing in Jiangsu Province,
China, located between 31°13′–31°26′N and 118°41′–119°21′E and
covering an area of 14,710,000 hm2. This area is a nationally
recognized agricultural base (Figure 1). According to the
2020 land use change data for Liuhe District, it has 57509.88 ha
of arable land that has an average quality grade of 5.18. Since the
implementation of the “Twelfth Five-Year Plan,” Liuhe District has
established a comprehensive routine soil environmental quality
monitoring system through 632 arable land quality monitoring
units. In recent years, the ecological environment of the arable
land in Liuhe District has been severely damaged due to the
excessive use of chemical fertilizers and sewage irrigation, as well
as the misuse of pesticides and agricultural films, posing a significant
threat to farmland quality.

The spatial data were sourced from the year 2017 and include a
comprehensive set of resources. Notably, the “three-line” national
spatial planning results encompass the red line of ecological
protection, the permanent basic farmland, and control line of
urban development boundary. These three lines serve as critical
boundaries for economic restructuring, industrial planning, and
urbanization processes. Specifically, they implement the strictest
ecological environment protection system, cultivated land
protection system, and land-saving system. In Nanjing, these
lines further delineate the cultivated land protection space,
ecological protection space, and urban development space.
However, due to the complexities of long-term land space
planning and the variability in cultivated land quality, there are
instances where low-quality cultivated land is designated within the
cultivated land protection space, while high-quality cultivated land is
occupied by urban development. To address this issue, this study,
based on Nanjing’s ecological protection red line, permanent basic
farmland, and urban development boundary, conducted an
evaluation of cultivated land quality and spatial autocorrelation
analysis. This analysis allowed for the adjustment of low-quality
cultivated land located within the cultivated land protection red line
to the ecological protection space and urban development space.
Conversely, high-quality cultivated land situated in the ecological
protection and urban development spaces was regulated back into
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the cultivated land protection space, aiming to optimize the spatial
layout of cultivated land protection. Additionally, the spatial
dataset incorporates high-standard basic farmland results, the
agricultural land classification database, basic farmland
database, soil survey data, elevation data, and data from
632 monitoring points provided by the Nanjing Agriculture and
Rural Affairs Bureau. Firstly, to ensure the authenticity of the data,
we compiled all relevant datasets and standardized them by
converting measurement units to a consistent format. This
process involved identifying discrepancies among the units used
across different datasets, applying conversion factors where
necessary, and verifying the accuracy of the standardized data
through cross-referencing with established benchmarks. Then, to
facilitate spatial analysis, all spatial data were uniformly converted
to the CGCS2000 coordinate system, specifically using the 3-
Degree GK Zone 27 projection. This coordinate system is
designed to enhance spatial accuracy and consistency across
datasets, ensuring reliable results in subsequent analyses.
Finally, exploratory data analysis was used to remove extreme
values from key indicators, such as soil quality metrics and crop
yields, in order to eliminate their potential impact on the results of
the spatial correlation analysis.

Indicators such as terrain slope, effective soil layer thickness, soil
texture configuration, bulk density, pH, organic matter, farmland
shelterbelt, drainage capacity, irrigation capacity, available phosphorus,
available potassium, safe utilization rate, and biodiversity were sourced
from the agricultural land classification database of Liuhe District. Grain
crop yield and cost data were obtained from the “2021 Liuhe District
Statistical Yearbook,” and the data for mercury, cadmium, chromium,
and lead contents were obtained through spatial interpolation from the
632monitoring points in Liuhe District. Finally, the textual data involved
in this study consist of several key governmental and planning
documents. Specifically, the “Revised Plan for the Overall Land Use
Planning of Liuhe District, Nanjing” provides comprehensive guidelines
for land use within the Liuhe District, detailing zoning regulations,
protected areas, and development plans. This document is crucial for
understanding the spatial distribution and potential changes in farmland
use within the study area. The “2021 Nanjing Basic Farmland Protection
Report” offers insights into the current status of basic farmland
protection, including acreage, protection measures, and challenges
faced. It serves as a benchmark for assessing the effectiveness of
farmland preservation policies. Additionally, the “High-standard
Farmland Construction Plan of Jiangsu Province (2014–2020)” outlines
the objectives, strategies, and achievements of upgrading farmland to

FIGURE 1
Maps showing the location of the Liuhe District and its current administrative divisions. (A) Location of Jiangsu Province in China; (B) the location of
Liuhe District in Jiangsu Province and Nanjing City; (C) the digital elevation model (DEM) of Liuhe District.
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higher standards of productivity and sustainability. This plan is
instrumental in identifying trends and best practices in farmland
development. Lastly, the “Nanjing Basic Farmland Quality Monitoring
Report (2015–2017)” presents detailed data on soil quality, crop yields,
and other relevant indicators, providing a quantitative basis for evaluating
farmland health and productivity. Collectively, these textual data sources
contribute to the research by offering amultifaceted view of farmland use,
protection, and improvement in Liuhe District, Nanjing, and enable a
comprehensive analysis of the study’s objectives.

3 Method

3.1 Comprehensive evaluation of
farmland quality

3.1.1 Index selection
This study references the “2021 Nanjing Basic Farmland

Protection Report” to describe farmland quality using four

aspects: natural quality, utilization management, economic value,
and the ecological environment (Table 1) (Cracolici et al., 2010). (1)
The natural quality index characterizes the intrinsic conditions of
farmland, which are crucial for productivity (Qian F. K. et al., 2021);
the terrain slope, effective soil layer thickness, soil texture
configuration, bulk density, pH, and organic matter content were
chosen to reflect the natural quality of farmland (Zhang R. Q. et al.,
2022). (2) The utilization management index reflects the level of
management by farmers. Therefore, farmland shelterbelt, irrigation
capacity, drainage capacity, available phosphorus, and available
potassium were selected to indicate differences in utilization
management levels, including shelterbelt networks, irrigation,
drainage channels, and fertilization practices. (3) The economic
value index is the sum of benchmark crop yields, converted using
yield ratio coefficients, that were obtained under the natural quality
conditions of the farmland, as well as the average utilization
conditions of the land use zone and average economic conditions
of the land economic zone (Equations 1–4) (Pandit et al., 2013). It
can also be interpreted as the maximum economic yield level that

TABLE 1 Considering the natural quality index, utilization management index, economic value index and ecological environment index of the four one of
the cultivated land comprehensive quality evaluation system.

Evaluative feature Evaluation
indicator

Indicator meaning Weight

Natural quality index Slope (°) Restrictiveness of land topography, influences mechanized farming operations 0.0215

Effective soil depth (cm) Influences crop growth and water holding and nutrient holding capacities 0.0178

Soil texture configuration Characterization of soil physical features, reflects the arrangement of the soil particles 0.0074

Bulk density (g·cm-3) Characterization of soil physical features, used to describe soil compaction 0.0337

PH value Characterization of soil chemical features, significant impact on crop growth and soil fertility 0.0385

Organic content (g·kg-1) Inherent fertility characteristic of soil, reflects the cultivation performance 0.1013

Utilization management
index

Farmland forest network Proportion of farmland forest control area per unit area of cultivated land, reflects the protective
capacity of the farmland forest network

0.0610

Irrigation capacity Proportion of irrigation canal area per unit area of cultivated land, reflects the irrigation conditions of
the land

0.0760

Drainage capacity Proportion of drainage canal area per unit area of cultivated land, reflects the drainage and flood
prevention capacity of the land

0.0757

Available phosphorus
(mg·kg-1)

Content of phosphorus in soil available for plant absorption and utilization, reflects the level of
phosphorus fertilizer application management for the land

0.0457

Available potassium
(mg·kg-1)

Content of potassium in the soil readily available for crop absorption and utilization, reflects the level
of potassium fertilizer application management for the land

0.0477

Economic value index Economic value index Maximum economic yield achievable by this land unit under current economic conditions 0.0771

Ecological environment
index

Safety utilization rate Reflects the degree of safe utilization of farmland after pollution, indicates the ecological quality of
the land

0.0795

Biodiversity Diversity of soil microbial population in cultivated land, reflects the soil’s ability to degrade pollutants
and mitigate greenhouse gas emissions and indicates the ecological quality of the land

0.0220

Mercury content (mg·kg-1) Content of mercury in the soil, reflects the environmental quality of the land 0.0757

Cadmium content (mg·kg-1) Content of cadmium in the soil, reflects the environmental quality of the land 0.0650

Chromium content
(mg·kg-1)

Content of chromium in the soil, reflects the environmental quality of the land 0.0939

Lead content (mg·kg-1) Content of lead in the soil, reflects the environmental quality of the land 0.0603

Note: The weights in this table reflect the relative significance of the four aspects of farmland quality. They are calculated using the optimal combination weighting method, with values obtained

from Formulas 5–7. These weights influence the analysis by providing a framework for evaluating the overall quality of farmland based on the specified criteria.
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farmland within the classification unit can achieve under current
technical and economic conditions (Zhou et al., 2022). The land
economic coefficient is the ratio of the effective yield to the total yield
of specific crops in the plot, and it can be used to describe differences
in production capacity when the economic development level and
input–output intensity are the same (Equation 3) (Kuethe et al.,
2014). (4) Additionally, existing studies rarely consider the impact of
the spatial aggregation of farmland ecological environment quality
on farmland spatial layout (Baek et al., 2022; Li et al., 2022;
Maddison, 2009). To address this gap, this study incorporates an
ecological environment index into the analysis framework of
farmland quality spatial autocorrelation. This index includes
indicators such as the safe utilization rate, biodiversity, and heavy
metal content (mercury, cadmium, chromium, and lead) (Liang
et al., 2022). By integrating these indicators, we aim to capture the
ecological factors influencing farmland layout and quality, thus
enhancing the robustness of our spatial analysis.

EIi � NQIi
KLi

× KCi (1)

KLi � UMIi
UMImax

(2)

KCi � aij
Aij

(3)

aj � Yj

Cj
(4)

where EIi is the economic value index of the ith farming unit.NQIi is
the natural quality index of the ith farming unit. KLi is the utilization
management index of the ith farming unit. UMIi is the utilization
management index of the ith farming unit. UMImax is the maximum
utilization management index among all of the farming units in the
Liuhe District.KCi is the land economic coefficient of the ith farming
unit. aij is the yield-cost index of the jth crop on the ith farming unit.
Aij is the maximum yield-cost index of the jth crop among all of the
farming units. Yj is the actual yield of the jth crop.Cj is the actual cost
of the jth crop.

3.1.2 Cultivated land quality comprehensive score
calculation

This study uses the weighted index sum method (Kuang L. H.
et al., 2022) to comprehensively evaluate the natural quality index,
utilization management index, economic value index, and ecological
environment index of each plot, and employs the natural breaks
method to categorize them into five grades: Excellent, Good, Average,
Bad, and Poor. The method for determining the weights in the
evaluation index system is the optimal combination weighting
method (Hammitt and Zhang, 2013; Liu Y. L. et al., 2022), which
generally involves the following steps (Equations 5–7): (1) The expert
scoring method, the analytic hierarchy process, the entropy weight
method, and principal component analysis are used to determine the
four types of weights and then construct the weight matrix WC; (2)
The sum of squared deviations between standardized indicators is
constructed pairwise and the sum of squared deviations matrix Z1 is
constructed; (3) Based on the principle of maximizing the sum of
squared deviations, the product of the weight matrixWC and the sum
of squared deviations matrix Z1 are calculated, as in Equation 6, and
then the maximum eigenvector of the resulting matrix is determined;

and (4) The maximum eigenvector is normalized to obtain the
correction coefficients for each weight, and then weighted
calculations are performed to obtain the optimal combination
weighting weights Wi.

Iq � ∑n
i�1
GiWi (5)

J Wc( ) � WCZ1W
T
c (6)

Z1 �

∑m
i�1

∑m
i1�1

gi1 − gi11( ) gi1 − gi11( ) ∑m
i�1

∑m
i1�1

gi1 − gi11( ) gi2 − gi12( ) ... ∑m
i�1

∑m
i1�1

gi1 − gi11( ) gin − gi1n( )
∑m
i�1

∑m
i1�1

gi2 − gi12( ) gi1 − gi11( ) ∑m
i�1

∑m
i1�1

gi2 − gi12( ) gi2 − gi12( ) ... ∑m
i�1

∑m
i1�1

gi2 − gi12( ) gin − gi1n( )
... ... ... ...

∑m
i�1

∑m
i1�1

gin − gi1n( ) gi1 − gi11( ) ∑m
i�1

∑m
i1�1

gin − gi1n( ) gi2 − gi12( ) ... ∑m
i�1

∑m
i1�1

gin − gi1n( ) gin − gi1n( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

where Iq is the qth quality indicator. Gi is the score of the ith
indicator.Wi is the optimal combination weight for the ith indicator.
J (WC) is the weight matrix WC’s objective function, which
maximizes the sum of the squared deviations. gi is the
standardized score of each indicator. n is the quantity of
evaluation indicators. m is the quantity of the farming units.

3.2 Spatial autocorrelation analysis

3.2.1 Local spatial autocorrelation model
The local spatial autocorrelation model is one of the most widely

used methods in theoretical geography, and it primarily identifies
the clustering and differentiation characteristics of spatial units
(Shaker, 2018). This study employed the local spatial
autocorrelation model (Engen et al., 2002) to describe the spatial
correlation characteristics between farmland patches and their
adjacent patches in terms of land quality, simulating the spatial
distribution of global farmland patch aggregation and
differentiation. The specific calculation formula for the local
indicators of spatial association (LISA) (Guo et al., 2013) is as
follows Equations 8, 9:

LISAi � xi − �x( )
S2

∑n
j�1
Wij xj − �x( ) i ≠ j (8)

S2 � 1
n
∑n
i�l

xi − �x( )2, �x � 1
n
∑n
i�1
xi (9)

Where Wij is the component in the spatial geographical matrix.
xi and xj are the scores of the standardized quality index for
individual units. S2 is the variance of the land quality coefficients.
�x is the mean of the land quality coefficients.

The Moran’s Index (Moran’s I) ranges from [−1,1] (Chen and
Shen, 2020). Depending on its sign, spatial autocorrelation can be
described as high-high (HH) or low-low (LL) for positive
correlations, and as high-low (HL) or low-high (LH) for negative
correlations (Pang et al., 2023). Positive correlations indicate the
spatial clustering of farmland patches, while negative correlations
represent spatial differentiation (Das and Ghosh, 2017). In this
study, the Z-test statistic, commonly referred to as the Zi standard
score, was employed to determine the significance of global spatial
autocorrelation. The Zi score quantifies the number of standard
deviations a data point is from the mean, allowing for the assessment
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of spatial relationships. A Zi greater than 1.96 indicates a strong
positive correlation between the observed values, suggesting that the
overall spatial pattern of farmland patches exhibits spatial clustering.
Conversely, a Zi less than −1.96 indicates a strong negative
correlation, meaning that the overall spatial pattern demonstrates
spatial differentiation. When the absolute value of Zi (|Zi|) is less
than 1.96, it indicates that the spatial autocorrelation of farmland
patches is not significant, and instead, they exhibit a random
distribution in space.

3.2.2 Determination and improvement of
geographical weight matrix
1. Determination of geographical weight matrix. The inverse

distance spatial weight matrix is based on the premise that
the strength of spatial autocorrelation effects depends on the
distance between farmland patches (Carrijo and da Silva,
2017). Specifically, the influence of adjacent patches on an
observed plot diminishes as the distance increases, which
aligns with the first law of geography: “all spatial units are
correlated, and the correlation between closer spatial units is
stronger than that between farther spatial units.” This
principle underpins the spatial autocorrelation analysis of
cultivated land quality in this study. Traditional methods
typically calculate spatial correlations using the distances
between the centroids of farmland blocks, which may
overlook the complexities introduced by varying plot
sizes (Aghadadashi et al., 2019). For instance, when larger
plots are adjacent to smaller ones, the centroid distance may
not accurately reflect the quality correlations between these
plots (Raty and Kangas, 2007). By employing an inverse
distance spatial weight matrix, this study enhances the
precision of the spatial autocorrelation results for
farmland plots in Liuhe District using a Local Indicators
of Spatial Association (LISA) model (Ferrari et al., 2021).
This model serves as a foundational tool for optimizing the
spatial layout of farmland protection across the
entire region.

2. Improvement of the geographical weight matrix. Previous
studies have often relied on centroid distances without
sufficiently considering the correlation among farmland
patches within specific threshold distance ranges (Li et al.,
2021). The traditional construction process for inverse distance
spatial weight matrices can be subjective in determining
distance thresholds, which impacts the scientific rigor of
optimizing farmland layouts (Krisztin and Piribauer, 2023).
To address these limitations, this study enhances the inverse
distance spatial weight matrix by incorporating the areas of
farmland plots. This approach utilizes incremental spatial
autocorrelation analysis to objectively establish distance
thresholds, thereby improving the model’s accuracy. The
specific steps involved are as follows:

① Improvement of the Inverse Distance Spatial Weight Matrix.
To enhance accuracy, the area of farmland units in Liuhe
District is normalized (Equation 10). This normalization
adjusts for discrepancies in plot sizes, ensuring that the
geographical weight reflects the relative influence of each
plot more accurately.

Mij �
Mi −Mj min

Mj max −Mj min
Mj max ≠ Mj min( )

1 Mj max � Mj min( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (10)

where Mij denotes the elements of the land parcel area matrix M,
Mjmax andMjmin are the maximum and minimum areas of adjacent
farming units within the threshold distance range for land unit i,
respectively, and Mi is the area of land unit i. Within different
distance threshold ranges, farmland unit x has multiple adjacent
units. When farmland unit j has only one adjacent unit or when all
adjacent units have equal areas (i.e., whenMjmax = Mjmin),Mij is set
to 1. If farmland unit j has more than one adjacent unit and their
areas are not equal, the standardized area is calculated according to
Equation 10. Subsequently, the improved inverse distance spatial
weight matrix is adjusted based on the calculated standardized areas
of farmland units, as detailed in the following computational process
(Equation 11):

Wij � wij exp
Mij (11)

where Wij is the component of the improved distance-weighted
geographical weight matrix W, which has been modified by the
standardized area of the farming unit to reflect the geographic
influence of farming unit j on farming unit i.

② The optimal threshold distance is determined. The spatial
layout optimization of farmland in this study is based on the
overlay and coupling of the spatial autocorrelation results of
the farmland’s natural quality, utilization management,
economic value, and ecological environment indexes
(Balthazar et al., 2015). Accurate simulation of the spatial
autocorrelation results for each farmland quality index can
only be achieved after determining the optimal threshold
range. Given this, the incremental autocorrelation analysis
method was used with the ArcGIS platform to simulate the
spatial clustering and dispersion characteristics of farmland
units across different threshold ranges. The variation in the
Zi index was used to determine the optimal threshold
distance. Generally, as the threshold distance gradually
increases, the Zi index also increases, indicating an
increasing spatial clustering tendency of the farmland
units. Within a specific threshold distance range, if the Zi
index exhibits a peak, the corresponding threshold distance
represents the most significant distance for the spatial
clustering process of the farmland units, and thus it is the
optimal threshold distance.

3.3 Improved spatial autocorrelation
significance test based on a spatial
econometric model

In this study, we utilized the Geoda 1.6.7 platform to apply
three spatial econometric models: the first-order spatial
autocorrelation model, the geographical lag model, and the
spatial error model, to analyze the spatial autocorrelation of
farming parcels in Liuhe District (Ling et al., 2022). The
primary objective of employing these models is to compare
their regression parameters and identify the one that best fits
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the data. The first-order spatial autocorrelation model evaluates
how the values of farming parcel attributes correlate with those of
neighboring parcels, while the geographical lag model considers
the influence of neighboring parcels on the value of a given parcel,
and the spatial error model addresses potential spatial
autocorrelation in the error terms. To assess the significance
and reliability of the model results, we compared them using
several statistical criteria, including the Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC),

Hannan-Quinn Criterion (HQC), log-likelihood (Log L) value,
and Moran’s I index. Lower AIC and BIC values indicate a more
suitable model, while higher Log L values reflect a better fit.
Additionally, the Moran’s I index quantifies the spatial
autocorrelation, confirming significant clustering or dispersion
among farming parcels. By systematically comparing these
models based on these criteria, we aim to identify the most
appropriate model for capturing the spatial autocorrelation of
farmland quality in Liuhe District.

FIGURE 2
Spatial distributions of the cultivated land quality indexes in the Liuhe District.
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3.4 Optimization of the spatial layout of
farmland conservation

The differences in the quality among farmland units are caused
by the continuous interactions of multiple factors, and each
farmland unit responds differently to the same environmental
changes (Xu et al., 2022). Therefore, the strategies for improving
the farmland quality in the same plot can lead to significant
variations in the quality of the neighboring farmland units (Song
and Zhang, 2017). According to polarization theory, when farmland
units are at the same polarization level, the farmland quality tends to
be homogeneous, while at different polarization levels, the farmland
quality tends to be heterogeneous (Liu W. et al., 2022). When the
quality of a particular farmland unit changes, it has two distinct
effects on the surrounding units: a diffusion effect that promotes and
positively influences the farmland quality of the adjacent units, and a
backflow effect that inhibits and negatively influences the farmland
quality of the adjacent units. In this study, the geographic self-
correlation of the natural quality index, utilization management
index, economic value index, and ecological environment index
were analyzed within the “three lines” of territorial spatial planning
under the supervision of polarization theory. With the intention of
suggesting practical solutions for maximizing the spatial
arrangement of farmland conservation, the effects of changes in a
particular farmland quality coefficient on the farmland quality of the
adjacent units were evaluated.

4 Results

4.1 Geographical distribution features of
farmland quality index

This research employs the natural quality index, utilization
management index, economic value index, and ecological
environmental index to construct a comprehensive farmland
quality evaluation system. The farmland’s comprehensive quality
score was determined using a weighted index based on standardized
farmland categorization criteria. Figure 2 illustrates the geographical
distribution of the four aforementioned dimensions of the farmland
quality index.

The natural quality index exhibits a spatial distribution pattern
of high values in the west and low values in the east. High-score
regions, characterized by paddy fields and optimal farming
conditions, are mainly situated around Chengqiao Street,
Zhuzhen, and northern Ma’an Town. Low-score areas are
primarily in Babaiqiao Town, central Ma’an Town, and the
region between the hills and alluvial land in western Hengliang
Town, and they are dominated by dryland farming and unfavorable
natural conditions.

For the utilization management index, the cultivated land
quality in Liuhe District shows a pattern of high density in the
center and low density on the periphery. High-score regions are
mostly in Ma’an Town, western Babaiqiao Town, and the
intersection of Hengliang and Guabu Towns. These areas feature
extensive irrigation canals, drainage facilities, and advanced
management practices. In contrast, low-score areas are mainly in
western Babaiqiao Town, the intersection of Zhuzhen and Ma’an

Town, and Longchi Street. These areas are marked by inadequate
field infrastructure and lower levels of agricultural practices, such as
fertilization.

Regarding the economic value index, low-score land parcels
cover a larger area than high-score ones, and the quality of land in
Liuhe District is high in the central region and low on the borders.
High-score regions, which are primarily in Ma’an Town, western
Babaiqiao Town, and central Zhuzhen, consist mainly of black and
heavy soil, offering higher agricultural economic benefits.
Conversely, low-score regions are mainly in northern Ma’an
Town, the junction of Chengqiao Street and Ma’an Town, and
western Zhuzhen, and they are predominantly composed of mid-
layer lime soil and loess. These areas have lower input intensity and
agricultural economic sustainability, representing a high input-low
output model with poor economic returns.

The ecological environment index reveals a distinctive
geographical distribution in Liuhe District, with high-score
farmland in the center and low-score farmland on the edges, and
a larger area of high-score parcels. High-score areas are mainly
concentrated in Ma’an Town, Longpao Town, and Yeshan Town,
characterized by paddy fields and high soil biodiversity, promoting
the effective decomposition of soil microorganisms and nutrient
conversion. In contrast, low-score areas are mainly clustered in
Zhuzhen, Chengqiao Street, Babaiqiao Town, Longchi Street, and
the industrial park area in Hengliang Town. These regions have less
diverse soils and face significant risks to the ecological integrity of
cultivated land. In some areas, levels of heavy metals such as lead,
cadmium, and chromium exceed the established limits.

4.2 Improved spatial autocorrelation
analysis test results

4.2.1 Determination of the optimal
threshold distance

The Incremental Geographical Autocorrelation Analysis tool in
ArcGIS 10.2 was utilized to examine the spatial relationships and
clustering patterns of farmland quality indexes in Liuhe District
across various threshold distances. This tool is designed to analyze
spatial autocorrelation by calculating the Moran’s I statistic at
different distance thresholds. The Moran’s I statistic is a measure
of spatial autocorrelation, indicating the degree to which similar
values cluster together or disperse over space. By examining the
spatial relationships at incremental distances, this tool allows for the
identification of spatial patterns that may not be apparent at a single
distance threshold, offering a more nuanced understanding of how
farmland quality indexes are spatially distributed. The analysis
started with a threshold distance of 150 m, incrementing by
100 m until reaching a final distance of 3,050 m. At each
distance, the tool recalculates Moran’s I, identifying at which
threshold distance the spatial clustering is most pronounced. This
process helps determine the distance at which the spatial
autocorrelation is strongest and provides insights into the
geographic scale of clustering. The results are illustrated in
Figure 3, highlighting how spatial correlations change with
varying distances.

Figure 3A shows a parabolic increase in the Z-score as the
threshold distance extends from 100 to 3,050 m, rising from 44.23 at
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150 m to 779.51 at 3000 m. Additionally, as the distance increases,
the Z-score increment gradually diminishes. The absence of a peak
value within the 150–3,050 m range suggests pre-existing clustering
in the data. Figure 3B indicates a linear distribution of Moran’s I,
characterized by a rapid rise followed by a gradual decline from
150 to 3,050 m. Moran’s I attains its maximum value of 0.73 at a
threshold distance of 550 m. Beyond 550 m, Moran’s I gradually
decreases, with the rate of decrease showing a declining trend.
Moran’s I signifies the correlation between variables. From the
incremental autocorrelation results, it can be inferred that the
data exhibits the strongest correlation at a threshold distance of
550 m. Furthermore, the corresponding P-score for each threshold
distance was consistently 0, confirming the accuracy and feasibility
of the analysis results.

4.2.2 Improved spatial autocorrelation analysis
test results

Utilizing the optimal threshold distance, we constructed an
improved inverse distance geographical weight matrix (Wij) and
a traditional inverse distance geographical weight matrix (wij)

using ArcGIS 10.2 and Geoda 1.6.7 software. To conduct spatial
fitting analysis, we employed a first-order spatial autoregressive
model (FAR), a spatial autoregressive model (SAR), and a spatial
error model (SEM). The fitness of the improved spatial
autocorrelation model was evaluated using information criteria
(AIC, BIC, HQ, and Log L) and Moran’s I value. The results of the
simulated data for the three spatial models (FAR, SAR, and SEM),
using cultivated land natural indices as an example, are shown
in Table 2.

The information criteria and Moran’s I index results for the
three spatial models (FAR, SAR, and SEM) are presented in Table 2,
revealing noticeable differences between the improved inverse
distance geographical weight matrix (Wij) and the traditional
inverse distance geographical weight matrix (wij). With the
exception of the Log L for the FAR model and the BIC for the
SAR model, the other criteria information results and Moran’s I
values underWij are more reasonable. This indicates that the spatial
error model aligns better with reality, validating the logic of the
geographic self-correlation analysis using the improved inverse
distance weight matrix.

FIGURE 3
Results of incremental spatial auto-correlation analysis. (A) The results of incremental spatial autocorrelation analysis of Z-score (B) The results of
incremental spatial autocorrelation analysis of Moran’s I.

TABLE 2 Significance test of geographic self-correlation model.

Significance indices FAR SAR SEM

TSW ISW TSW ISW TSW ISW

AIC 321,564 354,564 321,564 324,567 321,597 297,841

BIC 364,897 364,561 364,897 359,745 334,897 336,471

HQ 321,478 325,415 321,545 318,745 297,846 294,561

Log L −170651 −170456 −169432 −167951 −158761 −167494

Moran’s I 0.539 0.596 0.674 0.709 0.744 0.761

Note: The simulation results of the cultivated land natural indexes. TSW, Traditional spatial weight; ISW, Improved spatial weight.
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4.3 Analyzing the moran dispersion diagram
and Moran’s I

This study employed an improved spatial weight-based
local spatial error model to analyze the geographic
associations and variations between cultivated land units in
Liuhe District. Figure 4 presents the Moran scatter plots
for each index of cultivated land conditions. Overall, the
Moran’s I scatter plots for all of the indexes are
predominantly in the first and third quadrants, indicating

that there is significant positive spatial autocorrelation for
all four indexes. The scatter plots for the natural quality
index and ecological environment index are closely aligned
with the fitted line, whereas those for the utilization
management index and economic value index are more
dispersed. This indicates that the positive spatial correlation
is stronger for the natural quality index and ecological
environment index than that of the utilization management
index and economic value index. This demonstrates that
ecological and natural quality conditions exhibit a stronger

FIGURE 4
Moran’s I scatter plot of the farming units quality index in Liuhe District. (A) Natural quality index (B) Utilization management index (C) Economic
value index (D) Ecological environment index.
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intrinsic correlation than utilization and economic value
conditions. Model significance tests reveal that the
geographic self-correlation of the natural quality index,
utilization management index, economic value index, and
ecological environment index for Liuhe District’s farmland
have Moran’s I values of 0.89, 0.67, 0.65, and 0.83,
respectively. All four indexes approach 1, indicating a
strong positive spatial correlation for Liuhe District’s
cultivated land quality indicators. The strengths of
correlation, in descending order, are the natural quality
index, ecological environment index, utilization management
index, and economic value index.

4.4 Analysis of local geographical self-
correlation

To capture the influence of neighboring units on the geographic
characteristics of farmland’s natural quality, utilization, economic
value, and ecological conditions within the optimal distance
threshold, this study employed an improved inverse distance
geographical weight matrix based on cultivated land area. The
quality of farming parcels in Liuhe District was mapped using a
local geographical self-correlation model (Figure 5). The research
results indicate the presence of a high positive geographical self-
correlation for the natural quality index, utilization management

FIGURE 5
Local spatial aggregation geographical features of the farmland parcel quality index in Liuhe District.
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index, economic value index, and ecological environment index, all
at a 95% confidence level. Table 3 provides the total area and
percentage of each land category.

4.4.1 Local spatial self-correlation of the farming
parcels’ natural quality index

According to the simulation outcomes of the geographical self-
correlation of the farming parcels natural quality index in the Liuhe
District (Table 3; Figure 5A), the proportions of the HH-type and
LL-type land parcels among the types of positive association are
37.17% and 18.69%, respectively. The HL-type and LH-type take up
0% and 10.35%, respectively, of the negative correlation styles.
Overall, the positive correlation types are mainly concentrated in
contiguous patterns in the central part of Liuhe, while the negative
correlation types are scattered along the edges of the Liuhe District.
The HH-type is particularly abundant in the western portion of
Longchi Street, the southern portion of Chengqiao Street, and the
junction of Ma’an Town and Babaiqiao Town. The middle region,
specifically Longpao Town, Ma’an Town, and Hengliang Town, is
where the LL-type is most prevalent. The LH-type can be observed
along the eastern portion of Longchi Street, at the intersection of
Chengqiao Street and Ma’an Town, in the central part of Guabu
Town, and at the intersection of Ma’an Town and Yeshan Town.

The geographical features of the land parcels with greater quality
are closely correlated with the spatial distribution of the positive
correlation type of the cultivated land natural quality index in the
Liuhe District. The positive correlation type is primarily found in the
heart section of Liuhe, where the good inherent qualities of the
cultivated land are prominent. The northern and southern zones,
where the natural quality of the farmed land is typically minimal,
have the highest amount of the negative correlation type. Among the
positive correlation types, Hengliang Town stands out as having fertile
soil, a good soil texture, an ideal effective soil depth, excellent water
retention and fertility capabilities, strong land connectivity, a
concentrated and contiguous distribution, and a higher level of
natural quality. By contrast, among the negative correlation types,
Yeshan Town and Longchi Street have poor soil texture and
insufficient soil fertility. Some areas have uneven terrain, which is
unfavorable for mechanized operations. The soil depth is inadequate,
and the organic matter content is low. These areas are primarily located
on both sides of the highways and far from the roads; they are thus
heavily impacted by the cutting effect made by highways.

4.4.2 Local spatial self-correlation of the farming
parcels’ utilization management index

According to the simulation results of the geographical self-
correlation of the farming parcels’ management index in the Liuhe
District (Table 3; Figure 5B), among the positive correlation types,
the proportions of the HH-type and LL-type land parcels are 26.77%
and 16.37%, respectively. The proportions of the HL-type and the
LH-type, two types of negative correlation, are 11.99% and 0%,
respectively. Overall, the positive correlation types are mainly
concentrated in contiguous patterns in the central part of Liuhe,
while the negative correlation types are scattered along the edges of
Liuhe Town. Specifically, the HH-type is primarily distributed in the
western part of Babaiqiao Town, the central part of Ma’an Town,
and the southern part of Hengliang Town. The LL-type is primarily
found in Longpao Town, Ma’an Town’s middle zone, and Babaiqiao
Town’s southern region. The HL-type is mainly distributed in
Zhuzhen Town, Babaiqiao Town, Chengqiao Street, and
Hengliang Street in a clustered manner.

The location-based distribution of the positive self-correlation
type of the Liuhe District farming parcels’ utilization management
index significantly matches the geographic characteristics of the land
parcels with the highest utilization management index. The
southern part of Ma’an Town benefits from the Pingshan Lake
water system, an abundance of water resources, dense irrigation and
drainage channels in the fields, notable advantages in irrigation
conditions, close proximity to villages, shorter distances for farming
activities, facilitation of the input and output of agricultural
production factors, and concentrated and contiguous cultivated
land, all of which are suitable for large-scale automated agrarian
production and other activities. The land parcels in Hengliang Town
have smaller areas and less contiguity, severely impeding large-scale
mechanized farming. There are multiple restrictive factors that limit
the farming and utilization conditions, and the infrastructure for
land utilization is not yet complete, resulting in a lower utilization
management index. Although Gucheng Town has abundant water
sources and good irrigation conditions, agricultural production is
severely restricted due to its location in the Gangchong hilly area.
Poor conditions exist for the use of farmland and unreasonable
conditions exist for the laying of irrigation and drainage channels.
The land parcels located in the north and away from both sides of
the road, as well as those in the southern part of Dingbu Town, lack
evident locational advantages, which severely reduces the output of

TABLE 3 Summary of local geographical self-correlation types and proportion of the farming parcel quality index in the Liuhe District.

Autocorrelation type NQI UMI EVI EEI

Number Ratio (%) Number Ratio (%) Number Ratio (%) Number Ratio (%)

HH 122,273 37.17 88,078 26.77 184,545 56.09 60,306 18.33

HL 0 0 39,441 11.99 0 0 39,441 11.99

LH 34,051 10.35 0 0 28,074 8.53 147,603 44.87

LL 61,488 18.69 53,871 16.37 73,855 22.45 81,643 24.82

Non 111,181 33.79 147,603 44.87 42,519 12.92 0 0

Summation 328,993 100 328,993 100 328,993 100 328,993 100

Note: NQI, Natural quality index; UMI, Utilization management index; EVI, Economic value index; EEI, Ecological environment index. The same is below.
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agricultural production elements and shows inadequate levels of
exploitation and management.

4.4.3 Local spatial self-correlation of the farming
parcels’ economic value index

According to the simulation results of the geographical self-
correlation of the farming parcels’ economic value index in the Liuhe
District (Table 3; Figure 5C), among the positive correlation types,
the proportions of the HH-type and LL-type land parcels are 56.09%
and 22.45%, respectively. The proportions of the HL-type and the
LH-type, two types of negative correlation, are 0% and 8.53%,
respectively. Overall, the positive correlation types are mainly
concentrated in contiguous patterns in the central part of Liuhe,
while the negative correlation types are scattered along the edges of
Liuhe Town. Specifically, the HH-type is primarily distributed in
Ma’an Town, Chengqiao Street, and Guabu Town. The LL-type is
mainly distributed at the intersection of Hengliang Town and
Babaiqiao Town and in the central part of Zhuzhen Town. The
LH-type is mainly found in the northern zone of Ma’an Town and
Yeshan Town, the central part of Zhuzhen Town, and the eastern
part of Longchi Street.

In the Liuhe District, the land parcels with a positive correlation
with the economic value index are mainly distributed in high-value-
added agricultural areas, along roadsides, and around Jinniu Lake.
Among them, in the HH-type regions, Ma’an Town has
predominantly medium-textured soil, good soil quality, fertility,
and proximity to the center of the Liuhe District, which
facilitates transportation and overall economic benefits. Longpao
Town has a flat terrain in the riverine area, with several roads such as
the Ningzhen Highway and Jiangbei Along-River Expressway
crossing from east to west, enabling the efficient transportation
of agricultural products and enhancing the economic benefits of
farming parcels. The centrally positionedMa’an Town benefits from
its closeness to Liuhe’s city core and the Chengjia Lake water system,
which assures irrigation and drainage while taking into account the
town’s economic advantages. The land parcels located in the
northern part of Ma’an Town and Yeshan Town, the central part
of Zhuzhen Town, and the eastern part of Longchi Street do not have
significant location advantages. These regions suffer from
insufficient labor, fertilizer, and other material inputs per unit
area of the field, relatively few crop varieties, and outdated field
management technology. The improvement of the economic
advantages of the farmland parcels is greatly hampered by the
low input and poor output production style.

4.4.4 Local spatial self-correlation of the farming
parcels’ ecological environment index

According to the simulation results of the geographical self-
correlation of the farming parcels’ ecological environment index in
the Liuhe District (Table 3; Figure 5D), among the positive
correlation types, the proportions of the HH-type and LL-type
land parcels are 18.33% and 24.82%, respectively. The
proportions of the HL-type and the LH-type, two types of
negative correlation, are 11.99% and 44.87%, respectively.
Overall, the positive correlation types are predominantly
concentrated in contiguous areas in the central part of the Liuhe
District, while the negative correlation types exhibit a scattered
distribution along the edges of Liuhe Town. The HH-type land

parcels are primarily found in Longpao Town, the western part of
Ma’an Town, and the southern section of Babaiqiao Town. The
locations around Zhuzhen Town, the Hengliang-Guabu-Ma’an
region, and the western portion of Longchi Street are where the
LL-type land lots are primarily found. The HL-type land parcels are
primarily located in the eastern section of Babaiqiao Town, the
central area of Hengliang Town and Chengqiao Street, and the
southern part of Zhuzhen Town. The LH-type land parcels are
mainly distributed in areas far from the highways in Zhuzhen Town,
the northern part of Yeshan Town, and the Chengqiao Street-
Longchi Street area, and they are sporadically distributed in the
eastern part of Babaiqiao and the southern part of Longpao Town.

The Liuhe District’s areas with positive self-correlation types for
the ecological environment index are mainly found near rivers,
lakes, and other bodies of water and away from industrial parks and
roadways. In the HH-type areas, Longpao Town exhibits a high soil
microbial diversity, facilitating effective biological nitrogen fixation
and improving the microenvironment of the soil. Moreover, these
areas are spatially distant from heavy industrial zones, resulting in
lower levels of heavy metal pollution. In some regions, an ecological
grid has even been established, indicating prominent ecological
quality. In the eastern part of Babaiqiao Town, which is near the
eastern industrial zone in the Liuhe District, the industrial pollution
is severe, with some areas exhibiting excessive levels of heavy metals
such as cadmium, chromium, and lead, posing a significant threat to
the ecosystem of the farmland parcels. There are few soil microbial
species in plots far from the road in Zhuzhen Town, which hinders
decomposition of soil macromolecules. Consequently, these areas
have lower levels of soil structure and fertility, resulting in poorer
ecological and environmental quality.

4.5 Layout and optimization strategy of
cultivated land protection zoning based on
local spatial autocorrelation

4.5.1 Cultivated land protection zoning layout
According to theoretical geography, there exist

interdependencies and potential diffusion or backflow effects
between different regional units, which may reduce or amplify
the quality differences among adjacent units (Zhang W. H. et al.,
2022). In this study, the geographic autocorrelation of agricultural
land quality’s positive correlation types was interpreted as a spatial
diffusion effect, while the negative correlation types was interpreted
as a backflow effect (Yuan et al., 2018). Among them, the HH-type
represents spatial clusters of high-quality land where the land quality
tends to be homogeneous, making it a core protection zone where all
non-agricultural construction should be prohibited. The LL-type, on
the other hand, reflects geographical clusters of low-quality land,
where land quality also tends to be uniform; therefore ecological
afforestation and grassland restoration should be carried out in a
staged manner depending on the endowment of land quality. This
type of land serves as an ideal area for non-agricultural development.
The HL-type represents convex areas that typically exhibit a spatial
distribution pattern where high-quality land is surrounded by low-
quality land. Under the influence of backflow effects, the high-
quality land in this area is prone to assimilation with adjacent low-
quality land, resulting in the degradation of the LL-type. The LH-
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type is characterized by concave regions with a geographic
distribution form in which high-quality land encircles low-quality
land. The low-quality land in these areas is prone to assimilation
with nearby high-quality land and becoming HH-type land due to
the influence of diffusion processes. The specific zoning results and
optimization strategies for each type are shown in Figure 6
and Table 4.

In this study, we analyzed the geographical self-correlations of
the farming parcel quality within the boundaries of the permanent
basic farmland, the expansion of cities, and ecological redlines based
on regional development theory and practice while taking into
consideration the boundary-drawing results of the “three lines”
in the territorial spatial planning of the Liuhe District. The
14 combined types resulting from the overlay of the spatial
associations of the various land indices were classified into four
primary categories: permanent basic farmland protection zones,
urban development buffer zones, ecological environmental
protection zones, and comprehensive adjustment zones. Further
refinement into 14 secondary categories was conducted based on the
difficulty and cost of optimizing the land quality. Strategies for
optimizing the spatial land layout were developed according to the
different types of spatial effects. This study reveals that the optimal
spatial land layout scheme based on the “three lines” spatial
planning demarcation results not only ensures the successful
execution of terrestrial geographic planning, but also offers
methods for optimizing the spatial land layout. It increases the
area of permanent basic farmland by 1234.15 hm2, with a grade
improvement of 1.45.

4.5.2 Strategy for optimizing the cultivated land
protection zoning layout

The outcomes regarding territorial space planning were
incorporated into this study’s research framework to optimize the

layout of farmland by considering the geographic self-correlation of
cultivated land quality. A thorough analysis of the four-in-one
geographic self-correlation system, which takes into account the
natural, utilization, economic, and ecological conditions, was
conducted on the parcels that fell within the basic farmland red
line, urban expanding line, and ecological red line established by
national geographic planning. In this study, the protection zones for
arable land were divided again, and the goals and challenges of
optimizing the layout in each zone were reassessed. The key focus
areas and optimization strategies for each zone are discussed below.

1. Permanent basic farmland protection zone: It is primarily
distributed in the northern part of Hengliang Town, the
central part of Zhuzhen Town, and the intersection of
Babaiqiao Town and Ma’an Town. It has a total area of
16212.62 hm2 and accounts for 83.90% of the total area.
The parcels within the permanent farmland protection zone
not only fall within the boundary of the basic arable land as
determined by the territorial spatial planning in Liuhe District,
but also exhibit strong spatial diffusion effects in all of the
farmland quality indices, indicating overall high-quality and
barrier-free conditions. Among them, the basic farmland core
zone, a highly concentrated area with superior natural quality,
a high level of infrastructure completeness, a large economic
value index, and excellent ecological environmental quality,
should receive top priority for farmland preservation. The
parcels within the basic farmland improvement zone and
basic farmland remediation zone exhibit relatively weak
spatial clustering advantages in terms of the utilization
management level and ecological environmental quality, and
therefore land quality improvement techniques focusing on
field management facility construction and ecological
remediation projects should be implemented in these zones,

FIGURE 6
Optimization strategy of cultivated land spatial layout in Liuhe District.
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respectively. The parcels within the basic farmland exiting zone
exhibit weakened advantages in farmland quality, utilization
management level, economic values, and ecological
environmental quality. Simultaneously, they exhibit a strong
negative backflow effect, which affects the farmland quality of
the surrounding parcels. These parcels should be withdrawn
from the basic farmland in an orderly manner through land
ownership transfer. In summary, the parcels within this region
belong to the category of permanent basic farmland due to
their prominent farmland quality advantages and non-
agricultural construction activities should be prohibited in
these parcels. For the parcels with significant negative
spatial clustering effects and poor farmland quality, effective
monitoring, withdrawal, and transfer through the basic
farmland management platform should be implemented to
prevent damage to the basic farmland.

2. Urban development buffer zone: It is primarily distributed in
the central area of Liuhe County in Ma’an Town, the northern

area around Jinniu Lake in Hengliang Town, and the southern
area around the center of Babaiqiao Town. It makes up 6.49%
of the total area and has a total size of 1255.08 hm2. The urban
development buffer zone falls within the urban expansion
boundary determined by the territorial planning in Liuhe
District. The farmland is adjacent to the urban center and
has prominent location advantages, but it exhibits obvious
disadvantages in terms of the farmland quality. Among them,
the farmland within the urban development adjustment zone
has a superior farmland quality, and all of the farmland quality
indices exhibit strong positive spatial diffusion effects. It is
recommended to selectively include these parcels in the
category of basic farmland. The parcels within the urban
development focus zone exhibit strong positive spatial
diffusion effects in terms of ecological environmental
quality. These parcels should be improved through measures
such as land reclamation for afforestation and grassland
restoration projects to enhance the ecological quality of the

TABLE 4 Optimization strategy of cultivated land spatial layout in Liuhe District based on the combination of spatial autocorrelation analysis and territorial
planning.

First level zone Second level zone Cultivated land space layout optimization
measures

Autocorrelation type

NQI UMI EVI EEI

Permanent basic farmland
protection zone

Basic farmland core zone Comprehensively improve and optimize while protecting and
maintaining existing natural, utilization, input-output, and ecological
levels

HH HH HH HH

Basic farmland improvement
zone

Maintain existing natural quality, economic input level, and ecological
quality, with a focus on improving the land use andmanagement intensity

HH LL HH HH

Basic farmland remediation
zone

Maintain existing natural quality, utilization management level, and
input-output efficiency, with a focus on improving the ecological
environmental quality

HH HH HH LL

Basic farmland exit zone Poor land quality conditions, recommended for exiting basic farmland LL LL LL LL

Urban development buffer
zone

Urban development
adjustment zone

Land with extremely prominent advantages in land quality conditions,
selectively recommended for inclusion in basic farmland

HH HH HH HH

Urban development focus
zone

Utilize its advantages in ecological environmental quality for land
restoration and transformation, selectively convert agricultural land to
other land use types

LL LL LL HH

Urban development ideal zone Land with obvious disadvantages in land quality conditions, ideal areas
for agricultural land conversion in urban development LL-type

LL LL LL LL

Ecological environmental
protection zone

Ecological moderate
protection zone

Land with extremely prominent advantages in land quality conditions,
selectively recommended for inclusion in basic farmland

HH HH HH HH

Ecological-focused protected
zone

Maintain existing natural quality, utilization management level, and input
level, with a focus on improving ecological environmental quality

HH HH HH LL

Ecological-focused protected
zone

Land with obvious disadvantages in natural land quality but extremely
prominent ecological environmental quality, ideal areas for ecological
construction such as land restoration and transformation

LL LL LL HH

Comprehensive adjustment
zone

Key comprehensive
adjustment zone

Land with obvious advantages in comprehensive land quality conditions,
selectively recommended for inclusion in basic farmland

HH HH HH HH

Key comprehensive protected
zone

Key land parcels with low scores in natural quality, economic value index,
and ecological environment, aiming to increase land utilization

LH Non LH LH

Focus comprehensive
improvement zone

Emphasize improving land use and management of high-scoring land
parcels and the ecological environment, enhance the natural land quality
and economic value index

Non HL Non HL

Moderate comprehensive
improvement zone

Key protection of land parcels with low scores in ecological environment,
enhance the natural quality, land use, and economic value index

Non Non Non LH
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surrounding parcels. The parcels within the urban
development ideal zone, located near the urban periphery,
exhibit strong negative spatial reflow effects for all of the
farmland quality indices, highlighting their own poor
farmland quality and causing a decline in the farmland
quality in the surrounding parcels. These parcels should be
given top priority for urban development and occupation. In
conclusion, the farmland quality in the urban development
buffer zone has declined, and all of the farmland quality indices
exhibit strong negative spatial reflow effects. This zone offers
the perfect location for urban growth.

3. Ecological environmental protection zone: It is primarily
distributed in Longpao Town, the western part of the town
center in Ma’an Town, and the western part of Babaiqiao. With
a total size of 101.63 hm2, it makes up 0.53% of the entire area.
The ecological environmental protection zone falls within the
ecological red line mapped by the geographic planning of the
Liuhe District, and the parcels exhibit prominent advantages in
terms of the ecological environment. It is mainly distributed
along rivers, lakes, and highways. Among them, the parcels
within the ecological moderate protection zone exhibit
prominent farmland quality advantages, and all of the
farmland quality indices exhibit significant positive spatial
diffusion effects. It is recommended to selectively include
these parcels in the category of basic farmland. In terms of
natural quality, field management, and economic output, the
plots within the ecologically focused protection zone show
considerable advantages, while the ecological environment
index display a strong negative geographical backflow
impact. It is recommended to improve their ecological
environmental quality through a series of ecological
remediation projects such as on-field ecological protection
and heavy metal degradation techniques. The parcels within
the ecological key protection zone exhibit poor farmland
quality, and all of the quality indices exhibit strong negative
spatial reflow effects. Due to the limited farmland productivity,
the use of ecological afforestation and grassland restoration
projects should be actively explored to form a grid for high-
quality ecological protection in Liuhe. In summary, the parcels
within the ecological environmental protection zone exhibit
poor farmland quality, and all of the farmland quality indices
exhibit strong negative reflow effects. These parcels should be
selectively withdrawn in an orderly manner through land
reclamation for afforestation and grassland restoration
projects to fully realize their ecological protection value.

4. Comprehensive adjustment zone: In the Liuhe District’s
territorial spatial design, the parcel of this zone lies outside
the “three lines” delineation. It makes up 9.08% of the whole
space and has an area of 1755.09 hm2; this zone is primarily
found in Chengqiao Town, Zhuzhen Town’s eastern section,
and Yeshan Town’s eastern section. Among them, the parcels
within the key comprehensive adjustment zone exhibit
superior farmland quality, and all of the farmland quality
indices exhibit strong positive diffusion effects. These plots
should be selectively categorized as basic farming land.
Farmland units within the key comprehensive protected
zone, focus comprehensive improvement zone, and
moderate comprehensive improvement zone have relatively

weaker advantages in terms of farmland quality, with more
complex obstacles affecting farmland quality. The mechanisms
and effects of the various limiting factors should be identified
to achieve a transition of all of the farmland quality indices to
HH-type. The specific measures include determining the
sequence of remediation for each parcel based on the
mechanisms, quantity, and remediation cost of the limiting
factors; adopting measures such as soil transfer and
improvement in parcels with poor farmland quality;
accelerating the construction of field roads and ditches in
parcels with inadequate infrastructure; optimizing land
management models through measures such as farmland
circulation and substitution in parcels with poor input-
output levels; and actively exploring new technologies for
soil pollution remediation and improving soil pollution
control models in parcels with poor ecological conditions.

5 Discussion

5.1 Four-in-one farmland quality spatial
autocorrelation analysis system

This study presents a novel, integrated approach to evaluating
farmland quality by constructing a four-dimensional spatial
autocorrelation system. Our approach expands the theoretical
framework of farmland quality by coupling the spatial
autocorrelation characteristics of natural quality, utilization
management, economic value, and ecological environment
indices. Unlike previous research that relied heavily on expert
evaluation methods (Huang et al., 2017), our study provides a
more comprehensive and data-driven perspective on optimizing
farmland spatial layout. The coupling of farmland quality and spatial
autocorrelation features is a significant advancement over existing
methods that often prioritize weighted indices for assessing natural
quality (Rotches-Ribalta et al., 2021), locational conditions (Baek
et al., 2022), and economic value (Kuang Y. et al., 2022) without
adequately considering the spatial autocorrelation characteristics of
these indices.

Our findings reveal a high degree of spatial clustering in areas
with positive spatial autocorrelation of the farmland quality index,
particularly in regions with high-quality land parcels. This
observation aligns with previous studies (Cheng et al., 2023).
Specifically, regions with a positive spatial autocorrelation of
natural quality are predominantly located in the central area of
the Lihe District, where the natural advantages of farmland are most
pronounced. Conversely, negative spatial autocorrelation is
prevalent in the northern and southern areas, where natural
quality is lower. The positive spatial autocorrelation of the
utilization management index is concentrated in areas with
abundant water resources, dense irrigation and drainage
channels, and close proximity to agricultural activities. Negative
spatial autocorrelation, on the other hand, is found in hill and ravine
areas with poor infrastructure and accessibility. Similarly, the
economic value index shows positive spatial autocorrelation in
high-value agricultural zones and areas near roads, whereas
negative spatial autocorrelation is associated with plots that suffer
from insufficient labor, fertilizers, pesticides, and outdated
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management techniques. For the ecological environment index,
positive spatial autocorrelation is evident in regions with diverse
soil microbiota and minimal industrial and road pollution, while
negative spatial autocorrelation occurs near industrial zones, where
soil biodiversity is low and heavy metal contamination is significant.
Consistent with prior research (Luo et al., 2022), our study
underscores the critical role of spatial autocorrelation
characteristics in optimizing farmland spatial layout, enhancing
precise management of farmland protection, and ensuring food
security. Accurate identification of these characteristics can harness
the spatial diffusion effects of farmland quality while mitigating its
potential negative spillover effects, ultimately enhancing overall
farmland quality.

A noteworthy contribution of our study is the inclusion of the
ecological environment quality as a fourth dimension in the spatial
autocorrelation analysis of farmland quality. Previous studies have
largely focused on natural quality, utilization management, and
economic value, often overlooking the spatial autocorrelation
characteristics of ecological environment quality. By integrating
this dimension, we extend the theoretical framework of farmland
spatial autocorrelation analysis and provide a more holistic
approach to farmland protection. This integration allows for the
accurate identification of ecological risk areas, thereby preventing
ecological degradation and promoting sustainable farmland
management. In conclusion, our study not only broadens the
conceptualization of farmland quality but also offers practical
insights into its spatial optimization. By incorporating the
ecological environment quality into the analysis, we provide a
comprehensive approach that addresses both the economic and
ecological aspects of farmland management.

5.2 Combination of farmland quality spatial
autocorrelation with territorial
spatial planning

This study integrates territorial spatial planning with the spatial
autocorrelation characteristics of farmland quality, enhancing both
the theoretical understanding and practical applications for
optimizing spatial layouts. This integration is significant for
improving the territorial spatial planning system, strengthening
farmland protection, and accelerating the modernization of
agriculture and rural areas. Territorial spatial planning divides
rural areas into production, living, and ecological spaces.
However, existing spatial autocorrelation analyses of farmland
quality have often overlooked ecological environmental factors
(Das and Ghosh, 2017), failing to effectively align with territorial
spatial planning frameworks (Yuan et al., 2018; Fahr and Sunde,
2006). Our research addresses this gap by coupling the spatial
autocorrelation characteristics of natural quality, utilization
management, economic value, and ecological environment. We
then align these characteristics with the “three-line” delineation
results of territorial spatial planning. Specifically, we categorize
farmland within basic farmland protection zones into core,
improvement, remediation, and exit zones. Land within urban
construction spaces is categorized into urban development
adjustment, emphasis, and ideal zones. Land within ecological
protection zones is divided into moderate, emphasis, and key

construction protection zones. Land outside the three-line
delineation is classified into key comprehensive adjustment,
protection, emphasis remediation, and moderate adjustment
zones. This comprehensive categorization facilitates the precise
management of farmland quality by spatially aligning farmland
characteristics with appropriate planning and protection
strategies. It allows for targeted interventions tailored to the
unique needs and potentials of different areas, thereby optimizing
the use of land resources and enhancing overall land management
efficiency. Moreover, our study underscores the importance of
spatial autocorrelation characteristics in the context of territorial
spatial planning. Accurate identification and understanding of these
characteristics enable policymakers and planners to harness the
benefits of spatial diffusion effects while mitigating negative spillover
effects. This approach not only enhances farmland quality but also
supports sustainable development goals by balancing economic,
social, and environmental objectives.

5.3 Improvement of the spatial
autocorrelation model

In this study, we introduce an enhanced spatial
autocorrelation analysis method for cultivated land quality,
which is based on an improved spatial weight matrix. This
method provides a more accurate and scientific approach to
describing and analyzing the spatial clustering characteristics
of cultivated land quality. While spatial autocorrelation
models have been widely used in studies on cultivated land
quality protection (Chen and Shen, 2020; Carrijo and da Silva,
2017; Cheng et al., 2016), the traditional focus has predominantly
been on the spatial distance between patches when determining
the spatial weight matrix. This conventional approach often
neglects the influence of patch area on the estimation results,
potentially compromising the accuracy of spatial simulation
outcomes. To address this limitation, we optimized the spatial
weight matrix by identifying the optimal threshold distance. This
optimization significantly enhances the precision and scientific
rigor of the spatial autocorrelation analysis. Utilizing Moran’s I
and both global and local geographic autocorrelation models, we
investigated the regional aggregation of parcel quality and its
implications for improving farmland layout. To evaluate the
significance of geographical self-correlation, we applied the
information criteria (AIC, BIC, HQ, and Log L) as described
by Shaker and Liu, and used Moran’s I values obtained from
previous studies on 328,993 farmland units in the Liuhe District
(Liu Y. L. et al., 2022). These methodological improvements
contribute to a more nuanced understanding of farmland
quality and provide valuable insights for optimizing farmland
layout. Our findings underscore the importance of considering
both spatial distance and patch area in the spatial weight matrix,
which leads to more accurate spatial autocorrelation analyses.
This refined approach not only improves the precision of spatial
simulations but also offers robust support for effective farmland
management and protection strategies. The enhanced accuracy of
spatial analysis enables more informed decision-making,
ultimately leading to better management practices that can
enhance farmland quality and sustainability.
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5.4 Limitations of this study

While our research provides valuable insights, it is important to
acknowledge several limitations. First, although we developed a
series of land remediation strategies based on the geographic
distribution of farmland quality and spatial spillover effects,
improving farmland quality is a long-term and gradual process.
Our study does not fully consider how enhancements in the quality
of one plot may influence the quality of adjacent plots over time.
Future research should implement comprehensive, long-term
assessment methods or utilize panel data to investigate this
dynamic more thoroughly. Second, the definition of farmland
quality is continuously evolving. In this study, we established a
four-dimensional framework for evaluating farmland quality based
on current production needs. However, it remains uncertain
whether this framework will adequately address future
requirements for farmland quality. Future studies should
incorporate more comprehensive theoretical perspectives to
deepen the understanding of farmland quality and progressively
enhance the evaluation system. Additionally, there is a need to
develop a multidimensional spatial autocorrelation analysis
framework specifically tailored to farmland quality. Although
these limitations do not undermine the significance of our
findings, they highlight opportunities for advancing and refining
methodologies used in farmland spatial planning and optimization
in future research. Addressing these constraints can contribute to a
more nuanced understanding of farmland quality and pave the way
for more effective and robust land management and
conservation policies.

6 Conclusion

Based on the outcomes of the “three lines” delineation of the
land space planning of two belts, two wedges, two axes, and two
cities in the Liuhe District, in this study we constructed an improved
local geographic four-in-one self-correlation model to analyze the
spatial agglomeration distribution features of arable land quality
indicators in the permanent farmland conservation red line, urban
expanding line, and ecological red line. The following are the
research’s principal findings:

(1) This study developed a four-in-one spatial autocorrelation
evaluation system for assessing the quality of farmland parcels
based on natural quality, field management, economic input
and output, and ecological environment, and it also examined
the spatial distribution characteristics of the quality level of
cultivated land. The natural quality index indicated a spatial
distribution where the west was high while the east is low.
Utilization management, economic value, and ecological
environment all displayed the characteristics of a
geographical distribution that is high in the middle with a
low level on the periphery.

(2) In terms of spatial self-correlation, the vast majority of the
geographical self-correlation types of farming parcels in Liuhe
District are favorable. Both positive and negative correlation
types were congruent with the spatial distribution of high-
and low-quality farmland. The natural quality index,

utilization management index, economic value index, and
ecological environment index—all of which were
geographical aggregation features—displayed Moran’s I
values of 0.89, 0.67, 0.65, and 0.83.

(3) Based on the combination the territorial spatial planning with
geographical self-correlation analysis, the area of permanent
basic farmland increased by 123.15 hm2 and the quality grade
was enhanced by 1.45. According to the difficulty and the cost of
remediation, the parcels in Liuhe District were divided into
14 second-level classifications and four first-level classifications,
including the permanent basic farmland protection zone, the
urban development buffer zone, the ecological environmental
protection zone, and the comprehensive adjustment zone. The
permanent basic farmland protection zone’s total quality is the
best of these, and it shows a high positive spatial association. It
should be the focal point of cultivated land conservation, and
non-agricultural building should be prohibited. The urban
development buffer zone’s cultivated land is of poor overall
quality, but its locational advantage is the most pronounced.
The substantial negative spatial backflow that the cultivated land
quality index displays makes this an excellent area for urban
growth. The total quality disadvantage of the farmed land here is
more apparent, while the ecological circumstances are
more noticeable in the plots located in the ecological
environmental protection zone. To create a global ecological
network based on the ecological red line, projects to convert
cropland to forests and grasslands should be carried out in a
systematic way. The variables restricting the quality of the
cultivated land are more complex in the plots situated in the
comprehensive adjustment zone. Field remediation initiatives
should be energetically implemented on the basis of fully
identifying the mechanisms of the impeding factors in order
to encourage the conversion of these plots into long-term
basic farmland.
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