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Introduction: Investigation of the evolutionary trend of habitat quality in karst and
rocky desertification zones is crucial for enhancing ecological security and
conservation.

Methods: Analysis of land use statistics from the years 2000, 2010, and 2020,
changes in habitat quality (HQ) and land use (LULC) between 2000 and 2020
were analyzed using Huize County in Yunnan Province as an example. The InVEST
and FLUS models were applied to simulate LULC under different scenarios in
2030 and 2040 and assess changes in spatial gradients of habitat quality at each
timepoint and factors influencing them.

Results: The findings indicated that (1) The predominant land use types are
grassland and woodland, experiencing the most significant growth in
urbanized areas, the main sources of which are paddy fields and high-cover
grassland. (2) The habitat quality between 2000 and 2020 was average and
displayed a consistent decline. The spatial distribution pattern indicates lowHQ in
urban areas, high HQ in the outskirts, low HQ in the south-west, and high HQ in
the north-east. In all four scenarios, habitat quality predominantly decreases in
urban areas and regions with a dense concentration of built-up land. (3) Habitat
quality spatial distribution is primarily affected by the type of land use, with NDVI
being the secondary determinant.

Discussion: The ecological environment of Huize County must be restored and
safeguarded with a focus on ecological priorities and harmonious development
scenarios. This study provides methodological lessons for ecorestoration and
policymakers in areas of karstic rocky desertification.
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1 Introduction

Karst desertification is the phenomenon and process of destruction of surface
vegetation, soil erosion, and large-scale exposure of bedrock under humid climate
conditions, which is disturbed by karstic activity and irrational human activity,
resulting in decertified landscapes (Tang et al., 2019). While southwest China has
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significant ecological protection, there is also a severe rock
desertification problem in its southwest karst region, resulting in
a decline in ecosystem function and a serious threat to the ecological
security of the region (Li T. et al., 2023). Thus, it is imperative that
the ecological environment in the southwest karst region is
protected and restored to maintain the ecological security of the
region (Chang et al., 2024). Various scholars at home and abroad
have conducted systematic research on extracting and assessing
rocky desertification areas, spatial and temporal evolution patterns,
influence mechanisms, restoration, and management to realize the
combination of rocky desertification prevention and control
(D’Ettorre et al., 2024). According to Guo et al., rocky
desertification was examined spatially and temporally by using a
spatial remote sensing monitoring model for rocky desertification
constructed in Bijie City for the past 35 years, and geographic probes
were used to clarify the driving factors for rocky desertification
evolution in different periods (Guo et al., 2023); A model proposed
by Zhang et al. (2021) can be used to extract information about karst
rock desertification directly from complex features within karst
areas; A southern karst desertification management area is used
as the research object by Wu J. et al. (2022), who combine remote
sensing and geographic information system technology to construct
a landscape ecological quality model and analyze the ecosystem’s
stability, degree of disturbance, and other characteristics
quantitatively; As a result of quantitative analysis of the spatial
and temporal changes and evolutionary patterns of rocky
desertification from 2001 to 2020, Qian et al. (2022) were able to
improve the CA-Markov model, and three governance scenarios
were developed to predict rocky desertification trends in the
next 30 years.

HQ is a crucial metric accustomed to evaluating the ecological
conditions of a habitat (Hall et al., 1997), which not only reflects
regional biodiversity status but also ecosystem ability to provide
ecological services (Gomes et al., 2021; Marques et al., 2020). The
quality of habitat is intricately linked to alterations in human
economic and social endeavors (Koo et al., 2020; Su et al., 2012).
Recent findings indicate that urbanization is the primary driver for
alterations in the distribution and quality of habitats (McDonald
et al., 2018; Tang et al., 2020; Yang, 2021). As populations
agglomerate and human activities intensify, natural habitats are
under greater pressure (Chen et al., 2022; Yang et al., 2023). The
current research methods used to assess habitat quality at different
spatial scales can be divided into two categories: the first is the use of
field surveys to determine habitat quality through the development
of an indicator system, which is time-consuming and difficult to
implement. Secondly, habitat quality can be assessed using models
(Terrado et al., 2016). Recent findings indicate that the main models
currently utilized for evaluating regional habitat quality include the
Social Valuation of Ecosystem Services (SolVES) model (Sherrouse
et al., 2014), the HSI model (Bełcik et al., 2019), the MIMES model
(Boumans et al., 2015), and the Trade-offs-Habitat Quality
(InVEST-HQ) model (Marques et al., 2020). Among them, the
InVEST-HQ model is mostly suitable for research areas with
poor species distribution data or the coexistence of mixed habitat
types. It has the advantages of convenient operation, strong
visualization ability, and a more complete theoretical system
(Akbari et al., 2021). Scholars at home and abroad mainly make
land use dynamic prediction with the help of cellular automata (CA),

artificial neural networks (ANN), Markov chains (MC), ANN-CA,
PLUS models, and FLUS models (Zhang et al., 2022; Lin et al., 2020;
Liu et al., 2017; Liang et al., 2018; Huang et al., 2024a; He et al.,
2017), etc., and realize habitat quality prediction and assessment
through the InVEST-HQ model. Based on the meta cellular
automata model, FLUS (Future Land Use Simulation) model
integrates the dual impacts of natural and human activities.
Using artificial neural network algorithms, it is optimized and
improved. Based on the combination of land use data with
different driving force factors, suitability probability maps are
generated for various land uses in the study area, as well as
predicting the spatial distribution of future land uses with high
simulation accuracy by simulating regional land use responses
(Chen et al., 2021; Liu et al., 2023). Geostatistical analyses and
Geodetector were used to investigate the regional and temporal
dynamics of habitat quality (Cai et al., 2023); factor correlation
analyses, multivariate linear regressions, and geographically
weighted regressions (Liu et al., 2017; Zhu et al., 2020) were used
for the profiling of influencing factors and driving mechanisms.
Unlike traditional models, which are limited in their ability to
examine the effects of each factor individually, Geodetector can
quantify the synergistic effects of factors and analyze the spatial
distribution because of multiple factors, revealing the interactions
among them (Li Y. et al., 2023).

Karst regions are characterized by karst development and high
landscape heterogeneity, which makes the interaction between
human activities and the ecological environment more complex
(Li T. et al., 2023). Karst desertification research currently focuses
primarily on macro-level changes in desertification, analysis of its
causes, and discussion of preliminary management strategies (Pan
et al., 2022; Yang et al., 2022; Chong et al., 2021). And there is a lack
of research that focuses on the quality of habitats and the factors that
drive them. With mountains and valleys crisscrossing its territory,
complex geological structure, and complete stratigraphic
development, Huize County is situated in the northeast Yunnan
Plateau. As a typical karst area, carbonate rocks are widely
distributed, have many caves and landforms, and are distributed
in patches (Zhao L. et al., 2023). There is an increasing contradiction
between aggravated land rock desertification and socio-economic
development, and the environment is in a fragile state. Despite this,
little research has been conducted on changes in habitat quality in
the region. A few studies have been conducted using the InVEST
model to simulate habitat quality in karst regions; however, most
have used conventional parameters without considering the threats
to habitat quality posed by rocky desertification, resulting in
limitations in assessment results and driving factor analyses.

The study employed land use data from Huize County for the
years 2000, 2010, and 2020 to deploy the InVEST-HQ model for the
computation of habitat quality. By incorporating rocky
desertification indicators into the Habitat Quality Assessment
System, the specificity of habitat quality assessment can be
captured more accurately. The evolution pattern analysis of
habitat quality was conducted using the transfer matrix and
spatial autocorrelation. Additionally, the FLUS and InVEST-HQ
models were employed to predict future habitat quality under
various scenarios, considering Huize County’s ecological
environment and social development goals. The impacts of
different development scenarios on habitat quality were assessed;
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moreover, Geodetector was utilized to analyze the influencing
factors. The purpose of this research is to examine the scientific
issues associated with land use and habitat quality in karstic
desertification areas, as well as the mechanisms affecting habitat
quality. To provide a scientific basis for ecological conservation and
sustainable development of the Karst region.

2 Materials

2.1 Study area

Huize County is in Qujing City, within the province of Yunnan,
on the eastern part of the Yunnan plateau and near the convergence
zone of the Qianxi plateau. The geography displays a variation in
elevation, characterized by elevated terrain in the southern division
and lower terrain in the northern division, characterized by a step-
like descent. The highest elevation of the territory reaches 4,017.3 m,
the lowest elevation of 695 m. The territory of the river basin covers
an area of 5,854 km2. The mean annual precipitation is 817.7 mm.
Vegetation area for central, east Yunnan plateau semi-moist
evergreen broad-leaved forests, Yunnan pine forest area,
northeast Yunnan plateau high, mid-mountain Yunnan pine
forest sheep meadow subarea. Influenced by the topography,
climate, soil, and vegetation show significant vertical changes. At
the end of 2022, the urban population was 328,800, with a resident
population of 791,300 and an urbanization rate of 41.6%. (Figure 1).

2.2 Data source and preprocessing

Data on land usage for the years 2000, 2010, and 2020 were
utilized in this analysis and acquired through decoding Landsat images
with a spatial resolution of 30m. There were six primary classifications
of land use zones: agriculture, forest land, grassland, watersheds,
populated land, and unutilized land. Additionally, there were
25 subcategories based on the land use categorization system of the
Chinese Academy of Sciences (CAS). Driving factors are derived from
the geospatial data cloud and the geographic national condition
monitoring platform. Detailed data information and sources are
shown in Table 1. The study data were all resampled to 30 m,
with uniform raster row and column numbers of 2,820 and 4,596,
and processed using ArcGIS 10.8, FLUS V2.4, and InVEST 3.13.0.

2.3 Scenario setting

Four scenarios were established to simulate and predict habitat
quality in Huize County based on its geo-geomorphology and socio-
economic development as follows:

(1) Natural Development Scenario (NDS): Based on the
assumption that the development trend remains
unchanged and modeled with the development trend from
2010 to 2020, the transfer category and probability are
determined.

FIGURE 1
The study area location. (A) China. (B) Yunnan Province. (C) Huize County.
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(2) Economic Development Scenario (EDS): In accordance with
the report on the draft national economic and social
development plan for Huize County for 2024, transforming
and upgrading the industry, accelerating the development of
culture and tourism, and fostering the growth of the tertiary
sector will be promoted. IBM SPSS Statistics 26 was used to
calculate the correlation between GDP and each category in
Huize County from 2000 to 2020. Statistical findings indicate
that the Pearson correlation coefficient between GDP and
urban land as well as other building land in Huize County is
the highest, equaling 0.995 (P < 0.01). Therefore, it is assumed
that within the EDS, urban land and other construction land
cannot be transformed into other land categories, and all
other land categories can be transformed into urban land and
other construction land, and the probability of transferring
each land category increases by 50%. The probability of
transferring each category is increased by 50%. Urban land
and other construction land remain unchanged.

(3) Ecological priority scenario (EPS): As part of its commitment
to ecological environmental protection and restoration, Huize
County actively practices the concept “green mountains are
golden mountains.” A new round of forest land protection
and use planning in Huize County will require coordination
of forest land protection and use, as well as clarification of
forestry production space and ecological space. In order to
guarantee the development of ecological space for woodland
and grassland, it is assumed that forested land, shrubland,
open woodland, and other forested land can be converted to
each other but not to other land categories, and the transfer
probability of the four categories of land is increased by 100%,
and the transfer probability of urban land, rural residential
land, and other construction land is decreased by 50%. The
probability of transfer is unchanged for urban land, rural
residential land, and other construction land, and the
probability of transfer is reduced by 50% for all other land
categories.

(4) Harmonious development scenario (HDS): Ensure that all
aspects of coordination are considered, including urban-
rural coordination, economic and social coordination, and
human-nature coordination. Through the promotion of
agricultural modernization, new industrialization, tourism

industrialization, and appropriate economic development,
it provides economic income such as arable land and
construction land while simultaneously protecting
natural areas such as forests and grasslands. It is
assumed that the transfer probability of forest land and
grassland remains unchanged in this scenario, the transfer
probability of urban land, rural residential land, and other
construction land increases by 25 percent, and the transfer
probability of the rest of the land categories decreases by
25 percent (Figure 2).

3 Methods

3.1 Pearson’s correlation coefficient

The Pearson correlation coefficient quantifies the degree of
correlation between two variables (Ma et al., 2016), which range
from −1 to 1. The study used the coefficient to calculate the degree of
correlation by comparing Huize County’s GDP with various
categories. Equation 1 gives the calculation formula:

r �
∑n
i�1

Xi − �X( ) Yi − �Y( )����������∑n
i�1

Xi − �X( )2√ ����������∑n
i�1

Yi − �Y( )2√ (1)

where �X and �Y are the means of the variables X and Y respectively.
The closer |r| is to 1, the higher the degree of linear correlation
between X and Y. Negative values indicate negative correlation,
positive values indicate positive correlation, and a value of
0 indicates that there is no correlation between the variables.

3.2 Land demand forecasting based on
FLUS modeling

The FLUS model integrates land use change and future land use
scenario simulation under human activities and natural influences
(Chen et al., 2021; Feng et al., 2021). The total probability is
calculated by Equation 2:

TABLE 1 Data information and sources.

Data type Data name Initial data sources

Basic data Administrative
boundaries

Geographical demarcations of Huize County’s administrative
jurisdiction

Geospatial data cloud (http://www.gscloud.cn)

Land use data Land usage statistics for the years 2000, 2010, and 2020 Geospatial data cloud (http://www.gscloud.cn)

Socio-economic statistics Statistical summary of gross regional product, population data
for 2020

Yunnan Provincial Statistical Yearbook 2022

Driving
factor

Environmental
conditions

Elevation, slope, aspect, mean annual precipitation, mean
annual temperature, distance to river

Geospatial data cloud (http://www.gscloud.cn)

Normalized Difference Vegetation Index (NDVI) Google Earth Engine (https://earthengine.google.com/)

Socio-economic
conditions

Population, gross domestic product (GDP), distance to highway,
distance to main road, distance to village, distance to district

station, distance to township station

Platform for monitoring geographic national conditions
(http://www.dsac.cn/)
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TCt
pk � Stpk × Ωt

pk × Inertiatk × 1 − sck′−k( ) (2)

where TCt
pk denotes the probability that image element p is

converted from initial land use type k′ to target land type k at
iteration moment t; Stpk, Ωt

pk and Inertiatk are the suitability
probability, neighborhood density and inertia coefficients,
respectively; and sck′−k denotes the conversion cost of converting
from initial land use type k′ to target land type k.

The study mainly considered 13 driving factors: elevation, slope,
slope direction, average annual precipitation, average annual
temperature, distance from highway, distance from main road,
distance from river, distance from village, distance from county
station, distance from township station, gross domestic product, and
population, and simulated the 2020 land use data with the 2010 land
use data as the base period data and checked the accuracy of the land
use data. The Kappa coefficients of natural development, economic
development, ecological priority, and harmonious development
scenarios are all 0.898. The FOM coefficient is 0.02, indicating
that the simulation effect is reasonable, and the model is usable
(Liu et al., 2023).

3.3 Habitat quality assessment based on the
InVEST model

The habitat quality model combines information on land cover
and biodiversity threat factors to generate habitat quality maps. It
ranges from 0 to 1, with larger values indicating better habitat quality

(Sallustio et al., 2017; Wang et al., 2024). Equation 3 gives the
calculation formula:

Qxj � Hj 1 − Dz
xj

Dz
xj + kz

( )[ ] (3)

where Qxj denotes the habitat quality of patch group x in land use
type j; Dxj denotes the total threat level of raster x in land use type j; z
and k are scaling factors (constants), z is a normalized constant with
a defined value of 2.5, and the k constant is a half-saturation
constant with a defined value of 0.5; and Hj is the habitat
suitability of land use type j.

Generally, natural environments are the most sensitive to
external stressors, followed by semi-artificial environments, which
are relatively less sensitive to ecological stressors. The InVEST
model divides land use into natural and manmade environments.
Construction land, as a typical human-made environment, can
reflect the threatening impacts of human activities on habitats,
ecological conditions, and biodiversity in a particularly significant
way. A certain extent of ecological destruction is also caused by
arable land, which is a semi-artificial environment. In addition, bare
rock textures and rocky desertification areas are important
indicators of rocky desertification. As a result of this analysis,
urban land, rural residential land, other construction land, paddy
fields, dry land, rocky desertification areas, and bare rock texture
were identified as threat factors. Taking into consideration the
InVEST Model User Manual and the relevant literature (He
et al., 2023; Ji et al., 2023; Huang et al., 2024b), the maximum

FIGURE 2
Flowchart.
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TABLE 2 The maximum distance, weight and spatial decay type of threat factors affecting habitat quality.

Threat factor Maximum distance/km Weight Spatial decay type

Paddy field 1 0.2 linear

Dry land 1 0.2 linear

Urban land 5 1 index

Rural residential land 3 0.8 index

Other construction land 6 1 index

Bare rock texture 1 0.7 linear

Rocky desertification 4 0.2 index

TABLE 3 Habitat suitability and sensitivity of different land use types to threat factors.

Level
1 land use
type

Level
2 land
use type

Habitat
suitability

Threat factor

Paddy
field

Dry
land

Urban
land

Rural
residential
land

Other
construction
land

Bare
rock
texture

Rocky
desertification

Arable land Paddy field 0.6 0 1 0.5 0.6 0.5 0.3 0.2

Dry land 0.3 1 0 0.6 0.7 0.6 0.5 0.3

Woodland Woodland 1 0.6 0.6 0.5 0.4 0.8 0.1 0.8

Low wood 0.9 0.6 0.7 0.8 0.4 0.7 0.3 0.8

Open
woodland

0.7 0.6 0.9 0.9 0.8 0.7 0.2 0.7

Other
woodland

0.7 0.7 0.7 0.8 0.7 0.7 0.2 0.6

Grassland High-cover
grassland

0.8 0.8 0.8 0.4 0.5 0.5 0.1 0.2

Medium-
cover
grassland

0.7 0.8 0.8 0.6 0.7 0.4 0.2 0.2

Low-cover
grassland

0.6 0.9 0.7 0.6 0.7 0.4 0.2 0.1

Body of water Rivers and
canals

0.8 0.3 0.2 0.3 0.3 0.6 0.5 1

Lake 0.9 0.2 0.2 0.3 0.3 0.6 0.5 1

Reservoir pit 0.7 0.2 0.2 0.3 0.3 0.4 0.5 1

Permanent
glacial snow

0.1 0 0 0.7 0.6 0.6 0.2 1

Mudflat 0.6 0.3 0.2 0.7 0.2 0.1 0.3 1

Construction
land

Urban land 0 0 0 0 0 0.2 0.6 0

Rural
residential
land

0 0 0 0.1 0 0.7 0.6 0

Other
construction
land

0 0 0 0.7 0.6 0 0.7 0

Unused land Bare rock
texture

0.1 0 0.1 0.8 0.9 0.6 0 0.1
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impact distance and weight of each threat source factor (Table 2) as
well as the suitability and sensitivity to stressors of different habitat
types (Table 3) were determined. Huize County habitat quality levels
were categorized into five categories: low (0.0–0.2), lower (0.2–0.4),
medium (0.4–0.6), higher (0.6–0.8) and, high (0.8–1.0).

3.4 Spatial autocorrelation analysis of
habitat quality

Spatial autocorrelation reflects the correlation between a specific
geographical phenomenon or a specific attribute value on a regional
unit and the same phenomenon or attribute value on neighboring
regional units. It is a measure of the degree of aggregation of values
in a spatial domain, and Moran’s I index is commonly used to
measure the interrelationships between spatial elements (Zhang L.
et al., 2023). In this study, the spatial distribution characterization of
habitat quality in the case site will be carried out using GeoDa 1.22.
Spatial autocorrelation is divided into global spatial autocorrelation
and local spatial autocorrelation. As shown in Equations 4 and 5, the
formulas are as follows:

Global Moran’s I index formula:

I � n∑n
i�1
∑n
j�1
Wij xi − �x( ) xj − �x( )/∑n

i�1
∑n
j�1
Wij∑n

i�1
xi − �x( )2 (4)

Local Moran’s I index formula:

Ii �
xi − �x( )∑n

j�1
Wij xj − �x( )

∑n
j�1

xj − �x( )2/n (5)

where n refers to the number of detection values; xi, xj refer to the
spatial location of detection values i and j; wij refers to the spatial
location relationship between i and j. When they are adjacent, wij =
1, and when they are not adjacent, wij = 0.

3.5 Geodetector

Geodetector is a statistical method proposed by Wang et al. to
detect spatial heterogeneity and reveal the driving factors behind it.
The dependent variable Y (habitat quality) and independent
variables X (land use type, precipitation, air temperature,
elevation, population density, slope, and NDVI) were selected for
analysis. In this study, factor detectors and interaction detectors
were used to explore the drivers of spatial differentiation in habitat
quality in 2020. Factor probes are measured by the q-value metric.
According to Equation 6, the formulas are as follows (Li Y.
et al., 2023):

q � 1 −
∑L
h�1

Nhσ2h

Nσ2
(6)

where the value range of q is [0, 1], which indicates the explanatory
power of the independent variable X on the dependent variable Y. A
larger value indicates a stronger explanatory power and vice versa a
weaker one; L is the number of partitions or classifications of the

factor; Nh and N are the number of cells in h and the whole region,
respectively; and σ2h and σ2 are the variance of the values of Y in h
and the whole region, respectively. The interaction detector
determines the enhancing or weakening effect of two
independent variables on the dependent variable Y by identifying
the interaction between them. The following five categories are
included: nonlinear attenuation, one-factor nonlinear attenuation,
two-factor enhancement, independent and nonlinear enhancement.

4 Results

4.1 Characteristics of spatial and temporal
land use changes in Huize County

4.1.1 Changes in land-use types
From Figure 3, grassland is the primary land use type in Huize

County (50.25%). Forest land is the second most prevalent (32.59%),
of which medium-coverage grassland and sparse forest land
accounted for the largest proportion, 34.21% and 18.96%,
respectively; other land use categories represented a lesser
percentage. The area of forest land in Huize County increased
the most from 2000 to 2020, amounting to 8,650.89 hm2,
followed by construction land and water; grassland area
decreased the most, with 10,113 hm2, followed by cropland, with
a decrease of 1,564.15 hm2. Spatially, the greatest land use change
occurred in the northwestern part of Huize County.

4.1.2 Land use transfer matrix
High-cover grassland was the most converted in Huize County

from 2000 to 2020, mainly to medium-cover grassland (Figure 4C).
This was followed by dryland, primarily transformed into open
woodland, high-cover grassland, and medium-cover grassland.
With an area of 88,594.56 hm2, medium-cover grassland has
been transported in the biggest amount, which is consistent with
the transformation trend from 2000 to 2010 (Figure 4A), and the
change in land types from 2010 to 2020 is more complicated,
indicating that it has been greatly influenced by human activities
during this decade (Figure 4B).

The area of other construction land increased the highest
between 2000 and 2020 (93.8%), followed by urban land (69.6%),
which was mainly converted to paddy land; other construction land
was converted at the fastest rate (79.6%), and it was converted to
rural settlements with 171.28 hm2, followed by high-covered
grassland, and then converted to medium-covered grassland with
71,026.61 hm2, a decrease of 56.3%. Urban land occupation of paddy
fields is concentrated in urban areas; medium-coverage grassland
and other construction land occupations of high-coverage grassland
are mainly set in urban areas and the northwest, and the distribution
of other areas is scattered, which coincides with the rocky
desertification area of Huize County (Figure 3).

4.1.3 Forecasts of alterations in land utilization by
2030 and 2040 under different scenarios

Under all four scenarios, as shown in Figure 5, the area of
construction land will continue to rise. Under the NDS, reservoirs
pits and ponds and other construction land have the largest area of
growth, and all other land types have the same trend of change as in
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2010–2020, except for other woodland, high-cover grassland, and
mudflat; the remaining land types’ trends under the EDS are the
same as those under the NDS, except for the decrease of permanent

glacier snow; under the EPS, the area of shrub forests and sparse
woodlands increases, and the area of shrub forests in 2030 rises to
49,409.64 hm2, and in 2040 further grows up to 49,491.99 hm2, and

FIGURE 3
Land utilization and alterations in Huize County between 2000 and 2020.

FIGURE 4
Land use changes in Huize County between 2000 and 2020. (A) 2000–2010. (B) 2010–2020. (C) 2000–2020.
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the area of open forest land increases to 112,961.52 hm2 in 2030 and
further increases to 113,693.31 hm2 in 2040, which is consistent with
the expectation of environmental prioritization and sustainable
development, the area used for urban and other construction
slows down, while the area of rural communities grows at a
slower rate; in the HDS, the 2030–2040 are all in the same trend
as in 2010–2020.

4.2 Features of temporal and spatial
variations in Huize County’s habitat quality

4.2.1 Spatial and temporal variations in
habitat quality

The average values of habitat quality in Huize County in 2000,
2010, and 2020 were 0.6922, 0.6814, and 0.6795, respectively, with an
average level of habitat quality and an overall declining trend. The
area of the area with no change in habitat quality level from 2000 to
2020 stands for 88.00%, while the shrinking area accounted for
5.51%, and the expanding area accounted for 6.49%. The area of low
habitat quality area increased by 1948.32 hm2, accounting for 0.33%;
the area of lower habitat quality area decreased by 632.52 hm2,
accounting for 0.1%; the area of medium habitat quality area
decreased by 1,721.7 hm2, accounting for 0.29%; the area of
higher habitat quality area accounted for the largest share and

decreased, with a total decrease of 6,751.53 hm2, accounting for
1.13%; the area of higher habitat quality area increased by
6,991.02 hm2, accounting for an increase of 1.19%. In some parts
of the region, high-HQ areas are increasing because of ecological
conservation efforts. Nonetheless, the increase in low-HQ areas and
the decrease in low, lower, andmedium habitat quality areas indicate
that the ecological environment is still undergoing serious
challenges.

The spatial pattern of habitat quality in Huize County is
characterized by the distribution of low in the urban area, high in
the periphery, low in the southwest, and high in the northeast
(Figure 6). The low habitat quality level is mostly concentrated on
urban land, rural settlements, and other construction land. There
is a significant decline in habitat quality in the center of the
county. This is largely due to the expansion of urban land uses,
changing the surrounding land use types, and causing increased
harm to habitat. Areas where woodlands and grasslands are
located are mostly in high as well as higher levels of habitat
quality due to little anthropogenic impacts. Habitat quality
declined the most around the urban area from 2000 to
2020 and improved in the northeast. Judging from the
changes in habitat quality at all levels, the management of
rocky desertification in Huize County has had a slight effect.
However, ecological and environmental protection still needs to
be strengthened.

FIGURE 5
Huize County land use simulation prediction map for 2030 and 2040 under several scenarios.
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4.2.2 Habitat quality projections for 2030 and
2040 under different scenarios

The findings indicate the spatial arrangement of habitat quality
in Huize County in 2030–2040 under the four scenarios is basically
the same as that in 2000–2020, as depicted in Figure 7. Under the
four scenarios of NDS, EDS, EPS, and HDS, the mean habitat quality
by 2030 was 0.6793, 0.6793, 0.6800, and 0.6794, respectively, and by

2040 was 0.6787, 0.6784, 0.6798, and 0.6786, respectively. In the
different scenarios for 2030 and 2040, there are differences in the
average HQ of Huize County. Except for the EPS, habitat quality in
urban areas under the other three scenarios showed a decreasing
trend. Overall, decreasing HQ level mainly occurs in urban areas and
areas where construction land is concentrated under the four
scenarios. In contrast, increasing habitat quality mainly occurs in

FIGURE 6
The habitat quality of Huize and its regional distribution between 2000 and 2020.
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natural ecological habitats such as paddy fields, grasslands, and
woodland types. In all four scenarios, the proportion of land area
with unchanged habitat quality level is relatively high, above 97%.
According to the four scenarios, the mean habitat quality is EPS >
HDS > NDS > EDS. The area of low habitat quality areas increased
by 0.11% under NDS between 2020 and 2040. This can be attributed
to the fact that, under the state of nature, urbanization is
continuously expanding the urban area, converting a significant
portion of natural habitats, such as croplands and woodlands, into
construction areas. Rapid economic development is accompanied by

the rapid expansion of industrial scale and accelerated urban
expansion, which results in an increase of 0.14% in low habitat
quality areas under EDS. Under EPS, the lowest percentage of
habitat quality decline occurred, and the highest percentage of
habitat quality improvement occurred. The area of low habitat
quality decreased, while the areas of higher habitat quality and
high habitat quality areas increased by 0.06% and 0.08%,
respectively. Under HDS, the area of low habitat quality areas
increased by 0.12%, which is in the same range as NDS and
EDS. In terms of habitat quality conditions and changes in each

FIGURE 7
Huize County’s habitat quality prediction and spatial distribution under several scenarios.

FIGURE 8
Huize County global spatial autocorrelation analysis of habitat quality. (A) 2000. (B) 2010. (C) 2020.
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scenario, the EPS is most favorable to habitat quality in Wheeler
County, and the EDS is the most threatening to habitat quality.

4.2.3 Analysis of spatial autocorrelation in
habitat quality

The study established a grid system with cells of 1 km × 1 km and
computed the average habitat quality for each individual cell. Spatial
autocorrelation analyses were conducted on the distribution patterns of
habitat quality in 2000, 2010 and 2020, and the results showed that the
global Moran’s I indicator of habitat quality in Huize County was 0.471
(Figure 8A), 0.453 (Figure 8B), and 0.457 (Figure 8C), respectively,
which passed the significance test, indicating that habitat quality in
Huize County has a strong positive spatial correlation and that the
characteristics of spatial aggregation are relatively stable.

The results of LISA cluster plot analysis for Huize County in 2000
(Figure 9A), 2010 (Figure 9B), and 2020 (Figure 9C) show that the
habitat quality is categorized into five distinct classifications. It can be
concluded that habitat quality in Huize County is characterized by H-H
and L-L clusters, which indicates a positive spatial autocorrelation. H-H
clusters are found in grassland and woodland areas that have higher
habitat quality, and L-L clusters are distributed around the construction
land with poorer habitat quality. According to the statistical data on the
quantity of grouped grids, it can be concluded that the number of H-L
grids increased from 2000 to 2020, and the number of H-H, L-L, and
L-H grids continued to decrease.

4.3 Examination of the variables affecting
the spatial variation in Huize County’s
habitat quality

4.3.1 Driver one-factor detection analysis
From the factor explanatory power q-value (Figure 10), Land use

type (X1) >NDVI (X7) > Elevation (X4) >Air temperature (X3) > Slop

(X6) > Population density (X5) > Precipitation (X2) in the degree of
explanation of habitat quality of the impact factors in 2020. All results of
the habitat quality driver detections passed the significance test of p <
0.05. Among them, 0.701 is the driving force of land use. This is the
dominant factor affecting habitat quality, indicating the environmental
impact of human activity. There are several land uses that affect habitat
quality, including cropland, woodland, grassland, and construction
land; areas that contain a higher proportion of woodland and
grassland areas are rated higher for habitat quality; Changing areas
of construction land are useful indicators of urbanization and
expansion, as construction land and cropland may result in a lower
habitat quality rating when they are combined with cropland. NDVI

FIGURE 9
Localised spatial autocorrelation analysis of habitat quality in Huize County. (A) 2000. (B) 2010. (C) 2020.

FIGURE 10
Single factor detection results.
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follows with a driving force of 0.211. The NDVI can be viewed as a
vegetation factor, and vegetation can effectively sequester carbon and
reduce soil erosion when growing in a suitable environment. The third
strongest driver of habitat quality was elevation at 0.158. This indicates
that changes in elevation may lead to changes in temperature,
precipitation, and vegetation type. These changes directly affect
species distribution and ecosystem structure. Temperature (0.121),
slope (0.116), population density (0.113), and precipitation (0.108)
were less powerful drivers but also contributed to habitat quality to
some extent. Temperature and precipitation influence the growth of
vegetation and the control of soil erosion by affecting water supply and
evapotranspiration. Slope, which represents topography, can affect
habitats by regulating ecological conditions such as surface
temperatures and water storage capacities. Density of the population
is an important indicator of human activity, and its level is related to the
degree to which natural habitats are disturbed by human activity.

4.3.2 Driver interaction factor detection analysis
As shown in Table 4, the interactions between the drivers were all

non-linearly enhanced and two-factor enhanced. Except for the
interactions between land use and the other five drivers, population
density and slope, population density and NDVI, all factors increased
nonlinearly with one another, whichwere two-way augmented, with the
two-way augmentation being greater than the nonlinear augmentation.
Land use and other factor drivers exceeded 70%. These findings suggest
that the kind of land use is the primary factor influencing the quality of
the habitat. The kind of land use and the other variables interact
strongly. Temperature ∩ slope (0.466), elevation ∩ slope (0.432),
precipitation ∩ elevation (0.408), and elevation ∩ NDVI (0.462)
were all greater than 0.4, and the two-factor interactions were
enhanced to varying degrees, indicating that habitat quality was
affected by multifactor interactions.

5 Discussion

5.1 Multi-scenario predictive assessment of
land change and habitat quality

Although the application of the InVEST-HQ model has been
relatively widespread (Chen C. et al., 2023; Yohannes et al., 2021;
Yang et al., 2018), it is mostly an assessment of the historical status
quo of habitat quality in the whole region, and there is insufficient

research on the simulation and prediction of future multi-scenarios,
which makes it difficult to meet the needs of spatial governance in
the new era. The karst region of eastern Yunnan is an important
socio-economic and ecologically fragile area (Zhang et al., 2024a),
playing an important role in economic development and
biodiversity conservation strategies (Zhao Z. et al., 2023), but
literature involving habitat quality in the region is relatively rare,
and in-depth exploration of the evolution mechanism and
prediction and assessment of habitat quality in the region is
needed to provide scientific reference for ecological and
environmental governance and protection of karst land, as well
as for the promotion of regional high-quality development. In this
paper, changes in land use and habitat quality in Huize County from
2000 to 2020 are studied. The future evolution of land use patterns
and habitat quality was analyzed in depth using the InVEST and
FLUS models. The rate of decline in habitat quality slowed down
from 2010 to 2020, and since the comprehensive management
project of rocky desertification in karst areas was initiated by the
state in 2008, the project has had a significant positive impact on the
ecological environment of Huize County. However, despite the
progress made in the management of rocky desertification areas
in the county, it faces many challenges (Zhang G. et al., 2023).
Among them, the large size of the rocky desertification area, coupled
with the complex natural conditions and more prominent
anthropogenic interference factors, has led to enormous
difficulties in governance (Wang Y. et al., 2023). The areas with
the worst habitat quality are built-up areas and agricultural areas,
which is consistent with the findings of Zhang and Chen (2022) on
the pattern of habitat quality in their study area, and the main reason
may be that development activities such as land development,
resource extraction, and industrial production have caused
serious damage and pollution to the ecological environment,
which triggered the loss of biodiversity and the decline of
environmental quality (Yang H. et al., 2023). To improve habitat
quality, land use planning and management must be further
strengthened. Scientific and reasonable land use methods need to
be adopted to minimize the negative impact on the ecological
environment (Chen X. et al., 2023; Ma et al., 2023). The extent
of urbanized land increased under all four scenarios projections,
indicating that human activities have significantly changed land
types through urbanization, agriculture, industry, infrastructure
development, tourism development, and policy planning (Luan
et al., 2023). Among the four scenarios, compared with the other

TABLE 4 Habitat quality driver interaction detection results.

Factor Land use type Precipitation Air temperature Elevation Population density Slope NDVI

Land use type 0.7011

Precipitation 0.7500* 0.1079

Air temperature 0.7274* 0.2561 0.1211

Elevation 0.7607* 0.4080 0.3120 0.1577

Population density 0.7265* 0.2539 0.2758 0.3010 0.1132

Slope 0.7593* 0.2877 0.4653 0.4329 0.1907* 0.1156

NDVI 0.7505* 0.3579 0.38033 0.4619 0.3066* 0.3352 0.2106

Note: The addition of * indicates that the interaction of the two factors is a two-factor enhancement, and the absence of this indicates a nonlinear enhancement.
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three scenarios, the EPS is the most effective for ecological
restoration in Huize County, which aligns with the findings
reported by Fu Shaotong and colleagues (Fu et al., 2024), in
which the area of scrub forests and sparse forested land increases
and the area of urban and other built-up land decreases due to the
fact that the focus is on the preservation and restoration of
ecosystem functions in this scenario. This scenario can enhance
the ecosystem’s stability and improve resistance to external
pressures such as natural disasters and climate change (Zhang
et al., 2017). It can also help protect the urban and rural
ecological environment. It can promote sustainable development,
encourage the establishment of ecological civilizations and
sustainable green development, and maximize environmental
benefits (Li et al., 2019). Consequently, more eco-friendly land
use and resource management policies are adopted to reduce
human activity’s impact on the ecosystem (Hou and Wu, 2024;
Zhao L. et al., 2023). The biggest factor affecting habitat quality is
land use type, which aligns with the discoveries made by Xie and
Zhang (2023), as different land use types may bring different
ecological pressures and resource utilization methods, which have
significant effects on habitat quality. The results suggest that natural
factors play a key role in habitat quality. Economic factors also
significantly regulate and influence habitat quality (Li et al., 2022).
Therefore, the synergistic effect between the factors should be
considered comprehensively (Zhang et al., 2024b).

5.2 Research on mechanisms affecting
habitat quality

Geodetector, a powerful tool in spatial analysis, was used in this
study to effectively reveal geographical heterogeneity and identify
differences in factors’ influence on target variables in different
regions (Huang et al., 2021; Wang X. et al., 2023). This is done by
quantifying the contribution of factors to geographic phenomena and
spatial differentiation. In this study, seven factors, namely, land use type,
precipitation, air temperature, elevation, population density, slope, and
NDVI, were selected as driving factors to explore their influence onHQ
in Huize County. These factors can have a direct impact on habitat
resource availability and ecological stability, which in turn impacts HQ.
Different types of land use can impact HQ in different ways. Land use
type showed the strongest influence in single-factor exploration,
indicating its significant effect on habitat quality spatial
differentiation (Yue et al., 2024). Land use change is often the main
driver of habitat quality change, especially in areas strongly disturbed by
human activities (Yang L. et al., 2023; Liu et al., 2022). As a secondary
influence, NDVI can indicate the health of ecosystems, in which high
values are associated with healthy ecosystems. Changes in it can indicate
how human activities influence HQ. Topographic factors modulate HQ
spatial distribution to some extent. In addition, they may indirectly
influence habitat quality by influencing climatic conditions and
biodiversity (Ma et al., 2024). In addition to single-factor analyses,
Geodetector played a crucial role in revealing interactions between
multiple factors and quantifying their effects on spatial distribution
(Zhang S. et al., 2023). This is an invaluable advantage in understanding
complex geographical processes. It contributes to a more
comprehensive understanding of spatial phenomena where multiple
factors come together (Guo et al., 2022). In the interaction detection, the

interaction between land use type and other factors showed the largest
effect. This indicates that the combined effect of land use and natural
factors such as climate and topography have a more complex and far-
reaching impact on habitat quality. Increasing construction land may
fragment habitats, which will increase the effects of precipitation and
temperature changes on species survival (Liu et al., 2022). In addition,
topographic structures, such as elevation and slope, act in synergy with
land use types to influence erosion patterns, runoff patterns, and soil
fertility, further complicating habitat management. As a result,
interactions between different factors exceed simple additive effects
(Guo et al., 2022). They enhance the overall impact of individual factors
on HQ through the interplay of complex ecological mechanisms.
Different types of land, such as grasslands and woodlands, were
considered to improve HQ in the study area. A single factor,
precipitation, had a marginal effect on HQ. However, the interaction
with elevation had a significant effect, indicating that a number of
factors interact to determineHQ (Wang Y. et al., 2023). This interaction
effect reflects the synergy between human activities and the natural
environment (Zhang et al., 2024a). It further emphasizes the need to
consider multiple factors and their interactions comprehensively when
carrying out habitat quality assessment and ecological conservation
planning to develop more effective conservation strategies (Lv
et al., 2023).

5.3 Recommendations for optimizing HQ

5.3.1 Restructuring of land use types
Based on the study on the dynamic evolution of land use and its

corresponding changes in habitat quality, decreasing the occupation
of ecological land near construction sites, such as forest, grassland,
and water, as well as slowing down the expansion of construction
sites, will result in higher HQ improvements in the study area
(Zhang et al., 2022; Wu Z. et al., 2022). First, optimizing land use can
improve the allocation of industrial space more rationally, reducing
overreliance on construction land for economic development and
minimizing environmental impact (Zhang et al., 2020).
Additionally, reducing urban and construction encroachment on
ecological land (e.g., forest lands and grasslands) can protect the
ecosystem and maintain the region’s ecosystem balance (Zhou et al.,
2020). Based on the simulation projections, construction land will
continue to grow in all four scenarios between 2030 and 2040. Thus,
Huize County should implement the forest and grassland protection
system firmly based on strict control of the uncontrolled expansion
of construction land in the upcoming round of planning.

5.3.2 Ecological restoration of low HQ areas
Considering areas with lowHQ and areas with declining HQ under

scenario modeling, adhere to an ecological priority and green
development strategy (Song et al., 2020). Mountain, water, forest,
field, and lake protection and restoration must be continuously
promoted, and a reasonable ratio of construction land to green
space and ecological reserves should be allocated for construction in
newly renovated built-up areas (Gao et al., 2022). By scientifically
dividing functional zones, industrial, residential, and commercial land
uses are ensured not to encroach excessively on ecologically sensitive
areas, especially wetlands, forests, and other areas with ecological
significance (Chen et al., 2024). Green belts, pocket parks, and
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ecological corridors are among the green infrastructure to be
constructed. Providing habitat connectivity, improving air quality,
improving quality of life, and enhancing biodiversity in urban areas
(Li et al., 2024; Zhang et al., 2024). Establish artificial afforestation and
grass plantings to protect slopes, with special attention to drought and
barren-resistant plant species, such as Amorpha fruticosa, Caragana
korshinskii, Hippophae rhamnoides, etc., The use of biotechnology and
engineering techniques enhances the fertility and water retention of
soils, as well as promoting the growth of vegetation.

5.4 Limitations

In this study, 13 driving factors were identified, including elevation,
slope, and aspect, from natural environmental and socio-economic
factors to be input into the FLUS model. The lack of soil data in the
model led to it ignoring soil characteristics when predicting land use
changes, thereby affecting the accuracy and spatial heterogeneity of land
use simulation. This weakened themodel’s predictive ability. Soil type is
a crucial factor in determining land suitability and influences land use
type. In subsequent studies, soil data will be introduced and model
parameters adjusted in order to improve the model. It is urgent to
implement these improvements, as they will significantly enhance the
accuracy and reliability of the model’s predictions and its effectiveness
in land resource management and planning.

The InVEST model parameters were determined through
parametric references to relevant literature and expert advice (Xiang
et al., 2023), whichmay be applicable and reliable in their original study
context. However, environmental conditions, ecological processes, and
land-use practices may vary significantly across ecosystems and
geographical regions, and the direct application of these parameters
may ignore ecological characteristics and geographical differences
between regions. This uncertainty may affect decision-makers
assessments of ecosystem services and the effectiveness of
management options, thus limiting the generalizability and reliability
of the model for application in different regions. Future research should
incorporate corrections based on this study with field sampling data to
improve model parameter localization.

6 Conclusion

This paper uses InVEST (Integrated Valuation of Ecosystem
Services and Tradeoffs) and FLUS (Fuzzy Land Use Simulation)
models, which are widely used in environmental research, to
compare and analyze the results of the predictive simulation of
habitat quality in Huize County under four scenarios and the
analysis of influencing factors, and draws the following conclusions:

(1) Medium-cover grassland and sparse woodland account for the
largest proportion of land in Huize County. From 2000 to 2020,
the land area designated for construction in Huize County
experienced progressive growth. Most urban and rural
settlement land is transformed from agricultural land
(especially paddy fields). To change the land use structure,
the return of farmland to forests, the cultivation of
plantations, and the priority protection of grasslands and
woodland patches are important measures.

(2) Huize County habitat quality has seen a consistent decline
from 2000 to 2020. The spatial pattern exhibits a
distribution characterized by low values in the urban
area, high values in the periphery, low values in the
southwest, and high values in the northeast. EPS and
HDS are the optimal approaches for safeguarding
habitat quality. As economic development is being
promoted, it is important to take measures to ensure
ecological protection, increase investment in ecology,
and ensure the sustainability of ecosystems to minimize
adverse environmental impacts.

(3) The habitat quality in Huize County is a complex issue,
influenced by a confluence of natural and economic
factors. Among these, the type of land use, elevation, and
temperature stand out as the three variables with the most
significant effects on habitat quality. Understanding and
addressing these factors is crucial for any efforts to
improve habitat quality. Ensure that land-use planning is
strengthened, particularly in areas of mining and agricultural
development, to protect ecosystems.
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