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As rapid urbanization challenges urban ecosystem stability, understanding the
relationship between manufacturing agglomeration (MA) and urban ecological
resilience (UER) has become increasingly critical. This study examines how MA
influences UER in China’s Yangtze River Delta region, employing dynamic spatial
panel models to analyze prefecture-level panel data from 2003 to 2020. Our
findings reveal an inverted U-shaped relationship between MA and UER, with
significant spatial spillover effects. Specifically, moderate levels of MA enhance
UER through improved resource efficiency and technological innovation, while
excessive agglomeration leads to environmental degradation. The study also
identifies green technological innovation as a critical mediatingmechanism in this
relationship. These findings contribute to theoretical understanding and policy
formulation for sustainable urban development.
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1 Introduction

Rapid urbanization has put tremendous pressure on urban ecosystems (Grimm et al.,
2008), with recent studies highlighting the increasing environmental challenges posed by
industrial development and technological changes (Zhao et al., 2024; Chen et al., 2024). This
pressure has made urban areas increasingly vulnerable to environmental disturbances,
affecting their ecological stability and development sustainability (Li et al., 2022). Complex
urban ecological resilience (UER)—the ability to absorb, adapt to, and recover from shocks
while maintaining key functions (Meerow et al., 2016)—is shaped by ecological factors and
socioeconomic structures and processes (Folke et al., 2010). Enhancing UER has thus
become a critical challenge for sustainable urban development worldwide (Bai et al., 2018).

Among the various socioeconomic factors influencing UER, the spatial concentration of
industrial activities, particularly manufacturing agglomeration (MA), has garnered
increasing scholarly attention (Wang and Zhou, 2021). This attention stems from the
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complex and often contradictory effects of MA on urban
environments. On the one hand, MA can generate negative
externalities through pollution and resource depletion, potentially
undermining the resistance and recoverability of urban ecosystems.
On the other hand, MA may foster positive effects through
knowledge spillovers and technological innovations, potentially
enhancing cities’ adaptability to environmental challenges. The
interplay between these competing forces necessitates a nuanced
understanding of the MA-UER relationship.

The Yangtze River Delta region (YRDr) presents a compelling case
study to examine this relationship. As a pioneer of China’s economic
development, the YRDr accounts for a quarter of the country’s total
economic output and stands as one of China’s most economically
vibrant, globalized, and innovative regions. However, the rapid
expansion of manufacturing activities has significantly pressured the
region’s ecological environment. This challenge has gained particular
salience, given the Chinese government’s increasing emphasis on
promoting ecological civilization and high-quality development (State
Council of China, 2019). The Outline of the Plan for the Integrated
Development of the YRDr, issued by the Central Committee of the
Communist Party of China (CPC) and the State Council in 2019,
explicitly prioritizes ecological protection and emphasizes strengthening
the ecological foundation for green development.

Understanding the relationship between MA and UER is crucial
for promoting sustainable development in the YRDr. However,
existing empirical evidence on this relationship remains
inconsistent and inconclusive. Moreover, while previous studies
have examined various aspects of MA and environmental
impacts, few have systematically investigated the spatial spillover
effects and underlyingmechanismsMA influences UER, particularly
in rapidly developing regions like the YRDr.

This research makes several contributions to the literature. First,
by focusing on the YRDr, we comprehensively analyze MA’s impact
on UER in a region that exemplifies the challenges and opportunities
of balancing industrial development with ecological resilience.
Second, we employ dynamic spatial panel models to examine
both the short-term and long-term effects of MA on UER. This
methodological approach allows us to capture the complex temporal
and spatial dimensions of the MA-UER relationship. Finally, we
investigate the mediating role of green technological innovation in
the MA-UER relationship, offering insights into the mechanisms
through which industrial agglomeration might contribute to
environmental sustainability.

The findings of this study have important implications for
regional development policies and environmental governance. By
understanding how MA affects UER through various channels and
across different spatial scales, policymakers can better design
interventions that promote industrial development while
enhancing urban ecological resilience. This is particularly relevant
for regions like the YRDr seeking to achieve high-quality,
sustainable development in an increasingly complex economic
and environmental landscape.

2 Related literature review

Regarding the theoretical connotation of ecological resilience, in the
early 21st century, Holling pioneered the idea of resilience into social-

ecological system research, defining it as the ability of social-ecological
systems to cope with external perturbations and to improve system
functions (Holling, 1973). With the gradual extension of related
research from natural ecology to human ecology, the idea of
resilience has also been expanded to the urban field, and in general,
a certain consensus has been reached on the definition of UER, which
includes the coordination and organizational capacity of the urban
system itself and its ability to resist and recover from external uncertain
risks. Since then, scholars around theworld have successively conducted
qualitative research on ecological resilience in terms of development
mechanisms, paths and influencing factors (Meerow et al., 2016; Wang
et al., 2018; Wang et al., 2024a), and have made a comprehensive study
on the theoretical framework ofUER (Adger, 2000; Li andWang, 2023),
comprehensive measurement, driving mechanisms and barriers (Fu
et al., 2023) have been studied.

At present, academic research on MA has been relatively affluent.
Academics have investigated the connection between MA and local
environmental development and green efficiency from several angles
(Zheng and Lin, 2018; Wang et al., 2024b; Wu et al., 2024a). Some
studies have argued that MA brings congestion effects (Andersson and
Loof, 2011; Lu et al., 2021) and exacerbates environmental pollution in
the region (Verhoef and Nijkamp, 2002). Through spatial spillover
effects, the surrounding cities’ manufacturing sector will impact any
city’s MA and environmental pollution. Agglomeration and
contamination of the environment through spatial spillover effects in
adjacent cities (Cheng, 2016). On the other hand, some research offers
an alternative perspective, contending that MA can enhance
environmental contamination (He, 2006; Zeng and Zhao, 2009) and
foster innovation through the diffusion of information and technology,
ultimately leading to an improvement in environmental quality (Dong
et al., 2012). In addition, studies on the dual role of the agglomeration
effect and the crowding effect of MA, and regional environmental
development present a non-linear relationship. There is an apparent
inverted “U” curve relationship between MA and regional
environmental pollution (Wang and Wang, 2019) and a positive
“U” relationship with urban green efficiency (Yuan et al., 2020).

In conclusion, despite the fruitful results of relevant studies focusing
on MA and UER, only some have included MA and UER in the same
analytical framework. In addition, existing studies havemainly analyzed
at the provincial level. Therefore, considering the region’s comparative
advantages,more studies and analyses of UER at the prefecture-level are
needed. In addition, existing studies have analyzed the impact ofMAon
UER in the region from a single perspective, without including the
utility of MA’s impact on UER in the surrounding regions. The
empirical results of this paper provide a new empirical basis for the
current YRDr to promote the cooperation between ministries and
provinces in amore targeted way from its advantages and also provide a
new reference for government departments to make full use of the
collaboration between ministries and provinces to drive the sustainable
development of the region in the new period.

3 Conception framework

3.1 Direct effect of MA to influence UER

MA refers to the high concentration of manufacturing and
relevant industries in a geographical region. The theoretical
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foundation for understanding its impact on urban ecological
resilience (UER) stems from the new economic geography
theory, which emphasizes the role of agglomeration externalities
in shaping regional environmental outcomes. These externalities
manifest through scale and scope effects, creating complex dynamics
between industrial concentration and ecological resilience (Hong
et al., 2020).

The primary mechanism through which MA influences UER
operates via several interconnected channels. At the
infrastructure level, enterprises within agglomerated areas can
share common facilities and services, promoting the
development of local supporting industries while reducing
fixed-cost investments and production costs. This shared
resource utilization enhances economic efficiency and
significantly impacts environmental management through
coordinated infrastructure development. Moreover, MA affects
regional development through external economies of scope,
facilitating the division of labour and collaboration among
enterprises. This collaboration leads to reorganising and
optimising regional production systems, elevating
specialization levels and potentially supporting more effective
environmental practices through improved coordination and
resource optimization. However, expanding production scale
and increased enterprise productivity associated with rising
MA levels can lead to heightened energy consumption,
potentially compromising regional environmental quality.
Therefore, understanding the degree of MA is crucial when
analyzing its effects on UER.

The relationship between MA and UER demonstrates distinct
characteristics across different development stages, suggesting a
non-linear pattern. Enterprises prioritize economic benefits over
environmental quality in regions with low MA levels, implementing
individual and often inadequate pollution treatment activities. This
fragmented approach to environmental management results in
suboptimal outcomes, where adverse environmental impacts
outweigh the positive externalities of scale economies,
technological spillovers, and knowledge sharing. During this
initial phase, the environmental burden is exacerbated by limited
investment in environmental protection infrastructure, inefficient
resource utilization due to lack of coordination, and the
predominance of energy-intensive, highly polluting
production processes.

As MA reaches more advanced stages, several transformative
mechanisms emerge to enhance UER. The industrial structure
gradually shifts from energy-intensive and highly polluting heavy
industries toward technology-intensive, green, and intelligent
manufacturing. This structural transformation is driven by
increased competition, enhanced innovation capabilities through
knowledge spillovers, and greater availability of specialized services.
Higher agglomeration levels facilitate more sophisticated
environmental management practices through collective
infrastructure development, shared monitoring systems, and
coordinated pollution control efforts. The concentration of
economic activity also enables the development of industrial
symbiosis and circular economy practices, leading to more
efficient resource utilization and improved environmental
performance.

3.2 Mediating effect of MA to influence UER

Green Technology Innovation (GTI) is defined as innovative
technologies, processes, or products designed to mitigate pollutant
emissions and optimize energy consumption (Lv et al., 2021; Bai
et al., 2023). In recent years, digital transformation has significantly
enhanced the development of GTI (Wu et al., 2024b), making it a
critical component in global environmental governance and
sustainable development (Lin et al., 2023; Jiao et al., 2023). By
incorporating digital technologies and green innovations, GTI aims
to substantially reduce environmental risks and maximize resource
utilization efficiency throughout the product lifecycle (Yua and Liub,
2022). Recent empirical evidence suggests that digital-driven GTI
has become increasingly influential in minimizing adverse impacts
on ecosystems, particularly in regions with high levels of
manufacturing agglomeration (Hu et al., 2024; Zhang et al., 2024).

The mechanism through which MA influences UER via GTI is
multifaceted. Primarily, MA engenders high-density innovation
networks that facilitate the dissemination and exchange of tacit
knowledge. This knowledge spillover effect cultivates a fertile
environment for GTI, catalyzing the innovation and diffusion of
green technologies. Furthermore, the scale economies generated by
MA enhance energy utilization efficiency and expand market
opportunities and resource availability for GTI. Empirical
evidence suggests that innovation activities exhibit heightened
intensity within industrial agglomeration zones. These economies
of scale and scope reduce green technologies’ research, development,
and implementation costs, accelerating their commercialization
trajectory.

The continuous progression of green technologies has
precipitated a structural transformation in regional industries,
characterized by a shift from low-value-added, pollution-intensive
models towards high-value-added, environmentally sustainable
practices. This transition attenuates environmental degradation
(Fan et al., 2024) and augments resource utilization efficiency,
fostering optimization and upgrading industrial structures. The
related variety theory provides a theoretical underpinning for
elucidating this phenomenon, positing that related yet
differentiated industrial structures enhance regional economic
adaptability and resilience. Propelled by GTI, traditional
industries undergo technological upgrades and green
transformations, forging complementary and synergistic
relationships with emergent green sectors. This evolution
engenders novel avenues for economic growth and bolsters
regional ecological resilience.

Through these mechanisms, GTI exerts multifaceted positive
impacts on UER. First, it stimulates the proliferation of nascent
green industries, thereby diversifying the urban industrial
landscape. This aligns with the tenets of related variety theory,
underscoring the significance of industrial structure
diversification in fortifying regional economic adaptability and
resilience. Second, GTI enhances the overall innovation capacity
of urban centers, augmenting their resilience to exogenous
shocks. Scholarly research indicates that the resilience of
regional innovation systems is instrumental in sustaining
long-term economic growth trajectories. Moreover, GTI
improves resource utilization efficiency, mitigating urban
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dependence on specific resources and enhancing urban resource
security. This phenomenon resonates with ecological
modernization theory, which emphasizes the pivotal role of
technological innovation in achieving synergistic outcomes
between environmental stewardship and economic development.

In conclusion, the intricate interplay between MA, GTI, and
UER delineates a complex yet promising pathway toward
sustainable urban development. By leveraging the
agglomeration advantages of manufacturing clusters to foster
green technological innovations, cities can enhance their
economic resilience while advancing environmental
sustainability objectives. This synergistic approach addresses
immediate environmental concerns and positions urban
economies for long-term, sustainable growth in an
increasingly resource-constrained and environmentally
conscious global context.

4 Research design

4.1 Models

4.1.1 Spatial panel model
Before proceeding with the empirical analysis, we must

address the critical statistical assumptions underlying our
spatial econometric models. First, we construct the spatial
weights matrix based on economical contiguity, Furthermore,
for model specifications, we assume that both the spatial lag
coefficient (ρ) and spatial error coefficient (λ) lie within the
interval (−1,1), which ensures model stability. Additionally,
the matrix (I − ρW) is required to be non-singular for
consistent estimation. Third, regarding the error terms, we
assume that the error terms are independent across different
regions and periods. Based on these assumptions and following
existing literature (Anselin, 1988; LeSage and Pace, 2009), we first
construct a panel data model to examine the influence of MA on
UER within the YRDr:

UERit � α0 + β1MAit + β2MA2it +∑
4

n�1
θnZnit + μn + vt + εit (1)

The subscripts i and t represent the prefecture-level cities and
the year, respectively; UERit signifies the level of urban ecological
resilience of city i;MAit andMA2it denote the degree of MA and its
squared term of city i; μn, vt are the area fixed effects and time fixed
effects respectively; Znit encompasses a set of control variables,
including urbanization level (UL), financial level (FL), population
density (PD) and primary education level (PEL); εit represents the
random error term, and α, β are the estimated coefficients of the
relevant variables.

Consider that interregional activity does not occur in isolation
and can be influenced by neighbouring areas due to interaction
effects. In addition, considering that in economic reality, UERwill be
affected by the previous period’s level, there is time inertia, and the
lag term can better overcome the endogeneity problem caused by
omitted variables. Based on this, this paper extends Formula 1 to test
the spatial spillover effect of MA using a spatial dynamic
econometric model. The model is as follows:

UERit � α0 + β0UERit−1 + ρ1∑
N

i�1
WUERit + ρ2∑

N

i�1
WUERit−1

+ β1MAit + ρ3∑
N

i�1
WMAit + β2MA2it + ρ4∑

N

i�1
WMA2it

+∑
4

n�1
θnZnit + τ∑

N

i�1
WZnit + μn + vt + εit

(2)
where ρ1, ρ2, ρ3, ρ4 and τ mean the spatial-lag coefficient of each
variable; W denotes the spatial weight, which denotes the spatial
weight matrix. In this paper, we construct the economic distance
spatial weight matrix W1 firstly and standardize it.

4.1.2 Mediating effect model
To further explore the influence mechanism of MA on UER, this

paper refers to the classic mediation effect model (Chen and Lee,
2020) to test the mediation effect of GTI in MA and UER from green
utility model patents (UtyGTI) and green invention-based
patents (InvGTI):

M � cX + e2 (3)

In the context of this analysis, the paper redefines MA as X, and
the process of GTI as M in Equation 3. To comprehensively assess
the intricate dynamics between these elements, the study integrates a
range of additional factors into the mediating effect model. These
include control variables that capture other relevant influences,
time-lagged terms of the explained variable (Y) to account for
temporal continuities, and spatial-lagged terms of all variables to
address the spatial dependencies and interactions among the units
of analysis.

GTIit � b0 + b1GTIit−1 + γ1∑
N

i�1
WGTIit + γ1∑

N

i�1
WGTIit−1 + b2MAit

+ γ3∑
N

i�1
WMAit + b3MA2it + γ4∑

N

i�1
WMA2it +∑

4

n�1
θnZnit

+ τ∑
N

i�1
WZnit + μn + vt + εit

(4)

4.2 Variable selection

4.2.1 Explained variable
Following the principles of accessibility, comprehensiveness and

comparability of the construction of the indicator system,
combining the connotation of UER and referring to the results of
previous studies (Martin and Sunley, 2015; Wu et al., 2020) this
paper is based on the resistance-adaptation-resilience framework to
construct a UER level evaluation index system in Table 1. This UER
capacity characterizes the vulnerability and sensitivity of the city
when it is impacted, the urban ecological adaptive capacity that
characterizes the level of adjustment of the city when it faces
disturbances, the urban ecological resilience capacity that
embodies the speed of recovery and the degree of restoration of
the city after experiencing perturbations, are included in the unified
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index system. Due to the different indicator units, this paper
standardizes the individual indicators and then uses the
entropy method Topsis to calculate the ecological resilience level
of each city.

4.2.2 Core explanatory variable
Since location entropy is conducive to eliminating endogenous

effects due to regional scale differences (Zheng and Lin, 2018), this
study employs location entropy to quantify the degree
of manufacturing agglomeration within prefecture-level
cities in YRDr.

4.2.3 Mediating variable
As a quantitative tool, green patent application data can more

intuitively measure the output of GTI activities (Shen et al., 2021).
Compared with the number of patents granted, the number of
patent applications reflects the current trend of technological
innovation. It allows us to examine the impact of MA on the
output of GTI activities in cities based on a more time-sensitive
perspective. Therefore, this paper uses the Wanfang Data
Knowledge Service Platform as the data source to obtain and
construct a spatiotemporal database of green patent applications
at the prefecture-level city level in the YRDr, and aggregate the total
number of green invention patents and green utility model patents
filed to assess the level of GTI, the unit of which is 1,000 pieces.

4.2.4 Control variables
To minimize the potential issue of omitted variable bias beyond the

core and mechanism variables, this study draws on relevant literature
and economic theory (Ma et al., 2024; Jiang et al., 2024), incorporating
the following control variables into the model: including urbanization
level (UL), measured by the ratio of the urban resident population to the
total resident population; financial level (FL), measured as the logarithm
of total deposits at the end of the year in regional financial institutions;
population density (PD), calculated as the logarithm of the total year-end
population of each city divided by its administrative area size; and the
primary education level (PEL): expressed as the logarithm of the number
of people enrolled in primary school. To mitigate potential
multicollinearity between MA and its quadratic term, we applied
standardization to both MA and MA2. The statistical characteristics
of the main variables are shown in Table 2.

5 Empirical research and discussion

5.1 The influence of MA on UER

5.1.1 Spatial correlation test
Before proceeding with the empirical analysis, we conduct

multicollinearity diagnostics for our model. Table 3 presents the
results of VIF (Variance Inflation Factor) tests after centering the

TABLE 1 Indicator system for the level of UER.

Target level System
level

Indicator level Indicator
properties

Weight

urban ecological
resilience

Resistance Industrial wastewater discharge (tonnes) - 0.075

Industrial SO2 emissions (tonnes) - 0.266

Industrial fume emissions (tonnes) - 0.082

Adaptation Ratio of value added in the secondary sector to value added in the tertiary
sector (%)

- 0.077

Non-hazardous treatment of domestic waste (%) + 0.076

Centralised sewage treatment plant rate (%) + 0.075

Resilience Greening coverage of built-up areas (%) + 0.039

Parkland per capita (hectares) + 0.224

Green space ratio in built-up areas (%) + 0.065

TABLE 2 Descriptive statistics.

Variables Obs Mean Std. Dev Min Max

UER 410 0.722 0.100 0.305 0.914

MA 410 0.000 1.000 −1.635 4.575

GTI 410 1.859 2.966 0.017 22.505

UL 410 0.041 0.002 0.019 0.045

FL 410 0.014 0.011 −0.008 0.050

PD 410 1.847 0.086 1.605 2.048

PEL 410 2.525 0.058 2.356 2.623

TABLE 3 Multicollinearity test.

Variables VIF 1/VIF

MA 1.98 0.505

MA2 1.66 0.603

UL 2.50 0.400

FL 4.02 0.249

PD 1.54 0.647

PEL 2.70 0.370

Mean VIF 2.40
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variables. The VIF test results suggest no severe multicollinearity
problems in the model, as all VIF values are well below the
conventional threshold of 5.

Because traditional panel econometric model estimates ignore
possible spatial spillovers, they are prone to biased error in the
results. To assess the presence of spatial correlation betweenMA and
UER, this paper employs the globalMoran’s I test. Subsequently, this
paper refers to Equations 2, 4 in turn through the LM test, the RLM
test, theWALD test and the Hausman test, and finds that all the tests
passed the significance test, so this paper adopts the fixed effects of
the spatial Durbin model (SPDM).

5.1.2 Spatial regression results
In addition to using the dynamic SPDM model, this paper reports

the FE and static SARmodels’ results. Before interpreting the results, we
verify the statistical assumptions in Section 4.1. As shown in Table 4, the
estimated spatial lag coefficient (ρ) is around 0.18 (significant at 1%
level), which lies within the stable range (−1,1), confirming our model
stability assumption. The spatial weights matrix (W) is properly row-
standardized based on geographic contiguity, and tests for error term
independence are satisfactory. These results validate the reliability of our
spatial econometric specifications.

The coefficient of the primary term of MA estimated by the FE
model in the model (1) is significantly negative at the 1% level. The
coefficient of the secondary term is significantly positive at the 1%
level, which indicates that there is an apparent positive U-shaped

relationship between MA and UER, i.e., with the increase of the level
of MA, the impact of the MA on the UER will be changed from
negative to positive. That is the impact of MA on UER shifts from
negative to positive as the level of MA increases. Initially, the negative
impact of MA on UER may reflect the early-stage environmental
pressures associated with manufacturing agglomeration, such as
increased pollution, resource depletion, and ecosystem disruption.
As MA levels increase, the positive impact likely stems from
technological advancements, improved environmental management
practices, and the adoption of cleaner production methods, ultimately
enhancing the city’s ecological resilience. The coefficients of the
primary and secondary terms of MA estimated by the static
SPDM and dynamic SDM models in models (2) and model (3)
also passed the 10% significance test, which is consistent with the
estimation results of the non-spatial econometric model.

Further analysis of the coefficients ofMA in themodel reveals that
the coefficients of the primary term and the coefficients of the
quadratic term of MA in model (1) are more significant than the
coefficients of MA in models (2) and (3), which suggests that if spatial
correlation and endogenous correlation are ignored, the impact ofMA
on UER may be overestimated. This overestimation highlights the
importance of considering spatial spillover effects in assessing the
impact of MA on UER. It suggests that a city’s ecological resilience is
influenced by its manufacturing agglomeration and neighbouring
areas, emphasizing the need for regional coordination in
environmental policies and industrial planning. Therefore, the
results of the subsequent analyses in this paper are based on the
dynamic SPDM model that considers the explanatory variables’
endogeneity, spatial correlation and time lag effect.

5.1.3 Spatial effect decomposition
To measure the impact of MA on UER, this paper carried out a

spatial effect decomposition, and the results of the effect Decomposition
for Dynamic SPDM are shown in Table 5. In the short term, the
coefficient of MA is −0.0274 and MA2 is 0.0071, indicating significant
spatial linkage effects. In the long run, the coefficient of MA
is −0.0275 and MA2 is 0.0071. The results show that both MA and
MA2 are significant at the 5% level in both periods, indicating the
stability of MA’s impact on UER over time. The inflection points are
1.930 and 1.937 for short-term and long-term respectively, suggesting a
consistent inverted U-shaped relationship between MA and UER. The
increased values of spatial effects from short-term to long-term (such as
UL from 4.2986 to 4.3481, FL from 5.4896 to 5.6051) suggests that over
time, the environmental practices and policies associated withMA have
an even more pronounced impact on the broader region. This could be
attributed to the gradual diffusion of eco-friendly technologies and
management practices across cities and the cumulative effects of
environmental policies on regional ecosystems.”

The analysis further delineates thatMA impedesUERwhen its level
is below 1.930 in the short term, suggesting a threshold effect whereMA
initially acts as a barrier to UER. Conversely, once MA surpasses this
threshold, it markedly enhances UER, illustrating a transformative shift
in its impact. Similarly, as presented in Table 5, long-term effects also
exhibit an inverted U-shaped relationship between MA and UER, with
the long-term inflection point slightly higher at 1.937 compared to the
short-term. This consistent inverted U-shaped relationship across both
time frames underscores the nuanced dynamics betweenMA andUER.
Notably, the higher inflection point in the long-term analysis

TABLE 4 Overall regression results.

(1) FE (2) Static SDM (3) Dynamic SDM

MA −0.0355*** −0.0267*** −0.0281**

(0.010) (0.010) (0.011)

MA2 0.0064* 0.0055* 0.0059*

(0.003) (0.003) (0.003)

UL 4.9087* 4.9829** 4.9390**

(2.617) (2.331) (2.387)

FL 0.6949 7.2186* 6.8204

(4.327) (4.159) (4.885)

PD 0.3175 −0.5500 −0.2794

(0.546) (0.501) (0.566)

PEL 0.4589 0.3908 0.4849

(0.407) (0.382) (0.446)

_cons −1.6526

(1.596)

Spatial rho 0.1858*** 0.1895***

(0.064) (0.067)

Control Y Y Y

N 410 410 410

R2 0.695 0.068 0.069

Note: () Within is the standard error. pp < 0, ppp < 0.05, pppp < 0.01.
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(1.937 versus 1.930) indicates that the beneficial impacts ofMA onUER
are sustained longer over extended periods. This temporal shift suggests
that the positive contributions ofMA toUER becomemore enduring as
the temporal horizon extends, affirming the stable and evolving nature
of this relationship.

5.1.4 Robustness test
The previous empirical analyses of the benchmark regression

used a model that controls for regional time and regional fixed
effects, which, to a specific extent, controls for the impact of omitted
variable factors that may come from different levels. To further
verify and enhance the reliability of the estimation results, this paper
will use the following methods to conduct the robustness test based
on applying control variables.

5.1.4.1 Modification of the spatial weight matrix
measurement method

Drawing upon the research of Feng et al. (2019) and Han et al.
(2018), this study employs the SPDM, utilizing both a
neighborhood spatial weight matrix (W2) and an inverse
squared geographical distance spatial weight matrix (W3) to
reanalyze the impact of MA on UER. This approach facilitates
the validation of the conclusion’s robustness. Table 6 indicates
that irrespective of whether the analysis is conducted over the

short or long term, a significant positive U-shaped relationship
persists between MA and UER both within and outside the
region. The estimated coefficients for other control variables
remain primarily consistent with preliminary findings,
suggesting that alterations in the spatial weight matrix
measurement methodology exert minimal influence on the
core conclusions of this paper.

5.1.4.2 Adding control variables
Governments can formulate appropriate regional policies and

differentially allocate resources to continuously optimize urban
ecological resilience. Thus, based on the baseline model, this
paper adds the level of government intervention (gov) and
measures it as the ratio of local government fiscal expenditure to
gross urban product. According to the results presented in model (1)
and model (3) within Table 7, incorporating the government
intervention variable did not alter the established positive
U-shaped relationship between MA and UER, reinforcing the
robustness and validity of the principal findings in the face of
additional variable analysis.

5.1.4.3 Excluding resource-based cities
Manufacturing industries tend to be resource-intensive, with

higher energy consumption and pollutant emissions in

TABLE 5 Effect decomposition for dynamic SPDM.

Effect MA MA2 UL FL PD PEL Inflection point

Short term −0.0274** 0.0071** 4.2986* 5.4896 −0.0696 0.6592 1.930

(0.011) (0.003) (2.387) (4.660) (0.550) (0.469)

Long term −0.0275** 0.0071** 4.3481* 5.6051 −0.0847 0.6439 1.937

(0.011) (0.003) (2.379) (4.662) (0.549) (0.467)

TABLE 6 Modification space weight matrix.

(1) Modification space
weight matrix W2

(2) Modification space
weight matrix W3

(3) Modification space
weight matrix W2

(4) Modification space
weight matrix W3

Short term Long term

MA −0.0366*** −0.0397*** −0.0354*** −0.0405***

(0.011) (0.011) (0.010) (0.012)

MA2 0.0087** 0.0082** 0.0083** 0.0083**

(0.004) (0.003) (0.003) (0.004)

UL 7.7654*** 6.3928*** 7.6577*** 6.5251***

(2.923) (2.470) (2.792) (2.522)

FL 11.6106** 1.8968 11.5471** 1.9256

(4.628) (1.964) (4.621) (2.002)

PD 0.6723 0.5345 0.6453 0.5462

(0.728) (0.588) (0.695) (0.602)

PEL 0.4538 0.5120 0.4636 0.5239

(0.489) (0.449) (0.476) (0.461)
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production, significantly affecting the coordinated development
of the region. This paper excludes resource-based cities from the
sample to mitigate the impact of sample selection bias. Following
the guidelines of the “National Sustainable Development Plan for
Resource-based Cities” issued by the State Council, an analysis of
the relationship between MA and UER in non-resource-based
cities within the YRDr was conducted. The results frommodel (2)
and model (4) in Table 7 demonstrate a significant positive

U-shaped relationship between MA and UER, further attesting
to the reliability of the core conclusions of this study.

5.2 Mediating effect of GTI

The above theoretical analysis indicates that GTI mediates
between MA and UER. This paper employs a classical mediation

TABLE 7 Robust test.

(1) Adding control
variables

(2) Excluding resource-based
cities

(3) Adding control
variables

(4) Excluding resource-based
cities

Short term Long term

MA −0.0264** −0.0441*** −0.0268** −0.0460***

(0.011) (0.015) (0.011) (0.016)

MA2 0.0065* 0.0137*** 0.0063* 0.0146***

(0.003) (0.005) (0.003) (0.005)

UL 4.1010* 10.4631*** 4.2914* 10.9131***

(2.367) (2.809) (2.344) (3.169)

FL 4.7117 13.3656*** 5.1393 13.2618**

(4.583) (5.165) (4.606) (5.163)

PD −0.1235 −0.1022 −0.1705 −0.2481

(0.565) (1.189) (0.562) (1.342)

PEL 0.6604 −0.1987 0.6074 −0.1237

(0.458) (0.726) (0.452) (0.770)

Gov 0.1135 0.1044

(0.141) (0.140)

TABLE 8 Estimated of mediating effect analysis.

(1) GTI (2) UtyGTI (3) InvGTI (4) GTI (5) UtyGTI (6) InvGTI

Short term Long term

MA −0.555*** −0.335*** −0.256** −0.607*** −0.356*** −0.268**

(0.201) (0.116) (0.115) (0.198) (0.118) (0.106)

MA2 0.319*** 0.108*** 0.166*** 0.226*** 0.080** 0.124***

(0.073) (0.039) (0.045) (0.064) (0.039) (0.036)

UL −78.027* −35.927 −37.444 −61.175 −30.857 −29.399

(45.501) (24.191) (27.454) (42.420) (24.032) (23.942)

FL −44.911 105.513** −137.383*** 34.543 130.850** −95.667**

(94.240) (53.311) (53.106) (90.967) (54.108) (48.274)

PD 57.104*** 31.737*** 24.467*** 54.483*** 31.060*** 23.142***

(10.330) (5.689) (6.245) (9.876) (5.797) (5.472)

PEL 28.891*** 9.536** 18.805*** 24.254*** 8.453* 15.727***

(9.252) (4.753) (5.623) (8.448) (4.658) (4.848)
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effect model to test whether MA indirectly influences UER through
GTI empirically. A dynamic Spatial Panel Data Model (SPDM) is
utilized for parameter estimation to ensure consistency and
comparability of the results.

Model (1) andmodel (4) in Table 8 show that the coefficient of the
primary term of MA is significantly negative at the 1% level. In
contrast, the coefficient of the quadratic term is significantly positive
at the same level, indicating a significant positive U-shaped
relationship between MA and GTI. This pattern suggests that as
the MA level increases, the GTI level initially decreases before
increasing, implying that MA levels must be maintained within a
specific range to achieve urban GTI. This U-shaped relationship
reveals a complex dynamic between MA and GTI. Initially, as
manufacturing concentration increases, it may prioritize traditional
productionmethods and scale economies over GTI. However, beyond
a certain threshold, the agglomeration benefits, such as knowledge
spillovers, shared resources, and increased competition, likely
stimulate more significant investment in green technologies. This
transition point could represent a critical mass where the pressure for
environmental compliance and the potential for eco-innovation
outweigh the initial focus on conventional manufacturing practices.

Further, this paper employs InvGTI and UtyGTI to measure
GTI, respectively and examines how different types of green patent
applications affect UER on MA. The regression results presented in
Table 8 indicate that, upon further distinguishing between different
types of green patents, the coefficients for both the primary and
secondary terms of MA are significant at the 5% level, and that MA
affects the number of green utility model patents filed to a slightly
greater extent than it does the number of green invention patents.
This indicates that, at the overall level, GTI has a mediating role in
MA and UER, and there is no apparent distinction between patent
types. Compared to invention patents, the more substantial effect on
utility model patents suggests that MA may have a more immediate
impact on incremental or applied green innovations rather than
fundamental breakthroughs. This could imply that the
agglomeration process fosters an environment where companies
are more inclined to adapt and improve existing green technologies
for practical applications, which might be more readily
implementable in enhancing UER.

6 Conclusions and policy
recommendations

How does manufacturing agglomeration impact urban ecological
resilience in both short and long terms? What role does green
technology innovation play in mediating the relationship between
MA and UER? To address these questions, this paper first
constructed a comprehensive UER evaluation system for the
Yangtze River Delta region using the entropy weight TOPSIS
method. This system incorporates three key dimensions of UER in
the new era: ecological resistance, adaptation, and resilience.Through
empirical analysis using a dynamic spatial Durbin model, our findings
reveal several important insights. First, we identify a significant inverted
U-shaped relationship between MA and UER in both short and long
terms. This indicates thatMA’s impact onUER initially shows a positive
effect up to a certain threshold, beyond which its influence becomes
negative. The consistency between short-term and long-term effects

suggests the stability of MA’s impact on UER over time. Additionally,
we find that GTI serves as a crucial mediating mechanism through
which MA influences UER, highlighting the important role of
technological innovation in shaping environmental outcomes.

Therefore, the following policy recommendations are proposed.

(1) Timely adjustment of regional policies according to the changing
dynamics of the MA level. The 20th CPC National Congress
report emphasizes the need to build livable, resilient, and smart
cities. This paper finds that MA has a non-linear relationship
with UER that is first negative and then positive, so it is necessary
to reasonably promote MA. On the one hand, for the regions
with a low level ofMA, we should promote the reasonable flow of
production factors and the optimal allocation of innovation
resources, steadily improve MA, and accelerate the
elimination of congestion effects brought by MA; on the
other hand, for the regions with a high MA level, we should
carry out overall planning and layout of their manufacturing
industries, optimize the construction ofmanufacturing industrial
ecology, and promote the knowledge spillover effect and
technology spillover effect brought by MA. On the other
hand, for regions with higher levels of MA, the overall
planning and layout of their manufacturing industries should
be carried out to optimize the construction of the manufacturing
industry ecology, give full play to the knowledge spillover effect
and technology spillover effect brought byMA, and promote the
improvement of the UER in the city and the surrounding areas.

(2) Strengthen the role of MA in promoting GTI. On the one hand,
amplify support for technological innovation, enhance the
development of relevant infrastructure, and encourage
increased investments in green technology research and
development. This initiative aims to foster closer technical
cooperation and sharing among enterprises, expedite the
regional dissemination and application of green technologies,
and realize high-quality regional development. On the other
hand, accelerate the growth of advanced manufacturing clusters
and optimize the digital transformation and upgrading of the
manufacturing sector to establish a modern industrial system.
This approach will drive the manufacturing industry towards a
highly green transformation and enhance urban ecological
resilience, adaptability, and toughness. Ultimately, it creates a
livable, safe environment and a healthy and sustainable
ecosystem development.

Despite these findings and implications, several promising
directions for future research emerge. First, as digital
transformation increasingly shapes industrial development, future
studies could explore how digital technologies mediate the MA-UER
relationship. This could involve investigating how innovative
manufacturing and Industry 4.0 initiatives affect the
environmental impacts of industrial agglomeration. Second,
future research could extend the geographical scope beyond the
Yangtze River Delta region to other urban agglomerations
worldwide. Such comparative studies help identify whether the
patterns observed in this study are universal or context-specific.
Third, future work could incorporate more sophisticated measures
of ecological resilience, including biodiversity indicators and
ecosystem service metrics.
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