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Reducing agricultural carbon emissions is critical to achieving green agricultural
development and the “dual carbon” goals. The present study conducts empirical
analysis using provincial panel data from 29 provinces in China from 2011 to
2022 combined with econometric models based on the mechanism of the
impact of digital rural construction on agricultural carbon emission intensity.
The entropy method and carbon emission factor method are used to determine
the level of digital rural construction and agricultural carbon emission intensity.
The fixed effect and intermediary effect models are used to empirically analyze
the impact of digital rural construction on agricultural carbon emission intensity.
The results indicate that (1) digital rural construction significantly inhibits
agricultural carbon emission intensity, and there are differences in different
regions and dimensions of digital rural construction; (2) the construction of
digital rural areas can indirectly reduce the intensity of agricultural carbon
emissions by promoting the level of rural human capital; (3) financial support
for agriculture played significant positive regulatory effect. The policy
recommendations are proposed to provide a reference for promoting
agricultural carbon reduction and digital rural construction in other countries.
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1 Introduction

Food production and total agricultural output have grown in recent years, but the
accompanying problem of agricultural carbon emissions is becoming increasingly serious.
According to the “Global Agriculture Outlook 2022–2031” report, greenhouse gas
emissions directly generated by agriculture are projected to increase by 6% over the
next decade. As a major agricultural country, China actively undertakes the significant
responsibility of reducing agricultural carbon emissions and has introduced various plans to
strengthen carbon reduction in agriculture. For instance, in September 2020, China set the
goals of “peaking carbon emissions by 2030” and achieving “carbon neutrality by 2060”. In
2022, China issued the “Collaborative Implementation Plan for Pollution Reduction and
Carbon Reduction”, which emphasized deepening the implementation of actions to reduce
the quantity and improve the efficiency of fertilizers and pesticides tomeet carbon reduction
requirements. Reducing agricultural carbon emissions while ensuring food security has
become a common concern for China and the world.
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Agricultural carbon emission refers to the greenhouse gas
emissions directly or indirectly generated by various activities in the
process of agricultural production. Research on agricultural carbon
emissions mainly focuses on carbon sources, carbon emission
measurement, influencing factors, and carbon reduction measures.
There are six primary sources of carbon emissions (Zhang et al., 2022).
The calculation methods for agricultural carbon emissions primarily
include the default coefficient of the IPCC (Sperow, 2020) and the life
cycle assessment method (Jana and De, 2016). Agricultural carbon
emissions influence economic development, urbanization, and energy
use (Qing and Yuhang, 2022; Xu and Lin, 2017; Wei Z. et al., 2023).
Land use patterns, farmland ecosystems, and soil erosion can affect the
carbon balance of agricultural systems (Woomer et al., 2004; Lal, 2003;
Kindler et al., 2011).Measures for agricultural carbon reductionmainly
involve technological innovation, technological progress, industrial
structure optimization (Li G. et al., 2024; Li J. et al., 2024; Wang
et al., 2023), collecting environmental taxes (Iyke-Ofoedu et al., 2024),
encouraging farmers to join rural cooperatives and adopt socialized
services (Wang and Qiu, 2024; Chen et al., 2022), adjusting fertilizer
use (Ji et al., 2024), promoting large-scale agricultural land
management (Bai et al., 2023), and implementing crop rotation and
fallow practices (Zhang et al., 2024). Financial support for agriculture,
industrial upgrading and clean agricultural production technologies
are effective for reducing agricultural carbon emissions (Wei S. et al.,
2023; Du et al., 2023; Guo et al., 2022).

“The Outline of the Strategy for the Development of Digital
Countryside” points out that the construction of digital rural
countryside refers to the application of networking, informatization
and digitalization in agricultural and rural development and the process
of promoting the modernization and transformation of agriculture and
rural areas, which is not only the strategic direction of rural revitalization
but also an important content of the construction of digital China. “The
Action Plan for Digital Rural Development (2022–2025)” emphasizes
the application of digitalization in rural areas, positioning data as an
essential input factor in modern agricultural production. In this context,
exploring the impact of digital rural construction on agricultural carbon
emission intensity can offer new insights into agricultural carbon
reduction and assess the role of digital rural strategies in agricultural
development. The Internet can facilitate land circulation among farmers
and help them adopt agricultural productive services, thereby improving
agricultural green total factor productivity (Liu et al., 2022). Digital
inclusive finance can optimize resource allocation and reduce
agricultural carbon emissions (Hong et al., 2024; Liu et al., 2024).
The higher the level of digital finance development, the stronger its
role in financial agglomeration and reducing agricultural carbon
emissions (Li, 2023; Zhao et al., 2023). Digitalization can lower
carbon intensity by enhancing agricultural technology, human capital
levels, and urbanization rates, with regional variations (Wang et al.,
2024). The relationship between digital agriculture growth and
agricultural green total factor productivity exhibits an inverted
U-shaped curve (Zhou et al., 2023).

As a predominantly agricultural country, China serves as a
typical representative of global digital rural construction (Zhang
et al., 2023). With the promotion of relevant national policies,
several critical questions arise: How does the construction of
digital rural areas affect the intensity of agricultural carbon
emissions? Is there heterogeneity in the effects between different
regions? What are the intermediate transmission mechanisms?

What factors can regulate the carbon emission reduction effect of
digital rural construction on agriculture? Clarifying these issues is
essential for evaluating the impacts of rural digital construction,
seizing the opportunities it presents, and exploring new strategies for
agricultural carbon reduction.

Previous studies on agricultural carbon emissions mainly focused
on the measurement of carbon emissions and the decomposition of
influencing factors. Compared with previous studies, this paper makes
several contributions. First, it innovates in research by exploring the
impact of digital rural construction on agricultural carbon emission
intensity, aligning with the “dual carbon” strategy, “digital countryside”
strategy, thus providing new insights into reducing global agricultural
carbon emissions,The construction of digital countryside brings new
opportunities for agricultural carbon emission reduction. Second, it
innovates in research content by constructing the index system,
calculating the levels of digital rural construction and agricultural
carbon emission intensity through an index system and clarifying
the logical mechanisms between these systems using a combination
of literature review and relevant theories. The study empirically analyzes
the impact of digital rural construction on agricultural carbon emission
intensity. It examines the intermediary effect of rural human capital, the
regulatory implications of financial support for agriculture. This is
conducive to understanding the logical mechanism behind the
construction of digital rural construction to reduce agricultural
carbon emission and the direction of policy regulation in various
countries. The research provides suggestions for leveraging digital
rural construction to achieve low-carbon agricultural development so
as to promote the achievement of global carbon reduction targets.

The rest of chapters are arranged as follows: Section 2 offers
literature review and research hypotheses. Section 3 introduces the
methods, variable selection and description and data source. The
results of the study are presented in the Section 4. Section 5 presents
the discussion and several policy recommendations. The last section
summarizes the conclusions.

2 Literature review and research
hypotheses

2.1 Concept of digital rural construction and
index system construction

Foreign scholars have explored the concept of the digital
countryside primarily from the perspectives of digital agriculture or
technology (Rotz et al., 2019; Engås et al., 2023). In 2019, China issued
the “Digital Rural Development Strategy Outline”, providing a specific
definition: digital rural construction refers to the application of
networking, informatization, and digitization in agricultural and
rural development, aiming to promote the modernization and
transformation of agriculture and rural areas. There is yet to be a
unified standard for evaluating digital rural construction. The
calculation method is mainly based on the comprehensive
evaluation model using the entropy method. Indicators typically
involve the construction of digital rural information infrastructure,
digital rural financial infrastructure, and digital rural service platforms
(Ping et al., 2024; Hao and Tan, 2022). Some approaches replace the
level of digital rural construction with a single indicator, such as the
county-level digital rural index (Linghui and Yongxin, 2022).
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2.2 The impact mechanism of digital rural
construction on agricultural carbon
emission intensity

2.2.1 Direct impact mechanism of digital rural
construction on agricultural carbon
emission intensity

With the implementation of the “Broadband China” and “Digital
Rural” strategies, digital technology has become a significant input
factor in agricultural production in the new era. Based on the theory of
the digital economy, the construction of a digital rural construction can
leverage the substitution and integration effects of the digital economy
to alleviate the mismatch of agricultural resource factors and improve
agriculture’s total green factor productivity (Honghai and Xinmin,
2023). Digital rural construction can reduce farmers’ transaction
costs and alleviate market information asymmetry, effectively
lowering agricultural production costs and environmental pollution
(Rolandi et al., 2021). This construction has accelerated the widespread
dissemination of advanced technologies in rural areas (Popescu et al.,
2020), and technological innovation is a crucial measure to promote
agricultural carbon reduction. It facilitates the recombination and
efficient allocation of various production factors, thereby improving
production efficiency (Acemoglu and Restrepo, 2018). Due to specific
differences in resource endowments among different regions, the
impact of digital rural construction on agricultural carbon emission
intensity varies across areas.

Hypothesis 1: Digital rural construction is beneficial for reducing
agricultural carbon emission intensity.

Hypothesis 2: The impact of digital rural construction on
agricultural carbon emission intensity has regional differences.

2.2.2 The impact of digital rural construction on
agricultural carbon emission intensity through
rural human capital

The government can disseminate information on agricultural low-
carbon production technologies to farmers through rural digital
platforms. Farmers can utilize the Internet and social media to access
high-quality educational resources, enabling them to acquire advanced
green production technology quickly to enhance their labor skills,
knowledge level, and environmental awareness. This can influence
rural labor behavior, encouraging farmers to adopt green production
practices beneficial for agricultural carbon emission reduction (Ma et al.,

2022). The construction of digital rural areas can overcome the
limitations of traditional rural areas in terms of talent, resources,
time, and space, thereby improving resource allocation efficiency,
promoting the enhancement of green total factor productivity in
agriculture, and exerting a substitution effect on the rural labor force,
alleviating issues related to insufficient rural labor. Digital technology, as
a fundamental driver in digital rural area construction, can catalyze
changes in agricultural workers’ skills and other elements, forming digital
agrarian productivity (Junge and Qinmei, 2023). In promoting digital
rural construction, digital technology can lower the cost of farmers’
access to market information (Mary George et al., 2016; Song et al.,
2020), enhance human capital by focusing on farmers’ digital literacy,
reinforce environmental awareness, and encourage green production
practices (Aldieri et al., 2019). The proliferation of rural digitization has
paved new pathways for developing low-carbon agriculture.

Hypothesis 3: The construction of digital agriculture can reduce
the intensity of agricultural carbon emissions by promoting the level
of rural human capital.

2.2.3 The regulatory of financial support for
agriculture in the impact of digital rural
construction on agricultural carbon
emission intensity

Currently, agricultural management entities in China predominantly
consist of small-scale operations, and the construction of digital rural
areas constitutes projects with significant externalities and essential
public welfare attributes. It is a comprehensive undertaking involving
various components, such as network infrastructure construction and the
enhancement of rural human capital, which necessitate financial backing.
However, farmers typically need more financial resources to undertake
such endeavors. The level of economic development and the availability
of financial support are critical factors influencing the effectiveness of
digital rural construction (Xing et al., 2023). Moreover, financial support
for agriculture can facilitate the aggregation of information, technology,
and talent, thereby aiding in the high-level development of digital rural
areas (Chunlin et al., 2024).

Hypothesis 4: financial support for agriculture can positively
influence the impact of digital rural construction on agricultural
carbon emission intensity. Based on the above theoretical analysis,
the theoretical framework diagram of the impact of digital rural
construction on agricultural carbon emission intensity was
constructed, as shown in Figure 1.

FIGURE 1
Theoretical framework diagram.
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3 Methods

3.1 Model setting

3.1.1 Entropy method
AHP and Delphi methods are commonly employed to

determine indicator weights, yet they entail significant
subjectivity. Therefore, the entropy method is utilized to
ascertain the weights of each indicator, enhancing the scientific
validity of the evaluation results, which boast high credibility and
accuracy. The specific application methods of the entropy method
can be found in some literature (Chen and Zhang, 2023).

①Dimensionless treatment of indicators
converting the indicator values of each indicator to 0–1, which

can avoid the impact of different indicator dimensions.

Positive indexes: Xtij
′ Xtij

′ −Xjmin

Xjmax
′ −Xjmin

Negative indexes: Xtij
′ Xjmax

′ −Xtij

Xjmax
′ −Xjmin

②Standardized processing of raw indicators

The dimensionless processed indicators are standardized and
translated to obtain the standardized indicator values:

Xtij
″ � 0.99 × Xtij

′ + 0.01

③Calculate the proportion of indicator value

Ptij � Xtij
″

∑
t
∑
i
Xtij

″

④Calculate the entropy value of the indicator

Sj � −ln kn( )−1 ∑
t

∑
i

Ptij ln Ptij( )

⑤Calculate the differentiation coefficient of the indicator

Gj � 1 − Sj

⑥Calculate the weight of the indicator

Wj � Gj

∑
j
Gj

⑦Calculate the comprehensive evaluation value in each province

Hti � ∑
j

Wj × Xtij
″( )

3.1.2 Carbon emission coefficient method
The carbon emission measurement method based on IPCC

(Intergovernmental Panel on Climate Change) carbon emission
coefficient is the common method to estimate carbon emission at
present with the advantages of simple calculation process, easy

popularization and less data demand. In china there are six
primary sources of agricultural carbon emissions (Li et al., 2011),
including pesticides, chemical fertilizers, agricultural fuel, agricultural
plastic film, agricultural sowing areas, and agricultural irrigation areas.
The corresponding carbon emission coefficients are as follows (Li
et al., 2011; West and Marland, 2002; Zhi and Gao, 2009; Wu et al.,
2007; Dubey and Lal, 2009): 4.9341 kg/kg,0.8956 kg/kg,
0.5927 kg/kg, 5.180 kg/kg, 312.60 kg/km2, 25 kg/hm2. The total
agricultural carbon emissions are calculated as follows:

ac � Σaci � ΣTi × δi (1)

Where ac represents the total agricultural carbon emissions, aci
represents the carbon emissions of various carbon sources, Ti and δi
respectively represent the actual consumption of multiple carbon
sources and their corresponding carbon emission coefficients.

3.1.3 Benchmark regression model
To test the impact of digital rural construction on agricultural

carbon emission intensity, the benchmark regression model
constructed is as follows:

acintensityit � a0 + a1digcountyit + a2controlsit + μi + λt + εit (2)
Where acintensityit is the agricultural carbon emission intensity of
Province i in year t, digcountyit is the digital rural construction level
of Province i in year t, and controls is a series of control variables. μi
and λt refer to the fixed province effect and time effect, respectively,
and εit refers to the random disturbance term.

3.1.4 Intermediary effect model
Utilizing the stepwise regression method (Wen and Ye, 2014)

for testing, the model is constructed as follows:

acintensityit � a0 + cdigcountyit + a2controlsit + μi + λt + εit (3)
lnhumanit � b0 + adigcountyit + b2controlsit + μi + λt + εit (4)

acintensityit � c0 + c′ digcountyit + blnhumanit + c3controlsit + μi

+ λt + εit
(5)

Where rural human capital is the intermediary variable, c is the total
effect coefficient of digital rural construction affecting agricultural
carbon emission intensity; a is the effect of the core explanatory
variable of digital rural construction on the intermediary variable of
rural human capital; c’ is the direct effect of digital rural construction
on agricultural carbon emission intensity after controlling the
influence of rural human capital; b is the indirect effect of the
intermediary variable rural human capital on agricultural carbon
emission intensity after controlling the impact of the core
explanatory variable digital rural construction.

3.1.5 Regulatory effect model
To further analyze the regulatory effect of financial support for

agriculture on the impact of digital rural construction on
agricultural carbon emission intensity, the regulatory effect model
is developed as follows:

acintensityit � m0 +m1digcountyit +m2financialsupportit
+m3digcountyitfinancialsupportit +m4controlsit+μi + λt + εit (6)

Frontiers in Environmental Science frontiersin.org04

Li et al. 10.3389/fenvs.2024.1492454

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1492454


3.2 Variable selection and description

(1) Explained Variable. The explained variable in this paper is
agricultural carbon emission intensity (variable: acintensity).
Agricultural carbon emission is calculated by carbon emission
coefficient method (see Equation 1). Agricultural carbon
emission intensity is the total agricultural carbon emission
ratio to total agricultural output value (Xueqiang et al., 2023).

(2) Explanatory Variable: The primary explanatory variable in
this study is digital rural construction (variable:digcounty). As
the establishment of “Taobao Villages” has been prevalent in
numerous provinces for several years, it is not considered in
this paper. The construction of digital rural information
infrastructure primarily indicates the transformation of
information dissemination and the proliferation of modern
information technology in rural areas. Financial
infrastructure mainly represents the digital economic
infrastructure. Establishing a digital service platform
predominantly reflects the state of digital logistics. The
specific index system is outlined in Table 1.

(3) Intermediary Variables: The intermediary variable in this
paper is rural human capital (variable: lnhuman), with per
capita years of education in rural areas chosen to represent the
development level of rural human capital in each province.

(4) Regulatory Variables: The regulatory variable in this paper is
financial support for agriculture (variable:financialsupport),
measured by the proportion of local financial expenditures on
agriculture, forestry, and water affairs, local general budget
expenditures.

(5) Control Variables: To account for the influence of other
factors on agricultural carbon emission intensity and avoid
interference, the following control variables are selected:
Urbanization (variable:urbanization): Measured by the
proportion of the urban population in different regions at
the end of the year. Disaster rate (variable:disasterrate):
Measured by the proportion of the affected area as a
percentage of the planted crop area. Technological
innovation development (variable:lntechnology): Measured
by the number of patents granted. Agricultural industry
structure (variable:agrstructure): Reflects the development
of various industries in the region, measured by the
proportion of the primary industry in the regional
economy. Agricultural mechanization strength (variable:
lnmachstrength): Measured by dividing the total power of
agricultural machinery by the cultivated land area. Intensity
of science and technology expenditure (variable:tcf):
Measured by the proportion of science and technology
expenditure to local general public budget expenditure.

3.3 Data source and descriptive analysis

The research sample comprises 29 provinces in China. Due to
a significant number of missing values for specific indicators of
digital countryside in Xizang and Shanghai, these provinces are
temporarily excluded from the calculation to ensure the accuracy
of the research. The study period spans from 2011 to 2022. Data
sources include the China Statistical Yearbook, China Rural
Statistical Yearbook, and the Peking University Digital
Financial Inclusion Index. For individual missing data, the
interpolation method is employed for completion. The
statistical characteristics of essential variables are presented
in Table 2.

A scatter plot and fitting line illustrating the relationship
between digital rural construction and agricultural carbon
emission intensity were generated using the sample data, as
depicted in Figure 2. It is evident that as the level of digital
rural construction increases, agricultural carbon emission
intensity decreases, indicating a negative correlation between
the two variables. This preliminary observation suggests that
digital rural construction may reduce agricultural carbon
emission intensity, aligning with the theoretical derivation
presented earlier in this paper. Further analysis will involve the
inclusion of control variables and the adoption of multiple models
for verification.

4 Results

4.1 Baseline regression results

Prior to conducting the baseline regression, the variance
inflation factor (vif) was utilized to test for collinearity among
variables. The testing revealed that the minimum vif value for
each variable was 1.43, the maximum was 4.06, and the average
was 2.71,which is significantly less than 10. Therefore, there was
no collinearity issue among the variables. Table 3 presents the
benchmark regression results of “Digital rural construction-
agricultural carbon emission intensity”. The calculation
results are obtained by referring to Equation 2. Columns (1)
and (2) display the outcomes of the fixed effects model,
indicating that digital rural construction significantly reduces
agricultural carbon emission intensity. Without control
variables, the coefficient of digital rural construction
is −0.090, exhibiting a substantial correlation at the 1%
significance level. Even after incorporating a series of control
variables, the coefficient remains −0.087, still significantly
correlated at the 1% level. This suggests that digital rural

TABLE 1 Index system of digital rural countryside.

Primary indicators Secondary indicators Unit Attribute

Construction of digital rural information infrastructure Rural broadband access users 10,000 households +

Average mobile phone ownership per 100 rural households number +

Financial infrastructure Digital inclusive finance index +

Construction of digital service platform Rural delivery route length kilometre +
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construction exerts a significant carbon reduction effect on
agriculture. Columns (3) and (4) present the results of the
random effects model. The Hausman test indicates that chi2
(6) = 25.85, Prob > chi2 = 0.0002, thereby rejecting the null
hypothesis and affirming that the fixed effects model is more
suitable. The baseline regression results unequivocally
demonstrate that digital rural construction significantly
diminishes the intensity of agricultural carbon emissions,
thereby confirming hypothesis 1.

4.2 Robustness and endogeneity test results

4.2.1 Robustness test results
(1) Replace Core Explanatory Variables. Carbon emissions from

food production are a significant component of agricultural
carbon emissions. To test robustness, the intensity of
agricultural carbon emissions is replaced with the carbon
emission intensity from food production, and the baseline

regression is performed again. The results are presented
in Table 4 (1).

(2) Reduce Sample Size. Municipalities like Beijing, Chongqing,
and Tianjin differ markedly from other provinces regarding
government resource support and agricultural development.
Therefore, these municipalities are excluded from the
sample, and the regression analysis is conducted again
with the remaining samples. The results, shown in
Table 4 (2), indicate that the estimated coefficient of
digital rural construction is significantly negative at the
5% level.

(3) Indentation of Sample Variables. To avoid the interference of
extreme values on regression results, all variables are
winsorized at the 1% level. The suffix _w is used to denote
variables after winsorization. The results are shown in Table 4.
After this data adjustment, the estimated coefficient of digital
rural construction remains significantly negative at the 5%
level, further demonstrating the robustness of the baseline
regression results.

The findings from these three robustness tests consistently show
a negative and significant coefficient for digital rural construction,
affirming the robustness of the baseline regression conclusion: the
construction of digital countryside can significantly reduce
agricultural carbon emission intensity.

4.2.2 Endogeneity test results
Using the second lag of digital rural construction (L2. digcounty)

as an instrumental variable helps avoid endogenous estimation bias
caused by two-way causality. The initial phase of digital rural
construction creates favorable conditions for subsequent stages,
satisfying the relevance requirement. Early-stage digital
countryside construction reduces agricultural carbon emission
intensity in the current period, meeting the homogeneity
requirement. The two-stage least squares method (IV_2SLS) was
employed to re-examine the impact of digital rural construction on
agricultural carbon emission intensity (see Table 5). In the first-stage
regression results, the instrumental variable L2. digcounty is
positively correlated with the endogenous variable (discount) at

TABLE 2 Descriptive statistical results.

Variable classification Variable Number Mean Standard error Maximum Minimum

Explained variable acintensity 348 0.150 0.052 0.349 0.031

Explanatory variable digcounty 348 0.426 0.165 0.858 0.060

Mediating variable lnhuman 348 2.056 0.079 2.314 1.771

Regulatory variable financialsupport 348 0.116 0.032 0.204 0.040

Controls urbanization 348 0.586 0.109 0.876 0.350

disasterrate 348 0.141 0.112 0.618 0.004

lntechnology 348 10.259 1.480 13.679 6.219

lnmachstrength 348 2.045 0.472 2.917 0.950

agrstructure 348 9.961 4.960 26.100 0.300

tcf 348 0.021 0.014 0.068 0.004

FIGURE 2
Scatter plot and fitting line of digital rural construction and
agricultural carbon emission intensity.
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the 1% level, indicating that the chosen instrumental variable is
sufficiently associated with the endogenous variable. In the under
identification test, the LM value is 112.230, passing the 1% significance
test, which confirms the absence of under identification issues. The
Cragg-Donald Wald F-value is 4,276.309, exceeding the critical value
of 16.38 at the 10% significance level for the Stock-Yogo weak
instrumental variable test, indicating no weak instrumental
variable issues. The Hansen J statistic indicates no over
identification problem, affirming the appropriateness of the
selected instrumental variable. After addressing the
endogeneity problem using the instrumental variable method,
digital rural construction continues to show a significant
negative correlation with agricultural carbon emission
intensity at the 1% level, confirming the robustness of the result.

4.3 Heterogeneity analysis results

4.3.1 Heterogeneity analysis of agricultural
functional attributes

Divide the country into two categories based on whether it is a
major grain-producing area. The regression results are shown in

Table 6. The regression coefficients for digital rural construction are
negative and pass the significance tests at 1% and 5%. However, the
degree of influence varies across different regions. Digital rural
construction significantly inhibits agricultural carbon emission
intensity in major grain-producing areas. This effect is due to the
country’s favorable resource allocation towards these grain-
producing areas. On the one hand, the major grain-producing
areas bear the heavy responsibility of maintaining national food
security, the state attaches great importance to the development of
major grain-producing areas, and has introduced a series of targeted
policies to promote the construction of digital countryside, such as
providing a number of financial funds for the construction of digital
countryside in major grain-producing areas for infrastructure
construction, digital technology research and development and
application promotion. The main grain-producing areas have
relatively good network coverage and perfect infrastructure,
which provides the necessary basic conditions for the
construction of digital countryside. On the other hand, major
grain-producing areas usually have large areas of farmland
which facilitate the large-scale application of digital
technology in agricultural production. The observed regional
differences, attributed to varying resource endowments, confirm
hypothesis 2.

4.3.2 The dimensional heterogeneity analysis of
digital rural construction

This part analyzes the impact of the sub-dimension of digital
rural construction on agricultural carbon emission intensity (see
Table 7). Rural broadband access users and the average mobile
telephone ownership per 100 rural households significantly reduce
agricultural carbon emission intensity, each passing the 1%
significance test. The total index of digital inclusive finance
within the construction of digital rural finance and the length of
rural delivery routes within the construction of digital rural service

TABLE 3 Results of benchmark regression.

Variable Acintensity

(1) Fe (2) Fe (3) Re (4) Re

digcounty −0.090*** −0.087*** −0.243*** −0.145***

(-3.07) (-2.62) (-32.23) (-8.68)

urbanization −0.170** −0.246***

(-2.30) (-5.34)

disasterrate 0.022* 0.018*

(1.83) (1.66)

lntechnology −0.004* −0.007***

(-1.84) (-3.54)

lnmachstrength 0.007 −0.001

(0.99) (-0.16)

agrstructure −0.003** −0.005***

(-2.51) (-6.42)

tcf −0.274 −0.220

(-1.49) (-1.14)

_cons 0.189*** 0.346*** 0.254*** 0.479***

(15.10) (6.79) (33.17) (17.42)

Year/Province YES YES

N 348 348 348 348

R2 0.917 0.925

Adj.R2 0.907 0.914

F 9.452 3.478

*p < 0.1 **p < 0.05 ***p < 0.01.

TABLE 4 Results of robustness test.

(1) (2) (3)

Fcintensity Acintensity acintensity_w

digcounty −0.355*** −0.074**

(-3.88) (-2.18)

digcounty_w −0.078**

(-2.45)

Controls YES YES YES

Year/Province YES YES YES

_cons 0.469 0.432*** 0.311***

(1.49) (7.26) (6.59)

N 348 312 348

R2 0.953 0.929 0.935

Adj.R2 0.946 0.918 0.924

F 2.909 4.677 3.531

*p < 0.1 **p < 0.05 ***p < 0.01.
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platforms show no significant effect on carbon emissions. But when
the level of digital inclusive finance is above the 0.25 quartile value
(lndigfi ≥ 5.106) and the length of rural delivery route is above the
0.75 quartile value (lndelroute ≥ 12.154), the agricultural carbon
emission intensity is also significantly reduced, and both pass the

significance test of 10%. In other words, with the continuous
improvement of digital inclusive finance and the length of rural
delivery routes, the effect on agricultural carbon emission reduction
will gradually increase, and there is a nonlinear relationship between
them. The sub-dimensional construction level is related to the

TABLE 5 Regression results of instrumental variables.

(1) 1st (2) 2nd

Digcounty Acintensity

L2.digcounty 0.924***

(73.08)

digcounty −0.135***

(-5.98)

Controls YES YES

Year/Province YES YES

_cons 0.174*** 0.357***

(7.51) (9.37)

N 290 290

R2 0.973 0.367

Adj.R2 0.972 0.351

F 1772.387

Underidentification test Kleibergen-Paap rk LM statistic 112.230

Chi-sq (1) P-val 0.000

Weak identification test Cragg-Donald Wald F statistic 4,276.309

Kleibergen-Paap rk Wald F statistic 5,340.880

Stock-Yogo weak ID test critical values: 10% maximal IV size 16.38

Hansen J statistic overidentification test of all instruments 0.000

*p < 0.1 **p < 0.05 ***p < 0.01.

TABLE 6 Results of regional heterogeneity analysis.

Acintensity

(1) Main grain-producing areas (2) Non grain-producing areas

digcounty −0.167*** −0.094**

(-3.14) (-2.49)

Controls Yes Yes

Year/Province Yes Yes

_cons 0.511*** 0.284***

(3.10) (5.62)

N 156 192

R2 0.938 0.942

Adj.R2 0.924 0.930

F 8.523 2.756

*p < 0.1 **p < 0.05 ***p < 0.01.
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overall level of digital rural construction. The mobile phones
and the Internet enables farmers to obtain weather information
and information of agricultural materials products earlier, so
they can implement scientific and reasonable irrigation and
fertilization, and avoid environmental problems caused by
excessive use of agricultural materials. The popularization of
digital inclusive finance and the construction of express routes
require a large amount of investment in the early stage, then
the carbon reduction effect will gradually appear in the later stage,
so as to achieve the purpose of reducing agricultural carbon
emission intensity.

4.4 Intermediary effect results

The theoretical analysis indicates that digital rural construction
can directly reduce agricultural carbon emission intensity and
indirectly do so by enhancing the knowledge and skills of
laborers, thereby leveraging the “human capital effect”. This
paper employs a three-step method to build an intermediary
effect model, with the measurement test results shown in
Table 8, the calculation results refer to Equations 3–5. The
coefficients in columns (1), (2), and (3) are all significantly

correlated, suggesting that rural human capital plays a partial
mediating role in the carbon reduction effect of digital rural
construction on agriculture. The Sobel test was used to verify the
robustness of the results of the intermediary effect further. The total
utility coefficient of digital rural construction on agricultural carbon
emission intensity was −0.087, the effect coefficient of digital rural
construction on the intermediary variable rural human capital was
0.113, and the total utility coefficient of rural human capital on
agricultural carbon emission intensity was −0.126. These
correlations were significant at the 1%, 1%, and 5%, respectively.
The direct effect coefficient is −0.073, significantly correlated at 5%,
while the indirect effect coefficient is −0.014, accounting for 16.3% of
the total effect. The direct effect accounts for 83.7%. The
intermediary effect passed both the stepwise test of the three-step
method and the Sobel test, demonstrating the robustness of the
intermediary effect and confirming hypothesis 3.

4.5 Regulatory effect results

Theoretical analysis indicates that financial support for
agriculture influences the effect of digital rural construction on
agricultural carbon emission intensity. An interaction term

TABLE 7 Results of dimensional heterogeneity.

Acintensity

(1) (2) (3) (4) (5) (6)

lntel −0.065***

(-4.32)

lnbroadb −0.012***

(-6.14)

lndigfi 0.010

(0.88)

lndelroute 0.003

(0.98)

lndigfi (≥5.106) −0.103*

(-1.66)

lndelroute (≥12.154) −0.027*

(-1.94)

Controls Yes Yes Yes Yes Yes Yes

Year/Province Yes Yes Yes Yes Yes Yes

_cons 0.650*** 0.344*** 0.316*** 0.319*** 0.835** 0.916***

(7.74) (8.13) (4.80) (5.56) (2.51) (3.30)

N 348 348 348 348 261 87

R2 0.927 0.931 0.923 0.923 0.934 0.979

Adj.R2 0.916 0.920 0.912 0.912 0.921 0.970

F 5.787 7.772 2.903 3.067 1.822 7.905

*p < 0.1 **p< 0.05 ***p < 0.01.
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between financial support for agriculture and digital rural
construction was introduced to test this hypothesis, avoiding
collinearity between variables. After decentralizing the data, the
variables of financial support for agriculture and digital rural
construction were combined to form the interaction term c_
digcounty *c_financialsupport. Columns (1) and (2) in Table 9
compare the results before and after introducing the interaction
term, the calculation results refer to Equation 6. The coefficients of
the main effect of digital rural construction are negative in both
cases. After introducing the interaction term, its coefficient
is −1.676. The original coefficient of digital rural construction
changes from −0.082 to −0.118, showing a more significant
effect. This indicates that the negative impact of digital rural
construction on agricultural carbon emission intensity is
amplified with increased financial support for agriculture, thereby
verifying hypothesis 4.

5 Discussion

This study not only elucidated the logical mechanism
between digital rural construction and agricultural carbon

emission intensity through a literature review and related
theories but also comprehensively analyzed the impact path
and degree from intermediary effect and regulatory effect.
Future development suggestions were proposed to enhance the
study’s applicability. The primary regression results indicate that
digital rural construction significantly and negatively affects
agricultural carbon emission intensity, with regional differences,
aligning with previous scholarly findings. Digital rural development
can reduce agricultural carbon emissions and improve total factor
productivity in agriculture. The higher the level of economic growth,
the stronger the carbon emission reduction effect of digital rural
construction.

Compared to previous studies, this research has made the
following improvements:

(1) It combines theoretical mechanism analysis with scientific
demonstration, verifying digital rural construction’s overall
carbon reduction effect and further analyzing its dimensions.

(2) It emphasizes the critical role of digital rural construction in
enhancing rural human capital and underscores the
importance of financial support from government.

This study uses China as a case study to analyze the impact of digital
rural construction on agricultural carbon emission intensity, providing
a valuable reference for other countries aiming for agricultural low-
carbon emission reduction. While emphasizing the importance of rural
human capital, further analysis is needed on how to promote these
aspects in different regions better. Enhancing rural human capital to
bolster the role of digital rural construction in reducing agricultural
carbon emissions. With the intensification of global climate change,
reducing carbon emissions has become a global goal, which requires
joint efforts of all countries. Carbon emissions come mainly from

TABLE 8 Results of intermediary effect.

(1) (2) (3)

Acintensity Lnhuman Acintensity

digcounty −0.087*** 0.113*** −0.073**

(-2.62) (2.70) (-2.33)

lnhuman −0.126**

(-2.55)

Controls Yes Yes Yes

Year/Province Yes Yes Yes

_cons 0.346*** 2.115*** 0.612***

(6.79) (34.86) (4.98)

N 348 348 348

R2 0.925 0.952 0.927

Adj.R2 0.914 0.944 0.915

F 3.478 2.798 3.255

Sobel test

Est Std_err z p>|z|

a_coefficient 0.113 0.042 2.699 0.007

b_coefficient −0.126 0.049 −2.553 0.011

Indirect_effect_a*b −0.014 0.008 −1.855 0.064

Direct_effect_c’ −0.073 0.031 −2.332 0.020

Total_effect_c −0.087 0.033 −2.618 0.009

Proportion of total effect that is mediated: 0.163

Direct effect to Ratio of total 0.837

*p < 0.1 **p < 0.05 ***p < 0.01.

TABLE 9 Results of regulatory effect.

Acintensity

(1) (2)

digcounty −0.082** −0.118***

(-2.53) (-3.75)

financialsupport 0.242*** 0.421***

(2.78) (4.55)

c_digcountyc_financialsupport −1.676***

(-5.47)

Controls Yes Yes

Year/Province Yes Yes

_cons 0.338*** 0.153**

(6.84) (2.56)

N 348 348

R2 0.927 0.934

Adj.R2 0.916 0.923

F 3.267 5.988

*p < 0.1 **p< 0.05 ***p < 0.01.
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human activities and natural processes, such as the burning of fossil
fuels (Baoguo et al., 2022), development of industrialization
(Zhenshuang et al., 2022), urban land use (Xueqiang et al., 2023)
and development of agriculture. About one-fifth of the world’s
greenhouse gases come from agriculture according to a report by
the United Nations Food and Agriculture Organization. Agriculture
must do something active to fight climate change because it is closely
related to global sustainable development. Agriculture is an important
industry in many countries, especially in developing countries. Digital
rural construction can improve agricultural production efficiency by
improving the human capital level of farmers, and reduce agricultural
carbon emission intensity. Financial support for agriculture played
significant positive regulatory effect. Promote the international
exchange of China’s digital countryside construction and agricultural
carbon emission reduction experience can contribute to the low-carbon
development and sustainable development of global agriculture.

Some policy recommendations are proposed according to
empirical results:

(1) Pay more attention to the carbon reduction impact of digital
rural construction in agricultural development and accelerate the
pace of digital rural construction. Enhancing internet
accessibility in rural areas is foundational for the digital rural
construction. Cornwall region is the representative of the
implementation of the comprehensive strategy of rural
digitalization in the United Kingdom, mainly implementing
broadband access and digital training to strengthen the
construction of digital countryside. The application of digital
technology in agriculture can be optimized by the network
infrastructure. For example, in the United States, farmers can
accurately fertilize, irrigate according to precise data such as soil
conditions and crop growth, avoiding the waste of resources and
reducing carbon emissions in agricultural production.

(2) Focus on enhancing rural human capital, recognizing its long-
term significance in agricultural productivity. Empowering
rural labor with skills enhances productivity. Given the
pivotal role of the “human capital effect” in carbon
reduction, efforts should promote low-carbon concepts
among small and medium-sized farmers. Initiatives like
“technology to the countryside” should encourage farmers
to adopt new technologies and agricultural methods, ensuring
a smooth transmission path for the human capital effect of the
digital countryside.

(3) Increase central financial support for digital agriculture
development. Such support plays a vital role in regulating
digital countryside construction. Recognizing the infancy of
digital agriculture in certain areas, especially those with weak
financial resources and infrastructure, the central government
should provide targeted subsidies and investments to bolster
development. Securing financial investment is paramount for
the ambitious project of digital rural construction.

(4) Formulating differentiated countermeasures to heterogeneity
results. In view of regional heterogeneity, major grain-
producing areas should play an exemplary role for other
regions. For example, integrate agricultural production
data, market information and technical services to provide
digital services for farmers. From the sub-dimension of digital
rural construction, the mobile phones and the Internet played

a significant role in promoting agricultural carbon emission
reduction which need supportting. But the governments also
need to actively promote digital financial inclusion in rural
areas. Digital inclusive finance is the product of the
combination of digital technology and inclusive finance,
which has an important impact on farmers’ employment
and production.

6 Conclusion

Drawing on provincial panel data from 2011 to 2022, this study
employed the entropy and carbon emission factor methods to gauge
China’s digital rural construction and agricultural carbon emission
intensity. Through panel fixed effect, intermediary effect, regulatory
effect, the study explored the impact of digital rural construction on
agricultural carbon emission intensity, yielding the following key
conclusions:

(1) Digital rural construction significantly reduces agricultural
carbon emission intensity, indicating its potential to
agricultural carbon emission reduction. This conclusion
remains robust even after accounting for endogeneity and
robustness testing.

(2) The impact of digital rural construction on agricultural
carbon emission intensity varies across regions, with a
more pronounced effect observed in major grain-producing
areas. Among digital rural construction subdimensions,
digital infrastructure construction notably curbs
agricultural carbon emissions.

(3) Intermediary effect analysis reveals that digital rural
construction indirectly reduces agricultural carbon
emissions by elevating rural human capital, harnessing the
“human capital effect” to achieve emission reduction. The
direct and indirect effects account for 83.7% and 16.3% of the
total impact, respectively. Enhanced rural human capital
influences planting decisions and behaviors, affecting
agricultural carbon emissions. Digital rural construction
transcends temporal and spatial constraints, facilitating
farmer access to new technologies and bolstering
environmental awareness.

(4) Regulatory effect analysis demonstrates that government
financial support for agriculture positively adjusts the
impact of digital rural construction, with varying effects
across regions based on different levels of financial support.
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