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Green technology has received continuous attention and facing challenges of
transformation because of the growing environmental concern, especially the
carbon emissions resulting in global warming. In the Industry 4.0 era, green
technology transforms into smart green technology benefits from the
convergence with digital technologies. However, little research investigates
the role of green and digital technology convergence (GDC) on carbon
emission reduction. This study proposes a novel measurement of the GDC
level of enterprise based on the network method and examines its pattern
and dynamic. Moreover, we empirically analyze the impact of GDC on carbon
emission reduction. Results show that GDC has a significant carbon reduction
effect. Moreover, GDC reduces enterprises’ carbon emissions by improving green
innovation quality. Furthermore, an enterprise’s technology convergence
capability moderates the focal relationship. The heterogeneity analysis results
reveal that the carbon reduction effect of GDC is stronger in large, state-owned,
non-labor-intensive and heavy-pollution enterprises. The findings contribute to a
better understanding of the fusion of greening and digitalization and provide
useful insights for sustainable development policy-making.
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1 Introduction

Global warming will cause vast damage to natural ecologies, disrupting human living
environments. The climate risk also may threaten economic and social development, such
as triggering systematic risks in the global banking system (Wu et al., 2024; Liu B. et al.,
2024). Carbon emission is a notable reason for global warming. Numerous countries have
implemented policies aimed at reducing carbon emissions. As the world’s largest
developing country and the biggest emitter of carbon dioxide, China places significant
emphasis on addressing climate change and is actively engaged in various efforts to reduce
emissions. China declared its “carbon peaking” and “carbon neutrality” goals and plans to
reach peak carbon use by 2030 and become carbon neutral by 2060. Various industrial
processes will emit much carbon dioxide into the atmosphere. Therefore, enterprises bear
important responsibilities for carbon emission reduction (Luo et al., 2023). To reduce
carbon emissions, green technological innovation is one of the critical factors (Weina
et al., 2016; Nikzad and Sedigh, 2017). However, in the Industry 4.0 era, green technology
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innovation has faced challenges in transformation. Due to digital
technology’s universality and penetration characteristics, its
convergence with green technology facilitates the
transformation. However, few studies have discussed the
convergence of green and digital technology and its carbon
reduction effect.

Extensive studies have shed light on the various drivers of
carbon emission reduction. For example, in recent studies,
Ren et al. (2024a) investigated the impact of economic
freedom on corporate carbon emissions and revealed potential
mechanisms regarding resource utilization and industrial
agglomeration. Ren et al. (2024b) studied the role of climate
vulnerability in global carbon emissions and found a significant
spatial convergence pattern. Moreover, from the perspective of
information disclosure, Wang et al. (2024) explored the influence
of climate risk disclosure on carbon emissions. They found
that this relationship is moderated by executives’
environmental experience, investor attention, and government
environmental regulation. Furthermore, Sun et al. (2023) found
that the development of ICT can help reduce global
carbon emissions, especially in middle-income countries.
There are also earlier studies documenting the various sources
affecting carbon emission reduction, such as digital financial
inclusion (Wang et al., 2022) and political connections (Wang
et al., 2023). In addition, literature has also focused on the
positive role of green technology innovation in carbon
emission reduction (see e.g., Weina et al., 2016; Nikzad and
Sedigh, 2017).

However, we noticed that there is no consensus in the existing
literature on the relationship between green technology and carbon
emissions. Braungardt et al. (2016) pointed out that the carbon
reduction effects of green technology may be outweighed by the
increase in carbon emissions associated with economic growth, as
the rebound effect could lead to higher energy consumption. Weina
et al. (2016) also found in their study that although green technology
has improved environmental productivity, it has not resulted in
significant carbon emission reductions. Lin and Ma (2022)
highlighted that green technology has no significant carbon
reduction effect in a study of 264 cities in China. The reason for
this debate is the difference between the quality of green technology
innovation and carbon reduction efficiency (Acemoglu et al., 2012;
Jaffe et al., 2002). Thus, green technology needs to transform to
improve quality and efficiency. Digitalization is a critical direction
for green technology transformation in the era of Industry 4.0 (Cao
et al., 2024).

The critical role of digital technology adoption in business
transformation has been widely discussed in literature. Recent
studies document that Ran et al. (2024) unveiled the effect of
digital technology adoption in promoting the dual circulation of
enterprise. Liu Y. et al. (2024) found that digital technology
application moderates the relationship between servitization and
service business focus. Lu et al. (2023) revealed the moderating
effect of digital technology adoption on the relationship between
supply chain governance and resilience performance. In addition,
studies have investigated the impact of digital transformation on
green technology from the perspective of strategic decision-
making, and believe that digital transformation of enterprises
can promote green technology innovation (Tang et al., 2023;

Han et al., 2024). However, there is still a lack of research
revealing the role of digital technology in achieving
environmental goals from the perspective of technology
convergence (Loeser et al., 2017).

According to the technology convergence theory, green and
digital technology convergence (GDC) represents the integration
of technological knowledge across these two different disciplines
and the blurring of their boundaries (see e.g., Hacklin, 2008; Sung
et al., 2010; Curran, 2013; Kim and Lee, 2017; Feng et al., 2020;
San Kim and Sohn, 2020). The convergence of green and digital
technology is a complex process. The changes caused by the
converging process mainly lie in two aspects. On the one
hand, the integration of green technology and digital
technology allows for the unified digital encoding of
technological knowledge and information, enhancing the level
of information sharing and knowledge integration in enterprises’
green technology, thereby improving technological efficiency
(Goldfarb and Tucker, 2019). On the other hand, the
convergence of digital technology further enables real-time
monitoring, control, and optimization of the application
processes of green technology to reduce energy waste.

Studies have presented operational frameworks for measuring
technology convergence using the co-occurrence of technology
classifications of patents (Curran and Leker, 2011; Jeong et al.,
2014), as patent reflects the firms’ technological trajectories and
demonstrate their technological changes. The International Patent
Classification (IPC) established by the World Intellectual Property
Organization (WIPO) provides an international standard for
technology classification. On this basis, GDC relationships can
be constructed according to the co-occurrence of both green and
digital technology in the firms’ patents. The co-occurrence
relationships embedded in the numerous patents will form a
complex technology convergence network. Therefore, social
network analysis is an effective tool for measuring and
analyzing GDC (Curran, 2013).

Based on the above analysis, this study aims to investigate
the impact of GDC on carbon emission reduction and the
influencing mechanisms hidden behind the Chinese listed
companies for 2006–2021. The main contributions of this study
are therefore as follows: 1) a novel measurement of the
convergence of green and digital technology is proposed in this
study; this not only unveils the transformation of green
technology to be smart or digital but also offers new evidence
for the GDC level and patterns in China; 2) the influencing
mechanism between GDC and carbon emission reduction is
systematically analyzed in this study; this unveils the role of
green innovation quality and technology convergence capability
and provides management and policy insights for stakeholders;
3) the heterogeneity effects of GDC is closely examined and
expands the understanding of the carbon emission reduction
effects of GDC.

The remainder of this study is organized as follows. Section 2 is
the theoretical mechanisms which reviews the relevant literature and
develops our research hypotheses. Section 3 presents the data source
and measurement of GDC. Section 4 provides the variable
definitions and econometrics model. Section 5 reports the results
of empirical studies and the conclusions and policy implications are
concluded in Section 6.
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2 Theoretical mechanisms

2.1 Green and digital technology
convergence and carbon
emission reduction

Studies define technology convergence as the phenomenon of
the blurring of boundaries between at least two different areas of
technology (Kodama, 1995; Curran and Leker, 2011; Kim et al.,
2014). At the innovation level, converging fields appear to be
characterized by greater novelty and more breakthrough
outcomes (Schumpeter, 1939; No and Park, 2010; Karvonen and
Kässi, 2013). Among the converging fields, digital technology is a
general technology that influences almost all technologies
(Nambisan et al., 2019). Convergence occurs when digital
technology is embedded into technologies in other sectors (Park
and Heo, 2020). The transformation brought about by digital
technologies towards intelligence is amplified by these
technological integrations (Schwab, 2017). The convergence of
digital technology reflects its disruptive impact on reorganizing
and transforming innovation processes (e.g., Curran, 2013).

The technological convergence theory provides theoretical
foundations for the carbon emission reduction effect of GDC.
The technology convergence theory explains the process of the
convergence of green and digital technology, which also unveils
the changes of green technology to be smarter after convergence. In
the context of GDC, the integration of digital technology enables
real-time monitoring, control, and optimization of the application
processes of green technology to reduce energy waste. In addition,
the convergence of digital technology promotes digitizedmonitoring
of energy consumption, accurate measurements, and predictions of
emissions, and planning and implementation of efficiency
improvements, which enable the achievement of on-demand
supply and efficient production and reduce energy consumption
from the source. The convergence of digital technologies enables
value realization through energy conservation, reduction in
consumption and emissions, quality improvement, and efficiency
enhancement (Noussan and Tagliapietra, 2020).

Moreover, GDC creates new knowledge with the integration
of knowledge in green and digital technology fields, which
improves the efficiency of green technology implementation.
Recent studies have recognized the relationship between the
digitalization of green technology and carbon emissions, but
they only examined a specific green technology area. For
example, existing research has documented the fusion of digital
technologies in environmental, energy, and resource-related fields
(Zhang et al., 2023; Zeng and Yang, 2023). In terms of energy
production and management, this fusion has led to the
development of photovoltaics, wind power, and other types of
renewable energy, which have further led to diverse
complementary fields of clean energy and decarbonization
(Chen et al., 2021). In addition, the integration of green
technology and digital technology allows for the unified digital
encoding of technological knowledge and information, enhancing
the level of information sharing and knowledge integration in
enterprises’ green technology, thereby improving technological
efficiency (Goldfarb and Tucker, 2019).

Therefore, we propose the following hypothesis,

H1. GDC reduces the carbon emission intensity of enterprises.

2.2 Green innovation quality channel

The knowledge-based view holds that the convergence of digital
technologies will broaden the breadth and depth of knowledge in
green technology innovation, thereby improving the quality of green
technology innovation. Yoo et al. (2012) argued that the availability
of digital technology has led to generativity and convergence
characteristics in innovation, largely due to the integration of
knowledge (Brynjolfsson and McAfee, 2014; Di Vaio et al., 2021).
Moreover, digital technology has helped expand the breadth and
depth of external knowledge acquisition, enabling them to achieve
breakthroughs through existing technological structures and
domain limitations and acquire cutting-edge knowledge
efficiently (Radicic and Petković, 2023; Yang et al., 2022).
Therefore, digital technology can dismantle enterprises’ path
dependence on previous technological trajectories, enabling them
to achieve green knowledge integration across different knowledge
domains, reconstruct knowledge repositories, and enhance the
quality of green innovation (Ning et al., 2023).

Enhancing the quality of green innovation can significantly
contribute to carbon emission reduction. Green technology
encompasses a wide range of solutions, including pollution
control, recycling, ecological treatment, purification, monitoring,
and various evaluation techniques. From a green innovation
perspective, advancements in clean recycling technologies can
reduce the consumption of fossil fuels like coal and oil, increase
resource and energy efficiency and play a crucial role in lowering
CO2 emissions. Innovations in pollution control and ecological
technologies can effectively eliminate or transform pollutants
generated during production, thus reducing direct emissions of
substances such as CO2. Green product innovation focuses on
meeting environmental standards throughout the product’s entire
life cycle, aiming to deliver environmental benefits at every stage
(Zhang et al., 2020). Consequently, the improvement of green
technology innovation quality will better play these carbon
reduction effects. At the same time, by increasing the efficiency
of green technology innovation, it is possible to achieve greater
carbon reduction with the same level of innovation input, thereby
weakening the rebound effect.

H2. GDC enhances the quality of an enterprise’s green innovations
reducing its carbon emission intensity.

2.3 Moderating effects of technology
convergence capability

According to the technological convergence theory, the
converging fields can produce greater novelty and more
breakthrough outcomes (Schumpeter, 1939; No and Park, 2010;
Karvonen and Kässi, 2013). Kodama (1991) highlighted the
significance of technological convergence capability for achieving
breakthroughs by building on existing technologies and merging
different technologies. This convergence broadens the scope of
technological impact, frequently resulting in the creation of
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advanced products. (Adner and Levinthal, 2002; Gauch and Blind,
2015). At the technical level, technological problems are becoming
increasingly complex, and it is necessary to integrate technologies
from different disciplines to solve these problems (Hacklin and
Wallin, 2013). Converged fields seem to have greater innovation and
breakthrough results (No and Park, 2010; Karvonen and Kässi,
2013). In addition, technology convergence can open up new
technological fields and generate opportunities for technological
recombination. At the enterprise level, technology convergence
provides a wide range of technological solutions (Nordmann,
2004; Roco and Bainbridge, 2002), enhancing the innovation
capabilities of enterprises (Karvonen and Kässi, 2013).

The convergence of green and digital technology involves the
intersection of two types of knowledge. The technological
integration capability of enterprises facilitates innovation through
increasing interdisciplinary knowledge (Kose and Sakata, 2019).
And it reshapes innovation trends and creates new innovation
pathways (No and Park, 2010; Kim et al., 2012; Curran, 2013).
The ability to integrate technologies will strengthen the synergy
between digital and green technologies within enterprises,
amplifying their combined effect on reducing carbon emissions.

H3. Enterprise’s technology convergence capability moderates the
relationship between green and digital technology convergence and
carbon emission reduction.

We present our research framework in Figure 1.

3 Data and measurement of GDC

3.1 Data

For the empirical analysis, two data sets are combined: patent
data and a firm’s basic information and financial data. In this study,
listed companies in the A-share market are selected to examine the
level and effect of GDC. First, patent data of the sample companies
from the China National Intellectual Property Administration
(CNIPA) database are used in the measurement of GDC. This
study uses patents applied in China from 2006 to 2021. Second,
the IPC classification provided by the CNIPA allocates lists of sub-
class IPCs for each patent. Third, we identify the green patents based
on the “International Patent Classification Green List” provided by
the World Intellectual Property Organization (WIPO). The list

includes seven categories of green technologies and the
corresponding IPCs. Fourth, the digital technologies are
identified following Bielig (2023). As a result, 139,069 green
patents are collected from A-share-listed companies in China.

This study also uses data from the CSMAR database. We collect
the basic information and financial data of the A-share listed
companies from 2006 to 2021. We performed data cleansing
before conducting the empirical work by deleting observations
with missing key variables, companies labeled as “ST,” and
companies in the financial industry. We then winsorized the
continuous variables at 1%, resulting in a final dataset containing
22,946 valid observations from 2,193 listed companies.

3.1.1 Technology convergence network
construction

The measurement of GDC is based on the analysis of the
technology convergence network. Therefore, we construct the
technology convergence network using patent data. A patent
often covers multiple technical fields. Multiple technologies
appearing concurrently in the same patent are called co-
occurrence, which is a direct manifestation of technology
convergence (Curran and Leker, 2011; Geum et al., 2012;
Karvonen and Kässi, 2013).

Focusing on the co-classification situation of green patent data,
we found that of all 139,067 green patents, 37,009 inventions were
co-classified with digital technologies. Let #Inv(G)t denote the
number of inventions in green technologies filed in year t and
#Inv(G,D)t be the number of inventions that have digital
technology and green technology co-classified according to IPC
in year t. Figure 2 illustrates the dynamic of the proportion of green
and digital technology co-occurrent inventions
(i.e., #Inv(G,D)t/#Inv(G)t).). We found that the convergence of
green and digital technologies has significantly increased since 2012.

Furthermore, we build the technology convergence network
according to the following steps. First, the four-digit IPC
technology classes are nodes, and the edges represent the co-
occurrence in one patent between technology classes i and j.
Second, since technology convergence is a long-term dynamic
development process, we adopt the time window method to
reveal this path. The idea behind this method is to present the
technology convergence trends based on time slices. Following Funk
and Owen-Smith (2017), we choose 1 year as the sliding time
window to build the technology convergence network in the
baseline regression and adopt 3-year time window in the robust
analysis. To better illustrate the network construction process1, we
visualize this process in Figure 3. Taking 2006 and 2021 as examples,
Figure 4 illustrates the technology convergence network. If two IPC
classification numbers appear in the same patent, a link is formed
between the IPCs.

3.1.2 Measurement of GDC
Based on the technology convergence network, we calculate the

GDC level of each enterprise. First, we obtain the shortest path of

FIGURE 1
Research framework.

1 Refer to Kim et al. (2019) and Curran (2013) for a detailed construction of

this network.
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each IPC to the digital technology in the technology convergence
network. Second, we calculate the proportion of each firm’s
IPCs. Third, we take the proportion of IPC and their shortest
path to digital technology into consideration and multiply them
to evaluate GDC level. The process of measurement is illustrated
in Figure 5.

In sum, we perform the GDC measurement by using the
following equation:

GDCi,t � ∑
j∈IPCi,t

Prop IPCi,j,t × Pathj,t (1)

where Prop IPCi,j,t indicates firm i’s proportion of IPC j in year t,
and Pathj,t denotes the reciprocal of average path length from IPC j
to the digital technology in the technology convergence network. In

this case, firm i’s GDC represents its connectivity with the digital
technology.

4 Variables and methods

4.1 Variables

4.1.1 Dependent variable
Carbon emission intensity. We adopted the method of Konadu

et al. (2022) to measure enterprises’ carbon emissions according to
the “greenhouse gas accounting system.” As such, carbon emissions
are divided into those that come directly or indirectly from sources
owned or controlled by an enterprise. To capture these data, we

FIGURE 2
The proportion of green invention co-classified with digital technologies in IPC.

FIGURE 3
Construction of the technology convergence network.
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referred to company annual reports. For companies that only
disclosed different types of consumption, we calculated their total
carbon emissions based on the fuel carbon emission coefficients
from their reports2. We used the ratio of total carbon emissions to
total operating revenue to measure carbon emission intensity (Li
et al., 2021), representing tons of carbon emissions per million yuan
of revenue.

4.1.2 Independent variable
GDC. Enterprises’ GDC was measured based on the technology

convergence network (Kim et al., 2019; Kose and Sakata, 2019),
which was constructed using IPCs as nodes and co-occurrence
relationships as links. We calculated the shortest distance from
the IPC classification number of the patent to the IPC classification
number of the digital technology field for each industry. We then
calculated the proportion of IPCs owned by each enterprise
multiplied by the reciprocal of the shortest distance.

4.1.3 Mediating variable
Green innovation quality. As discussed in the hypothesis, GDC

can achieve carbon reduction effects by improving the quality of
green technologies. Griliches et al. (1987) showed that the value
distribution of innovation is extremely skewed, with most of the
influence concentrated on a few crucial and highly cited patents.
Flammer and Kacperczyk (2016) used the number of patent
citations to measure the quality of enterprise innovation. To this
end, we used the number of patent citations, QS, to measure the
quality of green innovations. To ensure robustness, we also used the
ratio of the cumulative number of green patent citations to the total
number of employees, QR, as an alternative measure.

4.1.4 Moderating variable
Technology convergence capability. Based on Kim et al. (2017),

wemeasured firms’ technology convergence capability, TC, based on
their centrality in the technology convergence network. The specific
construction of TC requires three steps. First, we calculated the
degree and page rank centralities for each IPC technology territory
in the convergence network. Second, we compute the proportion of
IPC per territory owned by the enterprise. The proportion of IPCs
owned indicates the extent to which the enterprise uses these

FIGURE 4
Technology convergence network of green innovation. Note: Nodes in red and blue denote nondigital technologies and digital technologies,
respectively, in green innovation. (A) Year 2006 (B) Year 2021.

FIGURE 5
GDC measurement.

2 The carbon emission coefficients are specified in the “IPCC National

Greenhouse Gas Inventory Guidelines.”
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technologies (Scott, 2017). Third, the TC of each firm was measured
by the aggregate product of the centrality index of the IPC in each
territory and the proportion of IPCs owned by the enterprise. In the
first stage, we used degree and page rank centrality, obtaining two
alternative TC measurements: TC_degree and TC_page_rank.

4.1.5 Control variables
To minimize bias caused by omitted variables, we control the

following variables that may affect enterprises’ carbon emission
intensity: the age of the enterprise (Age), which is the logarithm
of the difference between the current and established year plus one;
the size of the enterprise (Size), which is the logarithm of total assets;
the asset-liability ratio (Leverage), which is the total liabilities
divided by assets; Tobin’s Q, which is the development ability
and market value of firms; Cashflow, which is the ratio of net
cash flows from operating activities to total assets; operating income
growth (Growth), which is the proportion of revenue growth over
the previous year; total asset turnover rate (Turnover), which is the
ratio of operating income to total assets; and concentration ratio
(Top3), which is the shareholding ratio of the top three shareholders.

4.1.6 Descriptive statistics of variables
The descriptive statistics for each variable are presented in

Table 1. Descriptive statistics show that the dependent variable
carbon emission intensity has an average value of 47.360 and a
standard deviation of 22.481. The minimum value of the
independent variable GDC is 0. This is because some enterprises
have not yet achieved the convergence of green and digital
technology, especially in the earlier sample years. The moderating
variable TC_degree and TC_page_rank also has a minimum value of
0, which reflects the existing of the technology convergence network
not having the connected areas in the corresponding patent data for
calculation.

4.2 Econometric models

To verify whether GDC reduces enterprise carbon emission
intensity, the fixed-effect panel data model is constructed as follows:

Carboni,t � α0 + α1GDCi,t + α2Zi,t + Firmi + Yeart + εi,t , (2)
where Carboni,t is the dependent variable, representing the carbon
emission intensity of focal firm i in year t.GDCi,t represent the GDC
of firm i in year t and Zi,t represents the firm-level control variables
(Age, Size, Leverage, Tobin’s Q, Cashflow, Turnover, Growth, and
Top3). Firmi and Yeart are the firm and year dummy variables,
respectively, and εi,t is the random error term.

To verify whether GDC reduces enterprise carbon emission
intensity by improving the green innovation quality, a two-way
effect model using the mediating variable as the explained variable
was constructed as follows:

Qualityi,t � β0 + β1GDCi,t + β2Zi,t + Firmi + Yeart + εi,t , (3)
Carboni,t � γ0 + γ1GDCi,t + γ2Qualityi,t + γ3Zi,t + Firmi + Yeart

+ εi,t ,

(4)
where Qualityi,t represents green innovation quality, measured by
the cumulative number of patent citations plus one to obtain QS.
The cumulative number of green patent citations and the total
number of employee ratios QR are used for robustness checks. All
other variables in Equations 3, 4 are the same as those in Equation 2.

To further explore the moderating effect of technological
convergence capability on enterprises’ carbon emission intensity,
the intersection of GDC and technology convergence capability was
introduced in the following regression equation:

Carboni,t � δ0 + δ1GDCi,t + δ2TCi,t + δ3GDCi,t × TCi,t + δ4Zi,t

+ Firmi + Yeart + εi,t ,

(5)
where TCi,t represents a firm’s technology convergence capability,
calculated as TC_degree and TC_page_rank for robustness using
degree and page-rank centralities, respectively. The other variables
in Equation 5 are the same as those in Equation 2.

5 Empirical analysis

5.1 Benchmark regression results

We used Equation 2 to evaluate the influence of GDC on carbon
emission intensity using a two-way fixed-effects model. Table 2 lists
the empirical results, indicating that GDC significantly reduced
carbon emissions. Specifically, the regression model in Column (1)
includes the independent variable and the year fixed-effects without
control variables, indicating that GDC exhibited a prominently
negative influence on carbon emission intensity. The model in
Column (2) includes the firm fixed effects; GDC was still
negatively correlated with carbon emission intensity. The models
in Columns (3) and (4) add control variables on the base of Columns
(1) and (2), respectively. Column (4) presents the results of the full
model, indicating that GDC reduces firm carbon emission intensity.

TABLE 1 Descriptive statistics of variable.

Variable Mean Std. Dev Min Max

Carbon emission intensity 47.360 22.481 17.935 171.289

GDC 0.072 0.279 0.000 2.586

Age 2.745 0.370 1.946 3.296

Size 22.254 1.249 20.400 24.910

Leverage 0.442 0.203 0.007 0.999

Tobin’s Q 1.844 0.874 0.970 4.218

Cashflow 0.049 0.182 −24.974 2.222

Turnover 0.626 0.378 0.089 2.217

Growth 0.192 0.389 −0.475 2.475

Top3 54.385 15.757 0.811 99.230

QS 0.829 1.299 0.000 8.003

QR 0.163 0.422 0.000 2.265

TC_degree 0.005 0.021 0.000 0.162

TC_page_rank 0.001 0.005 0.000 0.029
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Taken together, these findings support Hypothesis 1. That is, GDC
positively affects firms’ carbon emission reductions. This finding
shows that the convergence of digital technology enables real-time
monitoring, control, and optimization of the application processes of
green technology to reduce energy waste, thereby reducing carbon
emissions.Moreover, the integrated digital technologymay contribute
to the unified digital encoding of technological knowledge, which
improves the efficiency of green technology applications.

5.2 Underlying mechanism

5.2.1 Mediating effect of green innovation quality
In this section, we explore whether GDC improves green

innovation quality, leading to lower carbon emissions. Table 3

presents the results. The findings in Column 1 show that an
increase in GDC implied a significant increase in green
innovation quality (β = 0.346, p < 0.01). Column 2 shows that
the green innovation citation scale had a significant negative effect
on carbon emission intensity at the 1% level (β = −0.720).
Moreover, GDC had a significant negative effect on carbon
emission intensity at the 10% level (β = −0.192). Compared
with the baseline regression in Table 2, the GDC coefficient
decreased from −0.456 to −0.192, indicating that the green
innovation citation scale positively mediated the relationship
between GDC and carbon emission intensity. Finally, Columns
3 and 4 present similar results of the green innovation citation ratio
as the mediating variable.

5.2.2 Moderating effect of technology
convergence capability

As discussed previously in Section 2.3, social network theory
states that companies in different positions within a network may
have differentiated information and resources. Meanwhile, from
an organizational learning perspective, companies with high
centrality can access more timely information, further
enhancing the potential and capacity for organizational learning
(Brown and Duguid, 1991). Therefore, the position of a firm in the
convergence network is highly correlated with GDC. Therefore,
analyzing whether technology convergence capability affects the
relationship between GDC and carbon emission intensity is
necessary; hence, we measured technology convergence
capability based on network centrality. In Columns (1) and (2)
of Table 4, the coefficients of GDC were all negative and
significant, indicating that GDC significantly reduced carbon
emission intensity. This provides further support to Hypothesis
1. Moreover, the interaction term between GDC and technology
convergence capability was significantly negative, meaning that a
firm’s technology convergence capability moderates the relevance
of GDC and carbon emission intensity, supporting Hypothesis
3 and demonstrating that companies possessing higher technology
convergence capabilities have stronger carbon emission
reduction effects.

5.3 Heterogeneous effects

Regarding the issue of carbon emissions, the special nature of
state-owned enterprises in China suggests that they must
undertake more corporate social responsibility than other firms.
They also receive more support from relevant government and
banking departments. Therefore, it is necessary to further explore
whether GDC has a heterogeneous impact on carbon
emission intensity.

5.3.1 Firm heterogeneity
We divided the entire sample into state-owned and non-state-

owned enterprises for group regression. Column (1) of Table 5
indicates that the coefficient of GDC in the subsample of state-
owned enterprises was negative and the estimated coefficient was
significant at the 1% level. In Column (2), the coefficient of GDC in
the subsample of private enterprises was positive but not significant,
indicating that GDC has a more obvious effect on the carbon

TABLE 2 The results of baseline regression model.

Variable (1) (2) (3) (4)

GDC −0.379** −0.673*** −0.411** −0.456***

(0.168) (0.253) (0.173) (0.176)

Age 0.943 −3.453

(0.994) (2.340)

Size −3.182*** −3.821***

(0.454) (0.466)

Leverage 1.005 2.260

(1.569) (1.581)

Tobin’s Q −0.451* −1.861***

(0.236) (0.296)

Cashflow −2.947 −4.798

(3.505) (3.405)

Turnover −10.351*** −8.013***

(0.918) (0.919)

Growth 10.194*** 10.391***

(0.611) (0.631)

Top3 0.075*** 0.054**

(0.026) (0.026)

Constant 47.394*** 47.345*** 116.483*** 144.525***

(0.148) (0.139) (8.622) (12.228)

Year FE YES NO NO YES

Firm FE NO YES YES YES

R-squared 0.015 0.219 0.256 0.272

Observations 22,946 22,946 22,946 22,946

Note: ppp, pp and p denote statistical significance at 1%, 5%, and 10% levels, respectively.

The robust standard errors presented in the brackets are based on standard errors clustered

at firm level, and are estimated based on the null hypothesis that the estimated coefficients

are equal to 0. In this table, we regress the baseline model from 2006 to 2021. Column

1 reports the empirical results of the impact of GDC, on carbon emission intensity without

control variable and firm fixed effect. In columns 2 and 3, the firm fixed effects and control

variables are included, respectively. In column (4) is the full model.
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emission reduction of state-owned enterprises. This result could be
attributed to the inherent political affiliations of state-owned
enterprises. Under the goals of “carbon peaking” and “carbon
neutrality,” state-owned enterprises have stronger environmental
responsibilities and regulations and are more willing to improve
their GDC to reduce emissions. In addition, GDC requires a large
amount of funding, which state-owned enterprises have in
abundance. Hence, they are more capable of achieving the
transformation of green technology by integrating it with digital
technologies.

We also examine the heterogeneity between small and large
enterprises3. The descriptive statistics of the GDC level for the small
enterprise at the 25%, 50%, and 75% quantiles are 0, 0.002, and
0.016, respectively, while the corresponding values of large
enterprises are 0, 0.006, and 0.117. The value 0 at the GDC level

TABLE 3 The mediating effect of green innovation quality.

Variable (1) (2) (3) (4)

Green innovation citation
scale

Carbon emission
intensity

Green innovation citation
ratio

Carbon emission
intensity

GDC 0.346*** −0.192* 0.054*** −0.342*

(0.097) (0.168) (0.016) (0.176)

QS −0.720***

(0.227)

QR −1.917***

(0.606)

Age 0.137 −2.507 0.014 −2.453

(0.178) (2.345) (0.063) (2.351)

Size 0.201*** −3.465*** 0.001 −3.637***

(0.032) (0.469) (0.012) (0.467)

Leverage 0.331*** 2.986* 0.122*** 3.049*

(0.090) (1.584) (0.040) (1.589)

Tobin’s Q 0.007 −1.997*** 0.008 −1.952***

(0.013) (0.297) (0.005) (0.298)

Cashflow −0.002 −4.315 0.017 −4.280

(0.075) (3.444) (0.037) (3.427)

Turnover −0.023 −7.994*** −0.002 −8.033***

(0.064) (0.950) (0.022) (0.949)

Growth −0.213*** 14.366*** −0.051*** 14.419***

(0.026) (0.766) (0.010) (0.766)

Top3 −0.003** 0.072*** −0.003*** 0.068**

(0.001) (0.027) (0.001) (0.027)

Constant −3.959*** 133.129*** 0.180 136.674***

(0.806) (12.401) (0.290) (12.370)

Year FE YES YES YES YES

Firm FE YES YES YES YES

R-squared 0.749 0.266 0.631 0.266

Observations 22,946 22,946 22,946 22,946

Note: ppp, pp and p denote statistical significance at 1%, 5%, and 10% levels, respectively. The robust standard errors presented in the brackets are based on standard errors clustered at firm level,

and are estimated based on the null hypothesis that the estimated coefficients are equal to 0.

3 In this study, we used the logarithm of the total assets of an enterprise as

proxy of firm size.
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shows that there are enterprises that have not realized the
convergence of green and digital technology in the early sample
years. Moreover, the GDC level of small enterprises is lower than

that of large enterprises. The regression results are reported in
Columns (3)–(4) of Table 5. The coefficient of GDC in Column
(3) is negatively significant, indicating that GDC reduces carbon
emissions in large enterprises. However, the result in Column (4)
shows that GDC has no significant influence on carbon emission
reduction in small enterprises. The reason for this result may lie in
the advantages of large enterprises in terms of capital, talent, and
technology, resulting in a higher GDC degree and more noticeable
digital carbon reduction effects.

5.3.2 Industry heterogeneity
Regarding industry heterogeneity, we investigate the carbon

emission reduction effect of GDC at different industry pollution
levels. We categorize industries into heavy-pollution and clean
industries based on the “Guidelines for Environmental
Information Disclosure of Listed Companies” issued by the State
Environmental Protection Administration in September 2010. In
this guideline, the thermal power, steel, cement, electrolytic
aluminum, coal, metallurgy, chemicals, petrochemicals, building
materials, papermaking, brewing, pharmaceuticals, fermentation,
textiles, leather, and mining are defined as heavy-pollution
industries, whereas other industries are referred to as “clean
industries.” The results are presented in Columns (5) and (6) in
Table 5. We find that the GDC has a significant carbon emission
reduction effect in the heavy-pollution industries, while does not
have a significant impact in clean industries. The reason behind this
may be that the heavy-pollution industries are key targets monitored
by China’s environmental protection departments, and green
technology innovation is crucial for enterprises in these sectors.
Therefore, heavy-pollution industries are more motivated to
implement digital transformation of green technology innovation
to improve carbon reduction efficiency.

We also examine the effects of GDC in the labor-intensive and
non-labor-intensive industries for heterogeneity analysis. The
descriptive statistics of the GDC level for the labor-intensive
industries at the 25%, 50%, and 75% quantiles are 0, 0.001, and
0.056, respectively, while the corresponding values of non-labor-
intensive enterprise are 0, 0.002, and 0.116. We find that the GDC
level of labor-intensive industries is lower than that of non-labor-
intensive industries. The regression results are reported in Columns
(7) and (8) in Table 5. Results show that the coefficient of GDC is
significant in non-labor-intensive industries while not significant in
labor-intensive industries. In this regard, the possible explanation is
enterprises in non-labor-intensive industries have stronger capital
or technological capabilities and are more willing to adopt digital
technologies. Thus, they can fully leverage the carbon reduction
effects of GDC.

5.3.3 Technology field heterogeneity
This study explores the impact of GDC on carbon emission in

different digital technology fields. The results in Columns (1)–(3) in
Table 6 show that integrating enterprises with different digital
technologies results in different carbon emission reduction
effects. Specifically, integration with digital communication
technology and computer technology significantly reduced
enterprises’ carbon emission intensity. The potential reason may
be that the digital communication and computer technology enable

TABLE 4 Moderating effect of technology convergence capability.

Variable (1) (2)

Degree centrality Page-Rank centrality

GDC −0.757* −0.739*

(0.454) (0.448)

TC1 −0.874

(1.398)

GDC ×TC1 −0.123*

(0.068)

TC2 −1.133

(27.945)

GDC ×TC2 −0.384*

(0.226)

Age −2.006 −1.340

(1.663) (1.533)

Size −1.510*** −1.208***

(0.310) (0.283)

Leverage 3.009*** 3.242***

(1.112) (1.038)

Tobin’s Q −0.756*** −0.647***

(0.189) (0.173)

Cashflow −5.506*** −5.233***

(2.040) (1.706)

Turnover −6.055*** −5.959***

(0.625) (0.583)

Growth 7.630*** 8.754***

(0.379) (0.399)

Top3 0.030* 0.034**

(0.018) (0.016)

Constant 85.941*** 72.697***

(8.118) (6.339)

Year FE YES YES

Firm FE YES YES

R-squared 0.326 0.328

Observations 22,946 22,946

Note: ppp, pp and p denote statistical significance at 1%, 5%, and 10% levels, respectively.

The robust standard errors presented in the brackets are based on standard errors clustered

at firm level, and are estimated based on the null hypothesis that the estimated coefficients

are equal to 0.
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real-timemonitoring, control, and optimization of the application of
green technology to reduce energy waste.

5.4 Robustness tests

5.4.1 Alternative model: PSM method
As companies with high carbon emissions are more inclined to

increase GDC, leading to possible selection bias, the coefficient
results obtained from our regression may be higher than the
average treatment effect (i.e., the carbon emission reduction effect
of GDC might be underestimated). To alleviate potential
endogeneity problems that occur due to reverse causality and
self-selection effects, this article sets a dummy variable to
measure the degree of GDC. If the GDC of an enterprise is

greater than the mean, it is set to 1 and 0 if otherwise. We used
a one-to-four matching method with all control variables as
covariates. After matching, the absolute value of the standard
deviation of each matching variable was less than 10%, and the
treatment and control groups were equal in all observable
characteristics. There was no significant difference, showing that
the selection of matching variables and methods in this article was
appropriate, and the nearest-neighbor matching and minimum
radius estimation results were credible. Based on Table 7, the
average treatment effect, ATT, calculated by the nearest-neighbor
and minimum radius matching methods, was −0.845 and −0.846,
respectively, which were smaller than the baseline regression
coefficient and were significant at the 1% level. Hence, by
keeping other conditions unchanged, GDC has a more obvious
effect on reducing carbon emission intensity.

TABLE 5 Estimation results of firm heterogeneity.

Variable (1) (2) (3) (4) (5) (6) (7) (8)

SOEs Non-
SOEs

Large Small Heavy-pollution
industries

Clean
industries

Labor-
intensive

Non-labor-
intensive

GDC −0.642*** 0.351 −0.501*** 0.001 −0.463** −0.483 −0.423 −0.446**

(0.205) (0.903) (0.191) (2.271) (0.190) (0.422) (0.433) (0.193)

Age −1.101 −5.300 −2.888 −5.200 1.908 −12.367*** −2.641 −6.362

(2.965) (3.671) (3.309) (4.359) (2.790) (4.130) (2.714) (4.608)

Size −3.884*** −3.515*** −2.300*** −8.137*** −3.995*** −3.667*** −3.628*** −4.346***

(0.703) (0.634) (0.787) (1.059) (0.592) (0.760) (0.534) (0.953)

Leverage 4.094* 1.280 6.453** 0.407 2.964 2.395 0.022 8.975***

(2.241) (2.252) (2.532) (2.413) (1.886) (2.938) (1.792) (3.339)

Tobin’s Q −1.034** −2.520*** −0.892** −2.913*** −1.547*** −2.439*** −2.193*** −0.496

(0.459) (0.387) (0.443) (0.480) (0.371) (0.506) (0.334) (0.695)

Cashflow −9.587** 3.052 −3.291 −6.420 −4.725 −5.619 −1.288 −11.739**

(3.847) (3.651) (3.556) (4.665) (3.175) (6.473) (3.010) (4.628)

Turnover −8.785*** −6.862*** −7.369*** −11.780*** −7.881*** −8.383*** −7.640*** −8.663***

(1.175) (1.474) (1.328) (1.879) (1.116) (1.605) (1.067) (1.762)

Growth 11.046*** 9.710*** 10.567*** 10.631*** 9.837*** 11.240*** 9.869*** 11.876***

(0.852) (0.938) (0.837) (1.052) (0.793) (1.032) (0.725) (1.293)

Top3 0.069* 0.017 −0.012 0.009 0.060* 0.033 0.054* 0.075

(0.038) (0.037) (0.040) (0.050) (0.032) (0.045) (0.030) (0.056)

Constant 137.991*** 144.536*** 109.301*** 246.020*** 131.799*** 169.169*** 139.105*** 159.108***

(18.495) (16.447) (21.654) (25.689) (15.140) (20.443) (13.944) (25.776)

Year FE YES YES YES YES YES YES YES YES

Firm FE YES YES YES YES YES YES YES YES

R squared 0.287 0.263 0.341 0.304 0.237 0.305 0.217 0.289

Observations 11,409 11,537 11,567 11,379 14,816 8,130 5,262 17,684

Note: ppp, pp and p denote statistical significance at 1%, 5%, and 10% levels, respectively. The robust standard errors presented in the brackets are based on standard errors clustered at firm level,

and are estimated based on the null hypothesis that the estimated coefficients are equal to 0.
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5.4.2 Alternative measurements of dependent and
independent variables

This study used tons of carbon emissions per million
assets as a replacement for the explained variable to conduct a
robustness test. From the results listed in Column (1) in Table 8,
after changing the measurement method, the coefficient of
GDC remained significantly negative, indicating that a higher
GDC can better reduce firms’ carbon emission intensity. In
terms of the measurements of explanatory variables, Caviggioli
(2016) argued that technology convergence relationships can
last 3–5 years. Therefore, this study adopted a 3-year sliding
window approach (2006–2008, 2007–2009, . . ., 2020–2022) to
measure digitalization in green innovation. In Column (2), the

coefficients were negative and significant, verifying that GDC
significantly reduces carbon emission intensity.

5.4.3 Dividing different sample years
China ushered in the mobile Internet era in 2012, leading

to rapid developments in the digital economy. Traditional
industries began to become Internet-based. As digital
technology began to have varying degrees of impact on various
industries, the carbon emission reduction effect of digital
technology after 2012 also changed compared with before 2012.
Judging from the coefficient results listed in Columns (1) and
(2) of Table 9, prior to 2012, digital technology did not
significantly reduce enterprises’ carbon emission intensity,
primarily because, at that early stage of development, digital
technology did not improve production capacity and utilization
efficiency. After 2012, GDC significantly reduced enterprises’
carbon emission intensity. Hence, as digital technology
improves its energy efficiency and empowers the economy, it
promotes the transformation of traditional industries into
digital, intelligent, and environmentally friendly sectors. This
leads to mutually beneficial economic situations where
efficiency gains coexist with energy conservation and emission
reduction efforts.

5.4.4 Eliminating the impact of industry changes
Due to major asset restructuring, expansion of business scale,

and extended mergers and acquisitions, listed companies may have
changed their industries. For example, a company may change from
the civil engineering construction industry to an ecological
protection and environmental governance industry, resulting in
considerable changes in its carbon emission intensity, which may
affect the regression results. To control for the impact of these types
of industry changes, we eliminated companies that experienced
industry changes and recalculated Equation 1. The results listed
in Column (3) of Table 9 show that the significant negative impact of
GDC on corporate carbon emission intensity remains, which is
consistent with our baseline results, enhancing the credibility of
the results.

TABLE 6 Carbon reduction effect of GDC based on different digital
technologies.

Variable (1) (2) (3)

Digital
Communication

Computer
Technology

IT Methods
for
Management

GDC −5.351*** −0.277* 1.294

(1.483) (0.167) (2.531)

Age −0.970 −4.027 7.251

(5.494) (2.837) (9.114)

Size −3.587*** −3.626*** −5.947***

(0.966) (0.609) (1.537)

Leverage −2.653 1.859 1.962

(3.195) (2.087) (5.041)

Tobin’s Q −2.229*** −2.082*** −1.926*

(0.706) (0.365) (1.059)

Cashflow 0.783 −2.629 2.198

(5.001) (3.369) (8.089)

Turnover −5.669*** −8.378*** −12.037***

(2.131) (1.076) (3.697)

Growth 13.100*** 9.900*** 8.428***

(1.672) (0.785) (1.816)

Top3 0.079 0.051 0.049

(0.052) (0.035) (0.078)

Constant 131.730*** 142.754*** 163.193***

(27.427) (15.544) (44.112)

Year FE YES YES YES

Firm FE YES YES YES

R-squared 0.308 0.261 0.243

Observations 3,799 15,089 1,930

Note: ppp and p denote statistical significance at 1% and 10% levels, respectively. The robust

standard errors presented in the brackets are based on standard errors clustered at firm

level, and are estimated based on the null hypothesis that the estimated coefficients are equal

to 0.

TABLE 7 The impact of GDC on carbon emission intensity under different
matching methods.

Variable (1) (2)

Nearest Neighbor
Matching

Radius
Matching

ATT −0.845*** −0.846***

(0.353) (0.353)

Controls YES YES

Year FE YES YES

Firm FE YES YES

Observations 23,436 23,436

Note: ppp denotes statistical significance at 1% level. The robust standard errors presented

in the brackets are based on standard errors clustered at firm level, and are estimated based

on the null hypothesis that the estimated coefficients are equal to 0.
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6 Conclusion

We investigated the effects of GDC on carbon emission reductions
in China using technology convergence network analysis and panel
regression. We provided a novel metric for GDC and shed light on the
mechanisms of GDC’s impact on carbon emission reduction. The
results show that GDC significantly affects carbon emission intensity
reduction. A series of robustness tests supported this result. Moreover,
GDC reduces enterprise carbon emissions by improving the quality of
green innovation. Furthermore, enterprises’ technology convergence
capability significantly moderates the relationship between GDC and
carbon emission reduction. Results of heterogeneity analysis show that
GDC has a more pronounced effect on carbon emission reduction for
state-owned, large, non-labor-intensive, and heavily polluting

enterprises. Further improvements in carbon reduction effectiveness
are needed for other types of enterprises.

Based on the above conclusions, this paper proposes the
following policy recommendations:

(1) The government should actively promote the deep integration
of green and digital technology in enterprises. On the one hand,
the government should encourage companies to apply digital
technologies and achieve intelligent green technology
innovation through financial support and tax incentives. On
the other hand, it should vigorously promote smart
manufacturing or service production models to reduce
resource waste and energy consumption, thereby enhancing

TABLE 8 Alternative measurements of dependent and independent
variables.

Variable (1)
Alternative
dependent variable

(2)
Alternative
independent variable

GDC −0.330*** −0.271***

(0.118) (0.066)

Age −2.175 −3.480

(1.517) (2.339)

Size −2.836*** −3.824***

(0.314) (0.465)

Leverage 1.948* 2.269

(1.141) (1.581)

Tobin’s Q −0.691*** −1.857***

(0.200) (0.296)

Cashflow −1.862 −4.805

(1.501) (3.404)

Turnover 38.265*** −8.033***

(0.799) (0.919)

Growth 6.016*** 10.397***

(0.397) (0.631)

Top3 0.024 0.055**

(0.017) (0.026)

Constant 71.977*** 144.674***

(8.535) (12.221)

Year FE YES YES

Firm FE YES YES

R-squared 0.666 0.272

Observations 22,946 22,946

Note: ppp, pp and p denote statistical significance at 1%, 5%, and 10% levels, respectively.

The robust standard errors presented in the brackets are based on standard errors clustered

at firm level, and are estimated based on the null hypothesis that the estimated coefficients

are equal to 0.

TABLE 9 Different sample size and industry change.

Variable (1) (2) (3)

2006–2011 2012–2021 Exclude samples
experienced
industry change

GDC −0.414 −0.227* −0.431**

(1.948) (0.135) (0.170)

Age 18.976** −0.487 −1.549

(9.596) (2.058) (2.496)

Size −8.021*** −1.425*** −3.698***

(1.633) (0.355) (0.511)

Leverage 7.551* 3.089** −0.146

(4.461) (1.344) (1.655)

Tobin’s Q −1.566** −0.293 −2.137***

(0.742) (0.199) (0.314)

Cashflow 0.996 −7.875*** −3.100

(5.605) (1.718) (2.734)

Turnover −14.236*** −7.266*** −7.575***

(2.673) (0.782) (1.011)

Growth 10.280*** 10.974*** 10.184***

(1.344) (0.519) (0.671)

Top3 0.082 0.009 0.061**

(0.083) (0.022) (0.027)

Constant 178.813*** 80.692*** 137.015***

(41.901) (9.769) (13.330)

Year FE YES YES YES

Firm FE YES YES YES

R-squared 0.396 0.359 0.274

Observations 5,541 17,405 20,674

Note: ppp, pp and p denote statistical significance at 1%, 5%, and 10% levels, respectively.

The robust standard errors presented in the brackets are based on standard errors clustered

at firm level, and are estimated based on the null hypothesis that the estimated coefficients

are equal to 0.
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the overall environmental benefits of enterprises. Additionally,
the government should focus on improving the quality of green
technology innovation through the transformation to
intelligent green technologies, which will, in turn, enhance
carbon reduction effectiveness.

(2) Enterprises that posit central network positions in the GDC
network should be encouraged to leverage technological
spillover effects. Occupying a favorable position in the network
can amplify the carbon reduction effects of GDC. Therefore, the
government should support collaborative innovation among
enterprises, establish industry alliances and innovation
cooperation platforms, and encourage companies from different
sectors to achieve the transfer of green and digital technologies
through innovation platforms, forming a collaborative innovation
effect that reduces overall carbon emissions.

(3) Policy formulation should implement differentiated incentive
mechanisms. For state-owned enterprises, large enterprises,
enterprises in heavily polluting industries, and non-labor-
intensive sectors, the government should set strict carbon
emission standards and green production regulations to
promote their active realization of GDC and facilitate carbon
reduction. Conversely, for non-state-owned, small and medium-
sized enterprises, clean industries, and labor-intensive industries,
the government should support the construction of digital
infrastructure to enhance their technological absorption capacity.
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