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As global climate change intensifies, understanding the response mechanisms
and adaptive capacities of ecosystems to climate change has become a core
focus in environmental science. The Qinghai-Tibet Plateau (QTP), a region highly
sensitive to global climate change, shows vegetation phenological shifts that
reflect the ecosystem’s response to climate fluctuations. However, how
phenological metrics extracted from different vegetation indices affect our
understanding of these shifts in the region remains unclear. This study
analyzes the start (SOS) and end (EOS) of the growing season on the QTP
from 1982 to 2015 using GIMMS NDVI3g data. These metrics were compared
with phenological data derived from GIMMS LAI3g and MODIS EVI2 data. The
results indicate that phenological metrics derived from different vegetation
indices (NDVI, LAI, and EVI2) are generally consistent in their spatiotemporal
distribution and show significant correlations. However, regional differences and
temporal inconsistencies were observed. This comparative analysis reveals the
strengths and limitations of various vegetation indices in phenological metric
extraction. The results offer crucial insights for enhancing the precision of
phenological modeling and highlight the significance of choosing suitable
vegetation indices in future studies on phenology.
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1 Introduction

With the accelerating pace of global climate change, investigating the mechanisms by
which ecosystems respond and adapt to these changes has become a central issue in
ecological and environmental researches (Cohen et al., 2021; Haddeland et al., 2014).
Phenology, as an important branch of study that examines the periodic biological activities
of organisms (such as plant budding, flowering, and leaf fall) and their relationships with
environmental changes, has garnered significant attention in recent years (Hmimina et al.,
2013; Liu et al., 2020). Phenological metrics not only reflect vegetation responses to climate
change but also serve as indicators of ecosystem health. Therefore, accurately extracting and
analyzing these metrics is of critical importance in global change research (Bolton et al.,
2020; Chen et al., 2019; Liu et al., 2017).

In this context, the Qinghai-Tibet Plateau (QTP), known for its sensitivity to global
climate change, has emerged as a key region for phenological research (Shen et al., 2011;
Zheng et al., 2016). The region’s unique geographic environment and climatic conditions
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make its vegetation phenological changes particularly responsive to
climate fluctuations. Examining these phenological shifts can
uncover the influence of climate change on the region’s growing
season, ecosystem functions, and carbon cycles, offering greater
insight into the ecological consequences of climate change (Ding
et al., 2016; Zhang et al., 2013).

Remote sensing has emerged as a powerful tool in phenological
studies, enabling large-scale and continuous monitoring of
vegetation dynamics in complex environments such as
mountainous regions (Orusa et al., 2020). Satellite-based
platforms like MODIS, Sentinel-2, and Landsat have been
instrumental in extracting key phenological metrics like the start
of growing season (SOS), end of growing season (EOS), and length
of growing season (LOS), contributing to our understanding of
vegetation responses to climate variations across different altitudes
(Orusa et al., 2023a; Orusa and Borgogno Mondino, 2021; Viani
et al., 2023). The application of remote sensing in mountainous
regions, such as the QTP, provides valuable data for assessing
vegetation patterns under the stress of changing climatic
conditions (Orusa et al., 2023b; Viani et al., 2024). Studies have
also shown that these techniques are essential for developing
ecological services aimed at monitoring and mitigating the
impacts of climate change on high-altitude ecosystems (Orusa
et al., 2020; Orusa et al., 2024; Viani et al., 2024).

Vegetation indices like the Normalized Difference Vegetation
Index (NDVI) and Enhanced Vegetation Index (EVI) have been
widely used to capture phenological patterns (Jiang et al., 2008; Yang
et al., 2022). In recent years, the extraction of phenological metrics
from remote sensing data has advanced significantly, with various
vegetation indices demonstrating distinct strengths and limitations
in this process (Wu et al., 2021; Zeng et al., 2013; Zhang et al., 2003).
Researchers have extensively utilized these vegetation indices to
extract phenological metrics and have explored their performance in
capturing seasonal dynamics of vegetation growth (Piao et al., 2011).
Among these indices, NDVI, being one of the earliest and most
commonly used, is particularly sensitive to green vegetation and is
widely acknowledged for its effectiveness in capturing seasonal
variations in vegetation growth (Høgda et al., 2013; Zhang
J. et al., 2020). Studies have shown that NDVI-based
phenological extraction methods perform well in large-scale,
long-term studies, but NDVI tends to saturate in areas with high
vegetation coverage and is sensitive to atmospheric effects (Jiang
et al., 2008). To address these limitations, EVI was introduced. EVI
accounts for atmospheric scattering and soil background noise,
allowing for more accurate reflection of phenological changes in
areas with high vegetation coverage (Zhang et al., 2003). Research
has found that EVI-based phenological metrics perform
exceptionally well in high-coverage regions such as tropical
rainforests, providing more accurate phenological information
than NDVI (Ganguly et al., 2010). Moreover, other vegetation
indices like the Wide Dynamic Range Vegetation Index
(WDRVI) and the Greenness Chromatic Coordinate (GCC) have
demonstrated particular advantages in phenological extraction for
certain ecosystems and vegetation types (Gitelson, 2004; Richardson
et al., 2018). Studies have demonstrated that remote sensing data,
particularly when processed through platforms like Google Earth
Engine, can significantly enhance the mapping of phenological
metrics in mountain areas, providing a robust framework for

global monitoring (Orusa et al., 2020; Orusa et al., 2023a; Orusa
et al., 2023b).

However, despite these advances, challenges remain in
accurately capturing phenological patterns in high-altitude
environments like the QTP. Factors such as cloud cover, terrain
complexity, and sparse ground validation data can introduce
uncertainties (Zhang J. et al., 2020). There is a need for further
validation and comparison of different vegetation indices to assess
their performance in capturing phenological metrics across diverse
temporal and spatial scales.

Therefore, this study seeks to thoroughly analyze the similarities
and differences in phenological metrics derived from various
vegetation indices within the QTP. The major objectives of the
study are: (a) to compare the performance of different vegetation
indices (NDVI, EVI, GCC, etc.) in capturing phenological metrics
across different ecosystems in the QTP; (b) to assess the strengths
and limitations of these indices in characterizing phenological
trends in response to climate change; (c) to provide insights into
how ecosystems in the QTP respond to climate fluctuations, using
long-term remote sensing data. Through this analysis, the study will
offer a scientific foundation for phenological research in the context
of global change, enriching our understanding of ecosystem
responses to climate change.

2 Study area and dataset

2.1 Study area

The QTP (Figure 1) stands as the world’s largest and highest
plateau. The QTP, with its distinct natural geography and
ecosystems, is a vital water source conservation area for Asia,
where rivers originating from this region influence the lives and
livelihoods of hundreds of millions in surrounding areas. The QTP’s
high elevation and unique climatic conditions make its ecosystems
highly sensitive to climate change and human activities.
Consequently, the plateau is regarded as one of the frontiers and
hotspots for global climate change research (Ganjurjav et al., 2020).

2.2 NDVI data

The third-generation Global Inventory Modeling and Mapping
Studies Normalized Difference Vegetation Index product (GIMMS
NDVI3g), developed based on AVHRR sensor data, is currently the
longest-running global NDVI time series product available. GIMMS
NDVI3g has undergone extensive preprocessing, including
radiometric calibration, coordinate transformation, geometric
correction, and atmospheric correction, while also eliminating the
effects of orbital drift caused by solar zenith angle (Pinzón et al.,
2005), differences between the second- and third-generation
AVHRR sensors (Anyamba et al., 2014), and the adverse impacts
of stratospheric aerosols and cloud cover during events such as El
Niño and the Mount Pinatubo eruption. Compared to its
predecessor, NDVI3g has improved snowmelt calibration
detection algorithms and resolved data discontinuities in high-
latitude areas of the Northern Hemisphere (Zhu et al., 2013).
GIMMS NDVI3g delivers global NDVI data covering the period
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from July 1981 to December 2015, featuring a 1/12° spatial
resolution and a 15-day temporal resolution.

2.3 Land surface phenology

We utilized two existing land surface phenology data products.
The first dataset is the MODIS Global Land Surface Phenology
product (MCD12Q2), based on EVI2 time series, with a 500-m
spatial resolution and coverage from 2001 to 2018. The second
dataset is derived from the GIMMS LAI3g time series (LAI_
PhenoData), providing global land surface phenology data (Wu
and Xin, 2022). This dataset features two primary phenological
metrics, SOS and EOS, covering the years 1982–2015 at a 1/12°

spatial resolution.

2.4 Other data

We also employed the MODIS Global Land Cover Type product
(MCD12Q1), which features a 500-m spatial resolution and an
annual temporal resolution. Among its five classification schemes,
we chose the International Geosphere-Biosphere Programme
(IGBP) scheme to identify vegetation-covered areas on the QTP
for subsequent phenological analysis.

3 Methodology

To assess and compare the similarities and distinctions in
phenological metrics obtained from multiple vegetation indices,
we first selected the Greenup and Dormancy bands from the
MCD12Q2 phenology product, based on EVI2, to represent SOS
and EOS in the vegetation growth process, respectively. Next, we
derived the phenological metrics (i.e., SOS and EOS) for the growing

season of the QTP from the LAI_PhenoData (Wu and Xin, 2022).
Finally, we extracted the annual SOS and EOS for the QTP from
1982 to 2015 using GIMMS NDVI3g time series data, as detailed
below (Figure 2).

3.1 Data pre-processing

Using the quality control band of the GIMMS NDVI3g product,
we excluded pixels severely affected by clouds, aerosols, and other
disturbances. During the data pre-processing stage, we identified
points exceeding three times the standard deviation of the moving
window median (with a window length of 7 points) as invalid
outliers. The Savitzky-Golay filter (Savitzky and Golay, 1964) was
applied to smooth the NDVI time series. Additionally, we used
spline interpolation to resample the NDVI data to a daily scale.

3.2 Time series fitting

In this study, we employed a single logistic curve fitting function
to segmentally model the spring growth phase (i.e., the continuous
rise in the NDVI time series from a local minimum to a local
maximum) and the autumn senescence phase (i.e., the continuous
decline in the NDVI time series from a local maximum to a local
minimum) during the vegetation growth cycle (Zhang et al., 2003).
The underlying principle is as follows (Equations 1, 2):

NDVIspring t( ) � amp
1 + ea+b*t

+minv (1)

NDVIautumn t( ) � − amp
1 + ea+b*t

+maxv (2)

NDVIspring represents the NDVI value during the spring growth
phase of vegetation, and NDVIautumn represents the NDVI value
during the autumn senescence phase. The variable t denotes the day

FIGURE 1
Study area.
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of the year, a and b are fitting parameters, amp is the amplitude of
the NDVI time series, minv is the minimum value, and maxv is the
maximum value of the NDVI time series.

3.3 Retrieval of phenology metrics

The dynamic threshold method sets thresholds derived from the
seasonal amplitude in the vegetation index time series to extract key
phenological metrics (Fischer, 1994; Jönsson and Eklundh, 2004).
Here, we used 20% of the NDVI amplitude as the threshold to
extract SOS and EOS. Specifically, SOS is identified as the point
when NDVI initially rises above this threshold in the spring, while
EOS is marked by the point when NDVI falls below this threshold
for the last time in the autumn.

It is important to note that the time span for the phenological
metrics extracted from NDVI and the phenology dataset derived
from LAI both cover the period from 1982 to 2015. Therefore, to
facilitate comparative analysis, we also limited the
MCD12Q2 phenology data to the period from 2001 to 2015.

3.4 Trend analysis and statistical testing

To assess the temporal trends of phenological metrics (i.e., SOS
and EOS) during the study period, we applied the Mann-Kendall
(MK) trend test. The MK test was conducted on the SOS and EOS
extracted from various vegetation indices (i.e., NDVI, LAI, EVI2) to
detect significant trends. The slope produced by the MK test was
used to quantify the magnitude of the trend, representing the rate of
change per year (days/year). We set the significance level at a p-value
threshold of 0.05; if the p-value was less than 0.05, the trend was

considered significant. Additionally, none of the time series data
were detrended prior to trend analysis to ensure the capture of long-
term climate change effects on phenological changes.

Note that all data processing in this study was performed using
MATLAB R2020a.

4 Results

4.1 Comparison and validation of
phenological metrics

To assess the reliability of the phenological metrics derived from
NDVI data in this study, we compared them with metrics obtained
from EVI2 (MCD12Q2) and LAI data. Figure 3 illustrates a
comparison of SOS for the QTP in 2010, derived from NDVI,
LAI, and EVI2 data. In terms of spatial distribution, the three
datasets exhibit similar patterns, with SOS generally advancing
from the northwest to the southeast (Figures 2A–C). However, the
SOS derived from LAI is relatively later along the southern edge of the
QTP. The NDVI-derived SOS has relatively fewer missing values and
tends to be slightly later overall. Figure 3D illustrates the mean
changes in SOS along the latitudinal direction, where all three
datasets show a trend of SOS initially delaying and then advancing
with increasing latitude. The correlation coefficients r betweenNDVI-
derived SOS (N-SOS) and LAI-derived SOS (L-SOS) and EVI2-
derived SOS (E-SOS) are 0.841 and 0.864, respectively. Figure 3E
presents a scatter density plot comparing N-SOS and L-SOS in terms
of spatial distribution, demonstrating a high degree of consistency
(R = 0.868, RMSE = 18.85 days). Similarly, Figure 3F shows a scatter
density plot comparing N-SOS and E-SOS, which also exhibits strong
consistency, with R = 0.890 and RMSE = 16.16 days.

FIGURE 2
Flowchart of phenology retrieval.

Frontiers in Environmental Science frontiersin.org04

Chen et al. 10.3389/fenvs.2024.1489267

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1489267


Similarly, we compared EOS for the QTP in 2010, as extracted
from NDVI, LAI, and EVI2 data (Figure 4). NDVI-derived EOS
(N-EOS) and LAI-derived EOS (L-EOS) and EVI2-derived EOS
(E-EOS) all exhibit a spatial distribution pattern where timing
gradually delays from the northwest to the southeast (Figures
3A–C). However, L-EOS shows a relatively earlier timing along
the southern edge of the QTP. N-EOS has relatively fewer missing
values overall. In the latitudinal direction, both E-EOS (r = 0.828)
and L-EOS (r = 0.844) show a high degree of consistency with
N-EOS and display a trend of advancing EOS with increasing
latitude (Figure 4D). Figure 4E presents a scatter density plot

comparing N-EOS and L-EOS in terms of spatial distribution,
demonstrating a high level of consistency (R = 0.851, RMSE =
20.08 days). Similarly, Figure 4F shows a scatter density plot
comparing N-EOS and E-EOS, which also exhibits strong
consistency, with R = 0.887 and RMSE = 17.32 days.

4.2 Spatial distributions

To clarify the long-term phenological distribution on the QTP,
we calculated the multi-year average results for E-SOS (2001-2015),

FIGURE 3
Comparison of SOS on the QTP extracted frommultiple vegetation indices for 2010. (A), (B), and (C) represent the EVI2-retrieved SOS (E-SOS), LAI-
retrieved SOS (L-SOS), and NDVI-retrieved SOS (N-SOS) on theQTP in 2010, respectively. (D) shows the latitudinal variation of E-SOS, L-SOS, andN-SOS,
while (E) and (F) are scatter density plots of N-SOS compared with L-SOS and E-SOS, respectively, in spatial distribution.
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L-SOS (1982-2015), and N-SOS (1982-2015) (Figure 5). Overall, the
spatial distribution of the three is generally consistent, showing a
pattern of later SOS in the northwest and earlier SOS in the
southeast. However, E-SOS has a higher number of missing
values, especially in the central region of the QTP (Figure 5A).
L-SOS indicates a comparatively later SOS along the southern edge
of the QTP (Figure 5B).

Similarly, we also calculated the multi-year average results for
E-EOS (2001-2015), L-EOS (1982-2015), and N-EOS (1982-2015)
on the QTP (Figure 6). Overall, E-EOS, L-EOS, and N-EOS all
display a spatial pattern of progressively delayed EOS from the
northwest to the southeast. However, E-EOS generally occurs

relatively earlier and has more missing values (Figure 6A). L-EOS
also shows a significant number of missing values (Figure 6B).

4.3 Trends analysis

We examined the interannual variations of the annual mean
SOS and EOS on the QTP (Figure 7). From 1982 to 2015, both
N-SOS and L-SOS showed significant delaying trends, with delays of
1.032 days per year (p < 0.01) and 0.171 days per year (p < 0.05),
respectively. In contrast, E-SOS advanced at a rate of 0.321 days per
year (p < 0.05) from 2001 to 2015 (Figure 7A). Figure 7B depicts the

FIGURE 4
Comparison of EOS on the QTP extracted frommultiple vegetation indices for 2010. (A), (B), and (C) represent the EVI2-retrieved EOS (E-EOS), LAI-
retrieved EOS (L-EOS), and NDVI-retrieved EOS (N-EOS) on the QTP in 2010, respectively. (D) shows the latitudinal variation of E-EOS, L-EOS, and
N-EOS, while (E) and (F) are scatter density plots of N-EOS compared with L-EOS and E-EOS, respectively, in spatial distribution.
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trends for N-EOS, L-EOS, and E-EOS. Notably, N-EOS and L-EOS
exhibited opposite trends: from 1982 to 2015, N-EOS delayed
significantly by 0.248 days per year (p < 0.05), while L-EOS
advanced by 0.107 days per year (p < 0.05). During 2001 to
2015, E-EOS demonstrated a significant delay, with a rate of
0.430 days per year (p < 0.05).

5 Discussion

Most current remote sensing phenology studies rely on a single
vegetation index to extract phenological metrics (Ruan et al., 2021;
Wu and Wu, 2024; Wu and Xin, 2023). However, there are notable
differences in the principles and applications of various vegetation

FIGURE 5
Spatial distribution of the annual mean SOS on theQTP. Panels (A), (B), and (C) represent themean SOS retrieved fromEVI2 (E-SOS) for 2001 to 2015,
LAI (L-SOS) for 1982 to 2015, and NDVI (N-SOS) for 1982 to 2015, respectively.
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indices (Jiang et al., 2008). To evaluate how different vegetation
indices affect phenological extraction, this study conducted a
comparative analysis of the spatiotemporal distribution of
vegetation phenology metrics on the QTP, utilizing data from
various remote sensing vegetation indices. The phenological
metrics retrieved from NDVI, LAI, and EVI2 were not entirely

consistent in their spatiotemporal distribution. Spatially, the
phenological metrics derived from NDVI had fewer missing
values, while E-SOS, E-EOS, and L-EOS exhibited noticeably
more missing values (Figures 4, 5). There are two potential
reasons for this: first, the original vegetation index time series
might have poor quality with significant data gaps; second, a

FIGURE 6
Spatial distribution of the annual mean EOS on the QTP. Panels (A), (B), and (C) represent the mean EOS retrieved from EVI2 (E-EOS) for 2001 to
2015, LAI (L-EOS) for 1982 to 2015, and NDVI (N-EOS) for 1982 to 2015, respectively.
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complete vegetation growth cycle may span across two consecutive
years, leading to failures in fitting the vegetation index time series
(Wu et al., 2021). Additionally, among the phenological metrics
extracted using the three different vegetation indices, N-SOS was
relatively earlier in most areas, while L-SOS tended to be later.
Conversely, E-EOS was generally earlier, while N-EOS was relatively
later. It is also worth noting that anomalies in SOS and EOS were
observed along the southern edge of the QTP when extracted from
LAI. Overall, the phenological metrics extracted from different
vegetation indices were generally consistent in their spatial
distribution, but there were certain discrepancies in specific
regions, which may be related to vegetation types, coverage, and
geographical characteristics (Zhang X. et al., 2020).

In terms of temporal trends, both N-SOS (slope = 1.032, p < 0.01)
and L-SOS (slope = 0.171, p< 0.05) exhibited significant delaying trends
during the period from 1982 to 2015. However, E-SOS (slope = −0.321,
p < 0.05) showed a significant advancing trend from 2001 to 2015
(Figure 7A). Notably, during the period from 1982 to 2015, N-EOS
(slope = 0.248, p < 0.05) and L-EOS (slope = −0.107, p < 0.05) exhibited
opposite trends, while E-EOS (slope = 0.430, p < 0.05) showed a
significant delaying trend from 2001 to 2015 (Figure 7B). These findings
highlight that temporal trends in phenological metrics derived from

different vegetation indices are not entirely consistent, suggesting
varying sensitivities of these indices to climate change.

This study utilized the dynamic threshold method to extract
phenological metrics from the NDVI and EVI2 time series (Fischer,
1994; Jönsson and Eklundh, 2004), while employing the first
derivative method for extracting SOS and EOS from the LAI
time series (Wu and Xin, 2023; Yu et al., 2003). Different
phenological extraction methods also have a certain impact on
the derived phenological metrics (Gan et al., 2020; Xin et al.,
2020). Additionally, the NDVI and LAI data are obtained from
the AVHRR sensor, whereas the EVI2 data is derived from the
MODIS sensor. Inevitably, errors arise from differences in spatial
and temporal resolution and data processing between satellite
sensors. Therefore, to improve the accuracy of remote sensing-
based phenological extraction, future research must carefully
balance the various influencing factors, including data sources,
vegetation indices, and phenological extraction methods.

However, despite the careful selection of extraction methods and
data sources, several limitations remain in this study. First, the study
focuses solely on the Qinghai-Tibet Plateau, limiting the broader
applicability of the results. Future research could expand the
geographic scope to explore phenological changes in other regions,

FIGURE 7
Trends in Annual Mean SOS and EOS on the QTP. (A) illustrates the temporal trends for E-SOS (2001-2015), L-SOS (1982-2015), and N-SOS (1982-
2015) on the QTP. (B) illustrates the temporal trends for E-EOS (2001-2015), L-EOS (1982-2015), and N-EOS (1982-2015) on the QTP.
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enhancing the generalizability of the findings (Orusa et al., 2020).
Second, temporal inconsistencies observed in this study may affect
the reliability of long-term trends. Future studies could adopt more
rigorous statisticalmethods to analyze and explain these inconsistencies.
Additionally, while this study highlights the correlation between climate
change and vegetation phenology, it lacks a deeper investigation into the
underlying biological mechanisms. One notable limitation is that this
study did not explicitly account for the potential impacts of grazing and
human activities on rangeland pixels, which could influence
phenological metrics in certain areas. In future research, applying
break-point tests could help identify abrupt changes in the time
series, distinguishing natural phenological trends from those
potentially caused by anthropogenic factors. By integrating ground-
based observations, future research could further analyze the effects of
temperature, precipitation, human activities, and other environmental
factors on phenological shifts, leading to a more comprehensive
understanding of ecosystem responses to climate change (Orusa
et al., 2023a). Lastly, while satellite data provides valuable support
for large-scale monitoring, combining it with ground data for cross-
validation in future studies would help improve the accuracy of
phenological metric extraction.

6 Conclusion

This study extracted SOS and EOS for the Qinghai-Tibet Plateau
(QTP) from 1982 to 2015 using GIMMS NDVI3g data and compared
these metrics with those from GIMMS LAI3g andMODIS EVI2 data.
The key conclusions are: (1) Phenological metrics fromNDVI showed
strong correlations with LAI (SOS: r = 0.868, RMSE = 18.85 days;
EOS: r = 0.851, RMSE = 20.08 days) and EVI2 (SOS: r = 0.890,
RMSE = 16.16 days; EOS: r = 0.887, RMSE = 17.32 days), indicating
consistency across different vegetation indices in reflecting both SOS
and EOS changes. (2) The spatial distribution of phenological metrics
was generally consistent across indices, but discrepancies were noted
in specific regions, especially along the southern edge of the QTP.
These may be due to differences in vegetation types and geographical
features. (3) Temporal trends were not fully consistent among indices.
For instance, NDVI-SOS showed a significant delay (slope =
1.032 days/year, p < 0.01), while LAI-SOS had a smaller delay
(slope = 0.171 days/year, p < 0.05), and EVI2-SOS advanced
(slope = −0.321 days/year, p < 0.05), reflecting varying sensitivities
to climate change.

This study highlights the importance of choosing appropriate
vegetation indices for phenological studies. Future research should
expand to other regions to enhance generalizability, investigate
underlying biological mechanisms, and apply advanced statistical
methods to separate natural variability from anthropogenic impacts.
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Appendix

The following describes the method for extracting phenological
metrics using MATLAB.

(1) To calculate SOS, the following code can be used:

~, SOS[ ] � max SDNDVI> 0.2*range SDNDVI( ) +min SDNDVI( )[ ]

SDNDVI represents the daily NDVI time series in spring phase.

(2) To calculate EOS, the following code can be used:

TADNDVI � flipud ADNDVI( )
~,TEOS[ ] � max TADNDVI> 0.2*range TADNDVI( ) +min TADNDVI( )[ ]

EOS � 366 − TEOS

ADNDVI represents the daily NDVI time series
in autumn phase, TADNDVI is the flipped version
of ADNDVI.
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