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A comprehensive understanding of the prevailing pollution and other
impairments to reservoirs is necessary at the national level to analyze patterns
and causes as well as allocate national resources effectively. Most of these
impairments are associated with sedimentation, nutrient contamination, and
other pollution factors. The costs involved in conducting on-site surveys at
multiple locations are potential obstacles for obtaining empirical data on
large-scale spatial impairments. In such cases, inputs from specialists may be
required to offset the absence of empirical data for determining the impairment
statuses of thousands of geographically dispersed reservoirs. Thus, our aimwas to
examine whether expert opinion could offer a comprehensive review of the
impairment statuses of numerous reservoirs in the United States. We designed
and executed an internet-based survey of reservoir specialists to gather their
ratings on visually evident elements of reservoir impairment. To evaluate the
ratings, we searched for correlations with factors known to have impacts on
reservoir impairment. Canonical correlation analyses indicated that nine metrics
used by experts to rate impairment levels on an ordinal scale were correlated with
metrics descriptive of the physical qualities of reservoirs, land use in catchments,
and prevailing local climate. We thus conclude that expert opinions may facilitate
assessments of impairment levels over large geographical areas. Lastly, we define
the circumstances under which it is permissible to rely on expert opinions and
propose criteria that could improve the quality of the data collected.
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1 Introduction

Sediments, fertilizers, pesticides, and heavy metals are the primary pollution
impairments known to degrade reservoir ecosystems globally (Baker, 1992; Krithiga
et al., 2022; Morin-Crini et al., 2022). Reservoirs are particularly vulnerable to these
impairments because they are typically constructed to capture large volumes of water and
have oversized catchments. Although sediment accumulation is a natural process, it is
accelerated by land-use practices linked to agriculture, deforestation, mining, and urban
runoff. Sedimentation can change the physical, chemical, and biological components of the
ecosystem, resulting in degradation of beneficial uses such as drinking water, navigation,
electricity production, flood control, and recreation. Similarly, nutrient accumulation
occurs naturally over time but human activities have accelerated the rate and extent of
eutrophication through both point-source discharges and non-point loadings of limiting
nutrients, such as nitrogen and phosphorus, which have dramatic consequences for
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drinking water sources, fisheries, and recreational water bodies
(Carpenter et al., 2001). Exposure to pesticides is increasing as
agriculture continues to intensify, and pesticides have been shown to
disrupt the reproductive functions in fish. Heavy metals originate
from various sources, including mining, automobile emissions,
landfill leaching, manufacturing, as well as domestic and
industrial outflows. A common symptom of heavy-metal
exposure in fish is immunosuppression that can lead to increased
susceptibility to diseases (Bernier et al., 1995). In addition to heavy
metals, a suite of other chemicals from industrial and domestic
effluents has become increasingly prevalent in aquatic environments
(Schwarzenbach et al., 2010); these include chlorides, sulfides,
nitrates, oxides, pharmaceutics, and microplastics (Choudri et al.,
2018; Jan et al., 2023).

The effects of pollutants can be invisible to the naked eye, may
not be obvious immediately, and are often difficult to document.
This is particularly true in reservoirs as these aquatic systems are
effectively islands of diverse sizes and accessibilities embedded in
continental land masses (Magnuson et al., 1998). Such isolation
promotes diversity of aquatic environments and also their impacts.
Owing to the dispersed nature of reservoir resources, pollutants may
go unmonitored, unregulated, and unmanaged. Some reservoir
systems may be managed with sparse monitoring data, while
others are managed through regional general policies. Personnel
and funds are prioritized to concentrate on key high-visibility
reservoir systems. Often, expert opinions may be the best
available and actionable information regarding complex
environmental systems (Krueger et al., 2012).

Expert opinions are often sought by regulatory agencies when
there are insufficient empirical data to quantify a problem.
Evidence-based management centered on the monitoring of key
metrics is considered as the gold standard of empirical evidence.
However, when backed with direct field monitoring experience,
expert opinions represent an alternative form of environmental
knowledge that can be complementary or alternative to empirical
evidence. According to Failing and Gregory (2003) collective expert
knowledge remains underutilized because scientists have a
propensity to shun the knowledge living in scientific minds as
well as coming from experience and extensive acquaintance with
an environment. Inputs from experts are sometimes necessary to
overcome the lack of empirical data for managing thousands of
geographically scattered reservoirs. However, when considering
such expert knowledge, we should rely on evidence and careful
reasoning as well as seek to eliminate any potential sources of bias
(Brownstein et al., 2018).

The aim of our study was to examine whether expert opinions
could be used to gain an understanding of the pollution
impairment statuses of reservoir resources over wide
geographical areas of the United States. We employed a two-
step methodology in this study. First, we designed and conducted
an online survey of reservoir specialists to obtain their ratings of
visually evident elements of reservoir impairment. Second, to
evaluate these ratings, we searched for relationships with factors
that are known to impact the impairments, such as the physical
qualities of reservoirs, land use in catchments, and prevailing
local climate. Large-scale spatial evaluations made feasible by
relying on expert opinions could provide insights into reservoir
sustainability challenges relevant to impairments that are only

apparent when the reservoir resources are considered over wide
geographical areas.

2 Methods

2.1 Study reservoirs

We included reservoirs within the continental United States that
impound a river and have surface areas equal to or exceeding 100 ha
in surface area. Natural lakes with dams or water control structures
were excluded from this study. A sampling frame of nearly
4,600 reservoirs was identified using the National Inventory of
Dams (NID) database (https://nid.sec.usace.army.mil/#/). Because
the NID does not distinguish dams constructed to impound rivers
from those constructed to manage water levels in natural lakes, we
relied on the LAGOS-US RESERVOIR database (Rodriguez et al.,
2023) to eliminate natural lakes that had dams installed.

2.2 Impairment status

Impairment status was obtained through an online survey of a
panel of natural resources specialists familiar with the reservoirs
under their supervision (Krogman and Miranda, 2016). These
specialists were frequently state agency biologists who were
matched to a roster of reservoirs by agency administrators. The
survey comprised over fifty questions pertaining to a variety of
reservoir environmental issues. We selected nine issues concerning
various facets of pollution and impairment typically associated with
reservoirs (Table 1). The impairment status was scored by the
respondents on a six-point ordinal impairment scale with ratings
from 0 to 5, where 0 = no impairment, 1 = low impairment, 2 = low-
to-moderate impairment, 3 = moderate impairment, 4 = moderate-
to-high impairment, and 5 = high impairment. An expanded
explanation was provided for each question to promote
respondent consistency. The participants were advised to
interpret the scale in accordance with the generally acknowledged
criteria for high impairment in their areas of the country.

The link for the online survey was distributed to the specialists.
After an introduction outlining the purpose of the survey as well as
the voluntary and confidential nature of the responses, the
respondents were asked to complete the survey for reservoirs
under their oversight. Reservoirs that the respondents were
unfamiliar with, including those owned privately or not included
in regular monitoring, were excluded to discourage speculation
outside of the respondents’ expertise. Non-respondents were
contacted multiple times to encourage participation. We
concluded the survey after 3 months when the rate of return
from the respondents had declined to nearly zero.

2.3 Correlates of impairment status

We examined correlations between the ratings and three
elements relevant to impairment: (1) physical characteristics of
the reservoirs, (2) land cover in the catchments, and (3) local
climate. The physical characteristics were represented using seven
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descriptors of reservoir attributes (Table 2) available in a dataset
compiled by Rodgers (2017). The land cover in the catchments
represented nine major classes used commonly for regional and
other large-scale spatial applications (Table 2), which was also
sourced from Rodgers (2017). The selection of local climate
variables encompassed representations of temperature and
precipitation patterns (Table 2), which were derived from a pool
of 19 bioclimatic indicators proposed by Fick and Hijmans (2017).
These indicators were constructed on the basis of monthly
measurements of temperature and rainfall.

We applied canonical correlation analysis (CCA) to assess the
relationships between the impairment ratings and the three sets of
reservoir attributes anticipated to influence impairment. CCA
reconstructs each set of variables into multiple pairs of synthetic
variables. Each synthetic variable is generated such that it yields the
largest possible canonical correlation between the two
corresponding sets of variables. The canonical correlation is a
Pearson r between a pair of synthetic variables. Any residual
variance unexplained by the first pair of synthetic variables was
used to create a second pair that was orthogonal (i.e., uncorrelated)
to the previous pairs. Analogous to the principal component
analysis, this process is repeated until all the variability is
explained by subsequent pairs of synthetic variables. To meet the
assumptions of the CCA, transformations were applied to most
variables, including monotonic transformation to ordinal data,
logarithmic transformation to skewed physical characteristics,
and arcsine transformation to percentage data. Additionally, the
reservoir physical characteristics, land cover, and climate variables
were standardized to mean = 0 and SD = 1 values to account for the
differences in magnitudes and units.

To assess the resulting canonical correlations, we first evaluated
the overall canonical model using Wilks’ lambda (λ) to determine
correlations between two sets of variables. In a multivariate
procedure, λ is used to determine the proportion of variability in
one set of variables that cannot be accounted for by the variations in

the second set of variables. If λ was statistically significant (p ≤ 0.05),
we examined the pairs of synthetic variables produced by the CCA.
Each successive pair progressively accounts for a smaller proportion
of the total variation in the overall canonical correlation until the
pairs are unable to sufficiently explain the variation to justify
interpretation. Lastly, for the pairs having correlations ≥0.5 or ≤
-0.5, we assessed the metrics associated with each synthetic variable
in terms of the correlation intensity (also ≥0.5 or ≤ -0.5) and
directionality. Analyses were conducted with the cancorr
procedure (SAS Institute Inc, 2023).

3 Results

3.1 Impairment status

Complete response data on the nine impairment ratings were
obtained from 203 specialists for 1,090 reservoirs distributed
across the United States (Figure 1). This sample represents nearly
25% of the approximately 4,600 reservoirs having areas ≥100 ha
identified in the NID database. The highest rated metric was
sedimentation (Table 1), with 29.6% of the reservoirs being
scored as 4 or 5 (i.e., above average to high impairment).
Next, in decreasing order were non-point-source pollution
(21.6% scored as 4 or 5), excessive nutrients (21.5%), and
inorganic turbidity (20.3%). Thermal pollution (3.9% scored as
4 or 5) and point-source pollution (5.8%) generally received low
effect ratings.

3.2 Correlates of impairment status

The CCA revealed various associations between the set of
impairment descriptors and the physical characteristics of
reservoirs, land cover in reservoir catchments, and local climate.

TABLE 1 Impairment variables included in the online survey. Data were collected using a six-point ordinal impairment scale ranging from 0 to 5, where 0 =
no, 1 = low, 2 = low-to-moderate, 3 = moderate, 4 = moderate-to-high, and 5 = high impairments. The description for each metric was available to the
respondents of the survey. The participants were advised to interpret the scale anchored on the regional high impairment criteria.

Impairment Description Scored ≥4 (%)

Nutrients Excess nutrients in water, primarily nitrogen or phosphorus, which may result in increased primary productivity and lead to
excessive plant growth and decay, lack of oxygen, and reduced water quality

21.5

Algae Frequent occurrence of algal blooms that may be toxic to aquatic ecosystems ormay inhibit public use or enjoyment of the reservoir 9.5

Sediment Settling of suspended sediments, which may reduce the reservoir depth and homogenize substrates over time 29.6

Inorganic turbidity Particulate inorganic matter, typically fine sediments, suspended in the water column that may inhibit primary production, affect
foraging by fish and other aquatic organisms, or limit the esthetic qualities

20.3

Organic turbidity Particulate organic matter, other than algal blooms, suspended in the water column 8.5

Thermal Sudden changes in the ambient water temperature caused by external processes, such as water being used as a coolant and returned
to the natural environment at a higher temperature

3.9

Contaminants Chemical substances such as heavy metals or other fat-soluble pollutants that disrupt or harm the physical processes or ecosystems
as well as present human health concerns (e.g., mercury in fish tissue). The contaminants may be foreign or naturally occurring
substances; when naturally occurring, they are considered as contaminants upon exceeding natural levels

9.8

Point source Single or several isolated sources of pollution, such as discharge pipes from a factory or sewage treatment plant 5.8

Non-point source Diffuse pollution that does not originate from a single discrete source and is usually found spread over a large area 21.6
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For the impairment concerning physical characteristics of the
reservoirs, the full model of the CCA across all functions was
statistically significant (λ = 0.47, F(54, 4349) = 6.1, p < 0.001). For
the impairment concerning land cover in catchments, the full model
CCA across all functions was statistically significant (λ = 0.37, F(81,
4100) = 7.8, p < 0.001). For the impairment regarding local climate,
the full model CCA across all functions was also statistically
significant (λ = 0.43, F(72, 6534) = 7.8, p < 0.001). Because the
Wilks’s λ value represents the variance unexplained by the
model, (1– λ) yields the full model effect size in an R2 metric.
Thus, the full models accounted for 53% of the variance shared with
the physical characteristics of the reservoirs, 63% of the variance
shared with the land cover in the catchments, and 57% of the
variance shared with the local climate.

The physical characteristics of the reservoirs were canonically
correlated with the impairment metrics (Figure 2). The first two
canonical functions had significant (p ≤ 0.05) correlations ≥0.5 and
were interpreted. Here, the first canonical function had a correlation
of 0.59 and demonstrated an association between most impairment
metrics and mostly three reservoir attributes (Figure 2A); in this
canonical function, all impairment metrics except for three
(i.e., algae, thermal, and contaminants) were positively correlated
with drainage area, maximum discharge, and drainage/surface area
ratio. Thus, the impairment levels increased with catchment size,
catchment size relative to reservoir size, and extent of discharge from
the reservoir, which are indicative of the amount and rate of water
flowing into a reservoir. The second canonical function had a
correlation of 0.51 and demonstrated inverse associations

TABLE 2 Mean and coefficient of variability (CV) for the reservoir attributes, local climate, and watershed landcover covariates included in the analysis of
1,090 U.S. reservoirs.

Metric Definition Unit Mean CV

Reservoir attributes (Rodgers, 2017)

Drainage area Area of the surrounding landscape from which water drains into the reservoir km2 27,027 535

Surface area Surface area of the water at the normal retention level km2 27 327

Mean depth Volume of the reservoir divided by its surface area at normal retention m 14 112

Maximum depth Maximum hydraulic height of the reservoir m 27 77

Maximum discharge Maximum discharge capacity of the spillway m3/s 3.345 180

Volume Total volume of the reservoir below its maximum attainable water level km3 0.43 367

Climate (Fick and Hijmans, 2017)

BIO1 Annual mean temperature °C 13.2 32

BIO4 Temperature seasonality 100 × SD of temperature 864 17

BIO5 Maximum temperature during the warmest month °C 31 9

BIO6 Minimum temperature during the coldest month °C −5 116

BIO7 Annual range of temperature (BIO5–BIO6) °C 36 11

BIO12 Annual precipitation cm 965 34

BIO13 Precipitation during the wettest month cm 117 27

BIO14 Precipitation during the driest month cm 48 59

BIO15 Precipitation seasonality CV of precipitation 32 60

Watershed landcover (Rodgers, 2017)

Water Total drainage area of water bodies (excludes the reservoir) % 2.6 131

Wetlands Total drainage area of wetland landcover % 2.6 204

Urban Total drainage area of urban landcover, including urban and recreational grasses % 1.9 225

Forest Total drainage area of forest landcover, including deciduous, evergreen, and mixed forest lands % 42.4 73

Shrub Total drainage area of shrub landcover % 6.6 232

Grass Total drainage area of grass and herbaceous landcover % 13.9 154

Pasture Total drainage area of pasture/hay landcover % 15.0 103

Crops Total drainage area of cultivated land, including row crops, small grains, and orchards % 13.5 141

Barren Total drainage area of quarries and barren or transitional landcover % 0.9 201
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between nutrients, algae, and organic turbidity as well as reservoir
depth, volume, and discharge (Figure 2B). Thus, the impairment
levels decreased in deep reservoirs with large volumes and high flow-
through rates. Thermal pollution and contaminants were not related
with the considered physical characteristics of the reservoirs.

The climate conditions were next canonically correlated with the
impairment metrics (Figure 3). The first canonical function had
significant (p < 0.05) correlations ≥0.5 and was interpreted. This first
function had a correlation of 0.59 and demonstrated an association
between most of the impairment metrics and four climatic
conditions (Figure 3). In the first canonical function, all
impairment metrics except for three (i.e., thermal, contaminants,
and point-source) were positively correlated with temperature
seasonality and annual range as well as inversely correlated with
minimum temperature during the coldest month and precipitation
during the driest month. The three impairments that were seemingly
unassociated with climate showed no strong correlations with the

FIGURE 1
Locations of the 1,090 reservoirs distributed throughout the
conterminous United States and evaluated by experts for impairment
status in this study. Each point represents a single reservoir.

FIGURE 2
Canonical correlation analysis. The orange rectangles represent the impairment metrics, and beige rectangles indicate the reservoir attributes: (A)
canonical axis 1; (B) canonical axis 2. The center values represent the Pearson correlations between each of the canonical axes; the value next to each
rectangle represents the Pearson correlation between each variable and its canonical axis. Thus, high Pearson correlations identify variables that have
high influences on the canonical axes.
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climate variables in the two remaining significant canonical factors
(not shown).

The landcover composition was canonically correlated with
impairment metrics (Figure 4). Only the first canonical
function had a significant (p < 0.05) correlation ≥0.5 and
was interpreted. The first function, with a correlation of
0.68, provided evidence that increasing the proportions of
crops and pastures in a watershed increased the nutrients,
sediments, organic and inorganic turbidities, and non-point-

source pollution. The opposite effects were facilitated by the
forested catchments.

4 Discussion

Expert opinions incorporate qualitative information from
personnel who are most familiar with a system. Although expert
opinions are sometimes considered less robust than quantitative

FIGURE 3
Canonical correlation analysis. The orange rectangles represent the impairment metrics, and blue rectangles show the climate attributes defined in
Table 2. Only canonical axis 1 is shown here. The center values represent the Pearson correlations between each of the canonical axes; the value next to
each rectangle represents the Pearson correlation between each variable and its canonical axis. Thus, high Pearson correlations indicate variables that
have high influences on the canonical axis.

FIGURE 4
Canonical correlation analysis. The orange rectangles represent the impairment metrics, and green rectangles show the landcover attributes
defined in Table 2. Only canonical axis 1 is shown here. The center values represent the Pearson correlations between each of the canonical axes; the
value next to each rectangle represents the Pearson correlation between each variable and its canonical axis. Thus, high Pearson correlations indicate
variables that have high influences on the canonical axis.
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data collected from field surveys, they are valuable alternatives
in situations where in situ data are unavailable, including the
large-scale spatial assessment presented here. However, where
available, we suggest prioritizing empirical evidence over expert
opinions in the management of reservoir impairments. This study
offers insights into the general patterns of reservoir impairment that
can be used to guide future research. Our analysis indicates that
expert opinions on impairment aspects were often correlated with
covariates that were anticipated to influence impairments, including
the local climate, reservoir attributes, and surrounding landcover,
thereby supporting the use of expert opinions in ecological research.
It is understandable that certain impairments showed weak
correlations with the covariates investigated herein as they are
likely associated with reservoir characteristics that were not
captured in our covariate selection. Although some impairments
did not show correlations with the covariates under consideration, it
does not imply that the expert judgments were incorrect. Indeed, it is
not unreasonable to assume that the impairments with limited
correlations to the covariates are estimated with a precision level
comparable to those that are correlated, considering that they
originate from the same survey and respondents.

The correlations that we identified between the impairments
and selected covariates were consistent with the results of
empirical studies, thereby providing support for reliance on
expert judgment. Davies et al. (2010), Wallace et al. (2018),
and Lee et al. (2022) showed that impairment levels were
related to the catchment sizes, as predicted by the first
canonical function of the reservoir physical features in our
study. Similarly, reduced nutrients and algae in deeper, high-
volume lakes were previously reported by Taranu and Gregory-
Eaves (2008) andMiranda (2011, 2017), as suggested in this study
by the second canonical function of reservoir physical features.
Generally and consistent with the observed canonical
correlations between the impairments and climate metrics, it
has been documented that temperature and precipitation
variations affect pollutant toxicities (Noyes et al., 2009). The
composition of a watershed region, particularly its agricultural
composition, has frequently been observed to correspond with
the impairment levels, and this association was well-represented
by the expert opinions. Thus, we conclude that expert opinions
may be used to assess reservoir impairment levels over wide
geographical areas. Below, we explore when and how these
opinions may be applicable.

Relying on expert opinions rather than empirical surveys may
be appropriate in some scenarios (Drescher et al., 2013). For
example, when empirical data are scarce or unavailable, expert
opinions can provide valuable insights based on knowledge and
experience (Ryder et al., 2010; Runge et al., 2020). The U.S.
Environmental Protection Agency recurrently conducts an onsite
National Lake Assessment of the lakes and reservoirs in the
country (USEPA, 2024). This national survey is arguably one
of the most extensive aquatic surveys globally, yet it lacks the
reservoir breadth attained through our online expert opinion
survey likely because of its different objectives. Moreover, when a
study has broad spatial applicability over multiple jurisdictions
that are fragmented or have limited standardization among their
monitoring programs (Hughes et al., 2000), it may be challenging
to gather a complete dataset (Krogman and Miranda, 2016). In

situations where urgent decisions are necessary and there is
insufficient time to collect relevant empirical data, expert
opinions can provide immediate guidance (Bolam et al., 2019;
Regan et al., 2005; Schmoldt et al., 2001). Expert opinions can
offer a more complete picture in complex situations when
empirical surveys based on limited quantitative metrics may
not be able to cover all pertinent elements or subtleties. Thus,
experts can help interpret events and circumstances while
providing context that might not be apparent from raw survey
results. Lastly, in the early stages of research where empirical data
are collected, expert opinions can help shape the hypotheses,
design of the empirical studies, and identify the key metrics of
investigation. Although expert opinions are valuable in these
situations, it is essential to consider the potential biases and
ensure that the qualifications and experiences of the experts are
relevant to the specific context. The potential biases in expert
opinions related to probabilistic onsite surveys may include
limited expert familiarity with a reservoir, focus on aspects of
the environment that the expert finds more relevant, anchoring
opinion relative to different standards, and possibly
overconfidence. Balancing expert opinions with empirical data,
where available, can provide a more robust basis for
decision-making.

Adhering to a few criteria may improve the quality of the
impairment data obtained through expert opinions (Ericsson
et al., 2006; Davis and Ruddle, 2010). It is important that the
experts possess adequate understanding of the impairments
coupled with local knowledge though extensive experience
working at the reservoirs in question. Verifications may be
achieved by examining the educational credentials, career
track records, and possibly published works of the experts.
Occasionally, it may be possible to seek multiple opinions to
obtain a range of perspectives, possibly from different agencies
managing the reservoir. This may help to mitigate individual
biases and provide a broader understanding of the issue. Where
possible, we also recommend comparing the expert opinions with
available empirical data, as we have considered in this study.
There are many potential conflicts of interest or biases that could
influence expert opinions, including personal beliefs and
professional affiliations. Even if the data are limited, such
comparisons can highlight the areas of agreement and
discrepancy, providing checkpoints on how and what kinds of
experts are selected and questioned to achieve a more
balanced view.
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