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Introduction: The agricultural sector is the second largest emitter of greenhouse
gases, accounting for 23% of global anthropogenic carbon emissions. Analysis of
the basic state of carbon emissions from China’s agriculture is helpful to achieve
carbon reduction targets.

Methods: Agricultural carbon emissions were calculated using the emission
factor method, based on data from the China Rural Statistical Yearbook and
various provincial statistical yearbooks. To analyze spatial patterns, the standard
deviation ellipse method and the center of gravity migration model were
employed, uncovering the migration path of agricultural carbon emissions.
Regional disparities and the driving factors of agricultural carbon emissions
were further examined using the Theil index and the Logarithmic Mean Divisia
Index (LMDI) model.

Results: The analysis indicated that the emissions center has gradually shifted
towards the central and western regions, reflecting changes in agricultural
production activity areas. Intraregional differences are the primary
contributors to the imbalance in agricultural carbon emissions, with
pronounced disparities in grain production and consumption balance regions.
Key influencing factors include agricultural production efficiency, adjustments in
agricultural industrial structure, economic structure and output, and urbanization
levels. The economic output effect and urbanization effect are identified as the
main drivers of increased carbon emissions, while declining production efficiency
has hindered emission reduction efforts.

Conclusion: The findings provide valuable insights for regional management and
policymaking in China’s agricultural sector, highlighting the need to enhance
production efficiency and optimize agricultural structure to reduce emissions.
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1 Introduction

Climate change has emerged as one of the most pressing global
environmental issues, garnering significant attention worldwide. The
large-scale emissions of greenhouse gases, such as carbon dioxide and
methane, are recognized as primary contributors to the rise in global
temperatures (Dong et al., 2018a). In response to climate change, the
international community, under frameworks like the Paris Agreement,
has committed to mitigating global temperature increases to within
1.5°C through measures such as emission reductions and carbon
neutrality (Dai et al., 2017; Liu et al., 2022). Against this backdrop,
countries have increasingly prioritized and implemented active carbon
emission control measures, with agriculture becoming a focal point for
both academia and policymakers (Liu and Yang, 2021). Agricultural
carbon emissions mainly stem from the use of agricultural inputs such
as fertilizers, pesticides, and plastic mulch, as well as from the release of
methane and nitrous oxide during livestock production and soil tillage.
These emissions not only have environmental consequences but also
hinder sustainable agricultural development (Yang et al., 2022).
Consequently, effectively controlling agricultural carbon emissions
and achieving a green transformation in agriculture have become
significant global challenges.

As the largest developing country and agricultural producer in the
world, China has experienced rapid agricultural economic growth,
which has also led to substantial CO2 emissions. It is estimated that
China’s agricultural carbon emissions account for approximately one-
eighth of the global total and constitute a significant portion of the
country’s overall carbon emissions (Zhu and Huo, 2022). In line with
the Chinese government’s “dual carbon” goals of carbon peaking and
carbon neutrality, promoting green agricultural development has
become a critical objective. Therefore, effectively assessing the
spatiotemporal evolution of agricultural carbon emissions and
identifying the driving factors in different regions are essential for
formulating precise emission reduction policies.

Current research on agricultural carbon emissions primarily focuses
on the calculation methods, spatiotemporal evolution, and influencing
factors of these emissions. The calculation of agricultural carbon
emissions serves as the foundation of related studies, primarily
achieved by estimating greenhouse gases such as carbon dioxide
(CO₂), methane (CH₄), and nitrous oxide (N₂O) produced during
agricultural production. Commonly used calculation methods in
academia include the emission factor method (Zhang H. et al., 2022;
Li et al., 2022;Wu et al., 2022), life cycle assessment (LCA) (Wang et al.,
2022; Bian et al., 2022; Ding et al., 2022), and energy input-output
analysis (Jiang et al., 2022; Zha et al., 2022; Pan et al., 2022). The
emission factor method recommended by the Intergovernmental Panel
onClimate Change (IPCC) is widely applied due to its simplicity, relying
on carbon emission factors associated with different agricultural
activities. However, the accuracy of this method is contingent upon
the selection of emission factors, which may introduce biases in the
results. Life cycle assessment, on the other hand, offers greater precision
by thoroughly analyzing carbon emissions throughout the agricultural
production process, though it involves complex data acquisition and
processing. Energy input-output analysis indirectly estimates carbon
emissions based on the energy consumed in agricultural production,
offering practicality but neglecting non-energy-related factors.

Research on the spatiotemporal evolution of agricultural carbon
emissions mainly investigates the changing trends of emissions across

different regions and time periods. By utilizing Geographic Information
System (GIS) technologies and spatial econometric methods,
researchers have analyzed the spatial clustering phenomena, regional
disparities, and dynamic evolution of agricultural carbon emissions.
Spatial autocorrelation analysis and Moran’s I index are commonly
employed spatial statistical tools (He et al., 2022) to reveal the spatial
distribution patterns of agricultural carbon emissions. Findings indicate
that China exhibits significant spatial clustering of agricultural carbon
emissions, with higher levels observed in the developed eastern regions
and major grain-producing areas (Wen et al., 2022). Furthermore, the
regional disparities in agricultural carbon emissions have shown varying
trends, either narrowing or widening over different periods, with faster
emission growth observed in underdeveloped western regions.
Spatiotemporal evolution studies suggest that with the adjustment of
national agricultural policies and the promotion of green development
concepts, some regions have experienced a slowdown in carbon
emission growth or even a downward trend (Han et al., 2018; Li
et al., 2023). Nevertheless, the heavy reliance on environmental
resources in agricultural production and the increasing degree of
agricultural mechanization have continued to exert significant
pressure on carbon emissions in certain areas (Li and Wang, 2023).

In the study of factors influencing agricultural carbon emissions,
commonly used analytical tools include the Kaya identity (Hao et al.,
2022a; Zeng and He, 2023; Peng and Liu, 2022), the Logarithmic
Mean Divisia Index (LMDI) model (Zhao et al., 2022; Huang et al.,
2022; Luo et al., 2023), and the STIRPATmodel (Sun et al., 2022; Cui
et al., 2022; Gu et al., 2022). These methods have demonstrated
strong explanatory power in analyzing the driving factors of carbon
emissions, yielding significant results at both the national and
provincial levels. While considerable research has been conducted
on the influencing factors of agricultural carbon emissions at these
levels, there is still a relative scarcity of studies analyzing the
differences in emission drivers across various regions, particularly
among China’s three major grain-producing zones—primary grain
production regions, grain consumption regions, and grain
production-consumption balance regions1. The significant

1 China’s current grain production layout was established between 2003 and

2004. The 31 provinces are classified into main production areas,

production-consumption balance areas, and main consumption areas

based on indicators such as grain output, per capita availability, and

commercial grain reserves. Thirteen provinces (or autonomous

regions)—Hebei, Inner Mongolia, Jilin, Heilongjiang, Liaoning, Jiangsu,

Anhui, Jiangxi, Shandong, Henan, Hubei, Hunan, and Sichuan—are

designated as the main production areas. The main consumption areas

include seven provinces (or municipalities) with large grain inflows: Beijing,

Tianjin, Shanghai, Zhejiang, Fujian, Guangdong, and Hainan. Eleven

provinces (or autonomous regions and municipalities)—Shanxi, Guangxi,

Guizhou, Yunnan, Chongqing, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, and

Xinjiang—are categorized as production-consumption balance areas. In

the main production areas, grain production is to be stabilized and

gradually increased. The main consumption areas are tasked with

maintaining sufficient grain planting areas to ensure a necessary level of

self-sufficiency. The production-consumption balance areas are to

continue stabilizing the balance between grain supply and demand.
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disparities in natural conditions, agricultural practices, and policy
environments across these regions suggest that the contributions of
carbon emission drivers may vary greatly among different areas
and provinces.

This paper employs the standard deviation ellipse, Theil index,
and LMDI decomposition models to analyze the spatiotemporal
evolution characteristics and influencing factors of agricultural
carbon emissions in China from 2000 to 2022. By revealing the
regional distribution and migration patterns of agricultural carbon
emissions, the primary driving factors in each region are identified,
providing a foundation for informed decision-making to promote
green agricultural development in China.

The contributions of this paper are outlined as follows: First,
while much of the existing literature emphasizes calculation
methods and the spatiotemporal evolution of emissions, this
study offers a more in-depth analysis of regional disparities and
emission migration patterns across China’s three major grain-
producing zones: primary grain production regions, grain
consumption regions, and production-consumption balance
regions. Spatial shifts in emission patterns are revealed within
various agricultural contexts, providing a more nuanced
perspective compared to previous national or provincial-level
studies. Second, although many studies have analyzed the drivers
of agricultural carbon emissions at national or provincial levels, this
research employs advanced spatial and econometric techniques,
including the standard deviation ellipse, center of gravity
migration models, and the Theil index, to identify significant
regional differences in emission drivers. These differences are
particularly important given the diverse natural conditions,
agricultural practices, and policy environments across China,
which have been inadequately addressed in prior research.
Finally, by applying the Logarithmic Mean Divisia Index (LMDI)
model to decompose the factors influencing emissions, the study
offers a detailed understanding of the contributions of variables such
as agricultural production efficiency, structural adjustments, and
urbanization in different regions. This approach provides a clearer
view of how emission drivers vary regionally, enabling more targeted
policy recommendations. In conclusion, the integration of spatial
analysis with regional decomposition models offers new insights
into the dynamic migration of agricultural carbon emissions and
regional disparities in emission drivers, facilitating the development
of more effective policies for green agricultural development
in China.

The structure of this paper is as follows: First, the methods of
calculating agricultural carbon emissions and the data sources are
introduced. Next, the spatiotemporal evolution characteristics of
agricultural carbon emissions are analyzed using the standard
deviation ellipse model. Then, regional differences in agricultural
carbon emissions are examined through the Theil index. Finally, the
LMDI model is utilized to decompose the influencing factors of
agricultural carbon emissions, followed by corresponding policy
recommendations.

2 Research design

This study employs a combination of the Standard Deviation
Ellipse (SDE), Theil index, and Logarithmic Mean Divisia Index

(LMDI) to analyze the spatiotemporal dynamics and regional
disparities of agricultural carbon emissions in China.
Understanding how agricultural production activities and
their associated emissions have shifted is critical in the
context of China’s rapid economic development and
agricultural transformation. The SDE method is used to
visually and quantitatively capture spatial changes in
emission patterns, aiding in the identification of changes in
the geographic concentration and directional movement of
emissions over time. The Theil index is particularly effective
for decomposing inequality into within-region and between-
region components, making it highly relevant for assessing
regional disparities in emissions. This approach enables a
more detailed analysis of emission inequalities across
different agricultural regions in China, helping to identify
areas where disparities are most pronounced. Lastly, the
LMDI model is applied to decompose the driving factors
behind agricultural carbon emissions, such as changes in
agricultural production efficiency, structural adjustments, and
urbanization. This model precisely attributes changes in
emissions to specific drivers, offering region-specific insights
into the impact of policy and economic changes on emission
patterns. The combined application of these methods provides a
comprehensive analysis of the spatial and temporal dynamics of
emissions and offers a robust framework for understanding the
regional factors driving agricultural carbon emissions, thereby
contributing to the development of more targeted emission
reduction policies.

2.1 Agricultural carbon emission estimation

Agriculture, as a source of carbon emissions, generates direct
or indirect greenhouse gas emissions through material inputs in
land use, soil disruption caused by crop planting and tilling, and
enteric fermentation and manure management in livestock
farming. Due to its simplicity, practicality, and ease of
application, the emission factor method has been widely used
for carbon emission estimation at both national and provincial
levels. Drawing on the existing studies by Chen et al. (2019) and
Guo et al. (2016), and considering the actual agricultural
production conditions in China, this study identifies the
primary sources of agricultural carbon emissions in China as
stemming from the use of fertilizers, pesticides, agricultural
plastic films, agricultural diesel, and irrigation during land use.
To ensure consistency in data units for comparative analysis, the
conversion factors from the IPCC Fourth Assessment Report are
applied, with 1 ton of CH₄ equivalent to 6.82 tons of carbon (C),
and 1 ton of N₂O equivalent to 81.27 tons of carbon (C). The
specific formula for calculating agricultural carbon emissions is
as follows:

E � ∑Ei ∑Ti × εi (1)

In Equation 1, E represents the total agricultural carbon
emissions (measured in ten thousand tons), Ti denotes the
quantity of the ith carbon emission source, and ϵi signifies the
carbon emission factor for the ith emission source.
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2.2 Standard deviation ellipse

The Standard Deviation Ellipse (SDE) is a statistical tool widely
used in spatial analysis to describe the central tendency and dispersion
characteristics of a set of spatial points (Zhao and Zhao, 2014). By
constructing an ellipse, the SDE can visually represent the spatial
distribution and directional trends of data points relative to their
mean center. The ellipse’s major and minor axes correspond to the
standard deviations of the data in the primary and secondary directions,
respectively. The major axis indicates the direction of maximum
variance, while the minor axis, orthogonal to the major axis,
represents the direction of minimum variance (Zhong et al., 2020).
The orientation of the ellipse reflects the dominant distribution trend of
the data, and its size indicates the degree of spatial dispersion. The
following are the formulas for calculating the SDE for provincial data:

For a given year, the centroid coordinates (�x, �y) of provincial
carbon emission data can be computed using the following formulas:

�x �
∑n
j�1
wjxj

∑n
j�1
wj

, �y �
∑n
j�1
wjyj

∑n
j�1
wj

(2)

The carbon emissions of the jth province are represented bywj, xj

and yj denote the longitude and latitude of the province, respectively.
The orientation of the major axis, θ can be expressed as follows:

tan θ �
∑n
j�1
w2

jx
2
j − ∑n

j�1
w2

jy
2
j( ) +

�����������������������������∑n
j�1
w2

jx
2
j − ∑n

j�1
w2

jy
2
j( )2

+ 4∑n
j�1
w2

jxjyj

√
2∑n
j�1
w2

jxjyj

(3)
Equation 3 describes the orientation of the ellipse’smajor axis, which

is based on the carbon emission weights and coordinates of each
province. The standard deviation along the x-axis is expressed as follows:

δx �

�����������������������∑n
j�1

wjxj cos θ − wjyj sin θ( )2
∑n
j�1
w2

j

√√√√√
(4)

Equation 4 represents the degree of dispersion of data points
along the major axis. The standard deviation along the y-axis is
expressed as follows:

δy �

�����������������������∑n
j�1

wjxj sin θ + wjyj cos θ( )2
∑n
j�1
w2

j

√√√√√
(5)

Equation 5 represents the degree of dispersion of data points
along the minor axis.

2.3 Theil Index

The Theil Index is a measure of distributional inequality,
commonly used to evaluate disparities in income or economic

development (Fan and Sun, 2008; Dong and Hao, 2018). The
Theil Index ranges between 0 and 1, where 0 represents complete
equality and one denotes maximum inequality. Due to its
decomposability, the Theil Index is particularly suitable for
analyzing the contributions of within-group and between-group
differences to total inequality.

By applying the Theil Index to the agricultural carbon
emissions data of various provinces (j), it becomes possible
to measure the distributional imbalance of carbon emissions
across provinces. Let yj represent the agricultural carbon
emissions of province j, Y � ∑n

j�1yj denote the total
agricultural carbon emissions, and n represent the number
of provinces. Theil Index (T) is expressed as shown in
Equation 6:

T � 1
n
∑n
j�1

yj

Y
log

yj

Y
× n( ) (6)

To further analyze the sources of inequality, the Theil Index can
be decomposed into two components: within-group inequality and
between-group inequality.

Within-group inequality Tw reflects the distributional
differences of carbon emissions within each group. The formula
is as follows:

Tw � ∑K
k�1

Yk

Y
Tk (7)

In Equation 7, Tk represents the Theil Index of the kth group,
and Yk denotes the total carbon emissions of the kth group.

Between-group inequality Tb captures the distributional
differences of carbon emissions across different groups. The
formula is as follows:

Tb � ∑K
k�1

Yk

Y
log

Yk

Y
×

1
nk

( ) (8)

In Equation 8, nk represents the number of provinces in the
kth group.

Through the calculation and decomposition of the Theil Index,
the agricultural carbon emissions imbalance among provinces can
be comprehensively analyzed, allowing for a clear understanding of
the contribution of within-group and between-group disparities to
overall inequality.

2.4 LMDI model

The Logarithmic Mean Divisia Index (LMDI) model is a
widely applied decomposition method for analyzing the driving
factors of carbon emissions. It is particularly well-suited for
decomposition problems that require no residuals (Ang, 2005;
Ma and Stern, 2008; Ma et al., 2019). This model allows for the
decomposition of changes in agricultural carbon emissions into
the effects of various driving factors, such as production
efficiency, industrial structure, economic output, and
urbanization levels. Drawing on the identity principle of both
sides of the Kaya Identity, the carbon emissions of China’s
agriculture can be decomposed as follows:
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CE � ∑n
j�1
CEj � ∑n

j�1

CEj

BGDPj
×
BGDPj

AGDPj
×
AGDPj

GDPj
×
GDPj

FPj
×
FPj

Pj
× Pj

� ∑n
j�1
Bj × Aj × Sj × Ej × Uj × Pj

(9)
In Equation 9, CE represents the total agricultural carbon

emissions in China; CEj denotes the agricultural carbon
emissions of province j; BGDPj refers to the gross output value
of agriculture and animal husbandry in province j; AGDPj
represents the total output value of agriculture, forestry, animal
husbandry, and fisheries in province j; GDPj is the total economic
output of province j; FPj indicates the total population of province j;
Pj refers to the rural population of province j; Bj stands for
production efficiency in province j; Aj represents the agricultural
industrial structure of province j; Sj denotes the economic structure
of province j; Ej signifies the economic development level of province
j; and Uj represents the urbanization level of province j.

The influencing factors are further decomposed using the
additive decomposition method, as follows:

ΔCEtot � ΔCB + ΔCA + ΔCS + ΔCE + ΔCU + ΔCP (10)
In Equation 10, ΔCB、ΔCA、ΔCS、ΔCE、ΔCU、ΔCP

represent the contributions of production efficiency effects,
agricultural industrial structure effects, economic structure effects,
economic output effects, urbanization effects, and rural population
effects, respectively, to the change in carbon emissions. The
calculation formulas for each effect are as follows:

ΔCB � ∑n
j�1

CEt
j − CE0

j

lnCEt
j − lnCE0

j

× ln
Bt
j

B0
j

( ) (11)

ΔCA � ∑n
j�1

CEt
j − CE0

j

lnCEt
j − lnCE0

j

× ln
At

j

A0
j

( ) (12)

ΔCS � ∑n
j�1

CEt
j − CE0

j

lnCEt
j − lnCE0

j

× ln
Stj
S0j

( ) (13)

ΔCE � ∑n
j�1

CEt
j − CE0

j

lnCEt
j − lnCE0

j

× ln
Et
j

E0
j

( ) (14)

ΔCU � ∑n
j�1

CEt
j − CE0

j

lnCEt
j − lnCE0

j

× ln
Ut

j

U0
j

( ) (15)

ΔCP � ∑n
j�1

CEt
j − CE0

j

lnCEt
j − lnCE0

j

× ln
Pt
j

P0
j

( ) (16)

In Equations 11–16, CEt
j、 CE0

j represent the carbon emissions
of province j in the target year and the base year, respectively.
Bt
j, A

t
j, S

t
j, E

t
j, U

t
j, P

t
j denote the production efficiency, agricultural

industrial structure, economic structure, economic development
level, urbanization level, and rural population of the province in
the target year.

2.5 Data sources and processing

The empirical analysis in this study relies on data related to
fertilizer use (in pure form), agricultural film consumption, pesticide
usage, diesel for agricultural machinery, crop planting area, effective

irrigation area, total output value of planting, total output value of
agriculture, forestry, animal husbandry, and fisheries, and
agricultural labor force size. These data were sourced from the
China Rural Statistical Yearbook (2000-2022) and provincial
statistical yearbooks of 31 provinces, municipalities, and
autonomous regions in mainland China.

The descriptive statistics of the key variables used in this study
are presented in Table 1. Fertilizer usage averages 169.27
(10,000 tons) with a standard deviation of 137.75, indicating
significant differences across regions. Similarly, diesel usage for
agricultural purposes exhibits a mean of 61.39 (10,000 tons) and
a broad range from 0.5 to 487 (10,000 tons). The crop sown area and
irrigated area display substantial variation, with mean values of
5193.15 and 1968.99 (1,000 ha), respectively, reflecting diverse land
use patterns. Economic indicators show that the gross output value
of agriculture, forestry, animal husbandry, and fishery averages
2580.27 (100 million yuan), while GDP records a mean of
17,112.14 (100 million yuan), highlighting economic disparities
across regions. Population data further demonstrate a permanent
population mean of 4341.76 (10,000 persons), with rural
populations averaging 2173.37 (10,000 persons).

3 Analysis of Agricultural carbon
emission results

3.1 Spatiotemporal evolution characteristics

3.1.1 Temporal Variation characteristics
The estimated total agricultural carbon emissions in China from

2000 to 2022 are illustrated in Figure 1. As shown, agricultural
carbon emissions in China exhibited a fluctuating upward trend
during this period. By 2022, total agricultural carbon emissions
reached 89.99 million tons, representing an increase of
approximately 22.88% compared to 73.25 million tons in 2000.
This reflects a continuous rise in carbon emissions associated with
agricultural activities. However, the growth in emissions was not
linear, with various phases of change observed over time.

From 2000 to 2007, carbon emissions experienced continuous
growth, marked by a steady upward trend. During this period, the
use of fertilizers, plastic films, and diesel significantly increased. The
modernization of agriculture, characterized by the widespread use of
fertilizers and pesticides, contributed to increased agricultural yields
but also led to a rise in carbon emissions. From 2008 to 2014, carbon
emissions fluctuated at high levels. After peaking in 2008,
agricultural carbon emissions remained elevated for several years.
During this stage, the continued adoption of mechanized farming
and improvements in irrigation technology kept emissions at a high
but volatile level. From 2015 to 2022, emissions gradually declined.
Starting in 2015, a downward trend in emissions emerged,
particularly due to noticeable reductions in emissions from
plastic films and diesel. This decline may be attributed to
national policies and technological advancements, such as
initiatives promoting fertilizer efficiency, pesticide reduction, and
optimized rural energy structures, all contributing to the gradual
decrease in agricultural carbon emissions.

The different components of carbon emissions also exhibited
varying behaviors within the overall trend. Fertilizer emissions
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increased from 36.91 million tons in 2000 to 45.20 million tons in
2022, reflecting a growth of 22.47%. Fertilizer emissions followed a
general upward trajectory throughout the period, making it a
significant source of agricultural carbon emissions. Diesel
emissions rose from 8.29 million tons in 2000 to 10.44 million
tons in 2022, indicating the advancement of agricultural
mechanization. Irrigation-related emissions also showed
substantial growth, increasing from 14.34 million tons in 2000 to
15.66 million tons in 2022, highlighting the expansion of irrigation
technology and coverage. Although agricultural carbon emissions in
China increased over the entire period, recent mitigation efforts
have had some success, with a decline in carbon intensity observed.

This suggests progress in China’s pursuit of green agricultural
development.

3.1.2 Spatial shift path
To further reveal the migration patterns of agricultural carbon

emissions in China, an analysis was conducted using the standard
deviation ellipse and centroid shift model (see Table 2; Figure 2).
Figure 2 shows that the centroid of the ellipse is primarily
concentrated in the central region of China. Overall, from
2001 to 2022, the centroid exhibited a northwestward shift,
particularly evident between 2001 and 2015, during which the
centroid migrated significantly, covering a cumulative distance of

TABLE 1 Descriptive Statistics.

Variable
Obs Mean Std. dev. Min Max

Fertilizer Usage (10,000 tons) 713 169.27 137.75 2.5 716.1

Plastic Film Usage (10,000 tons) 713 6.85 6.36 0.01 34.35

Diesel Usage for Agricultural Purposes (10,000 tons) 713 61.39 62.38 0.5 487

Pesticide Usage (10,000 tons) 713 4.96 4.14 0.05 17.35

Crop Sown Area (1,000 hectares) 713 5193.15 3705.74 88.6 15209.4

Irrigated Area (1,000 hectares) 713 1968.99 1548.93 89.3 6177.6

Gross Output Value of Agriculture, Forestry, Animal Husbandry, and Fishery (100 million yuan) 713 2580.27 2379.98 51.2 12130.7

Gross Agricultural Output Value (100 million yuan) 713 1360.34 1286.05 24.9 6948.3

Gross Forestry Output Value (100 million yuan) 713 107.62 111.87 1.2 549.2

Gross Animal Husbandry Output Value (100 million yuan) 713 747.92 693.25 23.5 3613.8

Gross Fishery Output Value (100 million yuan) 713 256.89 391.79 0 1898.2

Permanent Population (10,000 persons) 713 4341.76 2790.24 258 12684

Rural Permanent Population 713 2173.37 1660.80 86.19 10162.79

GDP (100 million yuan) 713 17112.14 19918.55 117.8 129118.6

FIGURE 1
Temporal variation in China’s agricultural carbon emissions (2000-2022).
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153.23 km. This trend may reflect the increasing agricultural
activities in the central and western regions, leading to a more
concentrated distribution of related carbon emissions.

Table 2 shows the changes in the standard deviation ellipse
parameters for China’s agricultural carbon emissions. The minor
and major axes reflect the spread of emissions in the north-south
and east-west directions, respectively. The minor axis increased
from 906.62 km in 2001 to 947.07 km in 2008 and continued
expanding to 1,189.16 km by 2022, indicating a widening spatial
distribution in the north-south direction. Meanwhile, the major axis
grew from 1,074.85 km in 2001 to 1,078.89 km in 2022, indicating
relatively stable expansion in the east-west direction over the period.

In terms of the centroid migration path, the ellipse’s centroid
experienced a southeast-to-northwest shift between 2001 and 2022.
Notably, during the period from 2008 to 2015, the migration distance
was substantial, reaching 71.78°km, followed by a deceleration in
migration speed. This shift in the centroid reflects a gradual
concentration of agricultural carbon emissions towards the central

and western regions, closely linked to adjustments in agricultural
production layouts and regional policy changes. As shown in Table 2,
the azimuth angle increased from 36.98° in 2001° to 52.85° in 2022,
indicating that the primary direction of agricultural carbon emissions
shifted from a northeast-southwest axis to a more northern
orientation. Additionally, the area of the ellipse expanded from
3.06 million km2 in 2001 to 4.03 million km2 in 2022.

3.2 Regional disparity analysis

The Theil index serves as an effective tool for quantifying
disparities in carbon emissions distribution by evaluating the
contributions of various regions or functional areas. In this study,
the index is decomposed into two primary components: within-
group disparity and between-group disparity. The within-group
disparity measures the extent of inequality in carbon emissions
within each of the three functional grain areas—major grain-

FIGURE 2
Changes in the Standard Deviation Ellipse of China’s Agricultural Carbon Emissions. Note: The top-right inset in Figure 2 provides amagnified view of
the outer region of the main ellipse, illustrating the specific locations and trajectories of the agricultural carbon emission centroids for the years 2001,
2008, 2015, and 2022. The bottom-right inset details the migration path of the agricultural carbon emission centroid.

TABLE 2 Changes in the standard deviation ellipse parameters of China’s agricultural carbon emissions.

Year Centroid
coordinates

Centroid migration Minor
axis (km)

Major
axis (km)

Azimuth
(degree)

Area
(km2)

Longitude Latitude Direction Distance
(km)

2001 113.59 33.97 906.62 1074.85 36.98 3061236.91

2008 113.30 34.19 Northwest 40.26 947.07 1118.04 36.29 3326355.30

2015 112.76 34.54 Northwest 71.78 1026.53 1176.19 42.99 3792923.48

2022 112.46 34.76 Northwest 41.19 1189.16 1078.89 52.85 4030380.74
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producing, major grain-consuming, and grain production-
consumption balanced areas. A lower within-group Theil index
indicates a more uniform distribution of emissions within a specific
group, while a higher index suggests greater variation.

Conversely, the between-group disparity captures the
differences in emissions intensity between the three functional
grain areas. A high between-group Theil index reflects significant
disparities in emissions patterns across regions, whereas a lower
index indicates that regional differences are diminishing.

By analyzing the trends in overall, within-group, and between-
group disparities presented in Figure 3, the general evolution of
emissions inequality across the country can be observed, alongside
the specific contributions of disparities within and between the grain
regions. Figure 4 provides a deeper examination of the dynamics
within the functional grain areas, illustrating how disparities in
emissions evolve distinctly across these regions over time.

As illustrated in Figure 3, the overall Theil index remained
relatively stable between 2000 and 2006, followed by an increase
during the 2006-2008 period, peaking at 0.30575 in 2008. After 2008,

the overall Theil index steadily declined, reaching 0.27331 in 2022,
indicating a gradual reduction in carbon emission intensity
disparities among provinces. This trend may be closely linked to
national policy regulations, industrial restructuring, and the
implementation of energy conservation and emission reduction
measures (Li et al., 2021; Dong et al., 2018b; Shuai et al., 2017).
The intra-group Theil index exhibited a similar trend to the overall
Theil index, showing relative stability between 2000 and 2007, and
gradually decreasing after 2008. This suggests that disparities in
carbon emission intensity within provinces have diminished,
particularly as coordinated development within certain regions
has been strengthened. The inter-group Theil index showed an
overall downward trend, with a particularly noticeable decline after
2008, indicating that differences in carbon emission intensity among
different regions have gradually narrowed.

As shown in Figure 4, the inter-group disparities in the major
grain-producing regions declined significantly between 2000 and
2022. In contrast, the inter-group disparities in the major grain-
selling regions remained relatively stable, albeit with slight

FIGURE 3
Theil index of agricultural carbon emissions in China (2000–2022).

FIGURE 4
Theil index of agricultural carbon emissions in the three major grain functional areas.
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fluctuations. The grain balance regions, however, maintained higher
levels of inter-group disparities, with a noticeable
increase after 2020.

Table 3 reveals that from 2000 to 2022, the regional contribution
of agricultural carbon emissions displayed a clear trend where the
contribution of intra-regional differences significantly outweighed
that of inter-regional differences. This indicates that intra-regional
variations were the primary factor driving disparities in carbon
emission intensity. Among the three major grain functional areas,
the Grain Production and Consumption Balanced Zone contributed
the most to intra-regional differences, with an average contribution
rate of approximately 57%. The Grain Production Zone followed,
with an average contribution rate of 16.8%, while the Grain
Consumption Zone contributed the least, with an average of only
14.5%. This phenomenon suggests that carbon emission differences
were more pronounced within regions rather than between them.

Specifically, the intra-regional contribution of the Grain
Production and Consumption Balanced Zone showed a gradual
increase throughout the analysis period, particularly after 2014,
rising from around 24% in 2014 to approximately 28% in 2022.
This growth may be attributed to advancements in agricultural
technology, improvements in resource utilization efficiency, and
differentiated regional economic development. In contrast, the
intra-regional contribution of the Grain Production Zone and the
Grain Consumption Zone remained relatively stable. The
contribution of the Grain Production Zone has hovered around
16% since 2000 and slightly declined after 2020, likely influenced by
policy directives and the optimization of production methods. The
contribution of the Grain Consumption Zone increased from
13.87% in 2008 to 16.2% in 2022, but the overall growth was
relatively modest, reflecting a more stable pattern of carbon
emissions within this region.

TABLE 3 Regional contribution rates of agricultural carbon emissions in China, 2000–2022.

Year Contribution (%) Within-region
contribution (%)

Between-region
contribution (%)

Major grain-
producing
area (%)

Major grain-
consuming
area (%)

Grain production-
consumption balanced

area (%)

2000 25.24 13.79 14.98 54.01 45.99

2001 25.26 14.33 15.15 54.74 45.26

2002 25.86 14.26 14.79 54.91 45.09

2003 25.49 14.14 15.27 54.90 45.10

2004 24.34 13.43 15.10 52.88 47.12

2005 24.75 13.01 15.29 53.06 46.94

2006 24.07 13.07 15.72 52.86 47.14

2007 23.55 12.96 16.15 52.65 47.35

2008 21.81 13.87 17.65 53.33 46.67

2009 20.49 14.27 18.21 52.97 47.03

2010 19.83 14.35 18.78 52.95 47.05

2011 19.38 14.74 19.93 54.05 45.95

2012 18.47 14.96 20.86 54.28 45.71

2013 17.88 14.84 22.26 54.98 45.02

2014 17.07 15.06 24.09 56.22 43.78

2015 16.77 15.46 24.65 56.87 43.13

2016 16.47 15.89 25.22 57.58 42.42

2017 16.16 16.14 25.10 57.40 42.60

2018 16.01 16.01 25.09 57.11 42.89

2019 15.83 16.08 25.67 57.58 42.42

2020 15.86 16.20 25.69 57.76 42.24

2021 14.96 16.32 25.69 56.97 43.04

2022 14.50 16.20 28.00 58.71 41.29
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3.3 Factor analysis

3.3.1 National-level factor analysis
Based on the LMDI model and calculated data on agricultural

carbon emissions, the factors influencing China’s agricultural
carbon emissions from 2000 to 2022 were decomposed, as shown
in Figure 5. The results indicate a clear fluctuation in both the overall
effect of agricultural carbon emissions and its influencing factors
over time. On the whole, the impact of various factors on carbon
emissions was uneven.

From 2000 to 2014, agricultural carbon emissions exhibited a
continuous upward trend, with the most significant increase
occurring in 2003–2004 when the total effect reached
4.33 million tons. This growth was primarily driven by the
economic output effect. Starting in 2008, the total effect showed
noticeable fluctuations, particularly in 2016–2017 when it turned
negative, reaching −1.87 million tons. This reduction in carbon
emissions during this period was mainly attributed to improvements
in efficiency. However, in 2022, the total effect again displayed a
large negative value (−4.12 million tons), indicating the strong
influence of various emission-reduction factors that year.

The efficiency effect has consistently been one of the main
factors suppressing agricultural carbon emissions. In most years,
it contributed to reducing emissions. Notably, in 2003–2004 and
2007-2008, the efficiency effect reached −13.07 million tons
and −14.49 million tons, respectively, demonstrating its
substantial role in mitigating emissions during these periods.
These reductions suggest that improvements in agricultural
technology and resource-use efficiency greatly curtailed carbon
emissions. However, in some years, such as 2016-2017
(252.57 thousand tons), the efficiency effect was positive,
indicating a decline in production efficiency or increased energy
consumption in agricultural activities, warranting further
investigation into the factors behind these fluctuations.

The agricultural structural effect generally had a smaller impact
on carbon emissions, but notable fluctuations were observed in
certain years. For instance, in 2000–2001, the agricultural structural

effect was 237.1 thousand tons, contributing to emission increases,
whereas in 2008–2009, it was −915.4 thousand tons, indicating that
internal adjustments in the agricultural sector helped reduce
emissions. This highlights that changes in agricultural structure
do not consistently promote emission reductions, and their effects
vary depending on specific policies and timeframes.

The economic structural effect typically contributed to emission
reductions. From 2004 to 2007, the economic structural effect
accounted for reductions of 5.65 million tons, 7.11 million tons,
and 5.45 million tons, respectively. These reductions were driven by
shifts in the economy, such as the declining share of agriculture and
the increasing dominance of the industrial and service sectors.
However, in some years, such as 2022 (216.5 thousand tons), the
economic structural effect led to emission increases, which may have
been caused by imbalanced structural adjustments or a temporary
resurgence in agricultural activity.

The economic output effect remained one of the primary drivers
of increased agricultural carbon emissions throughout the study
period. It contributed significantly to emission increases in
2002–2003 (9.80 million tons), 2006-2007 (17.54 million tons),
and 2020-2021 (11.65 million tons). This reflects how the
expansion of agricultural production and economic activities
directly resulted in higher resource consumption and,
consequently, increased carbon emissions. The persistent trend of
rising emissions driven by economic output underscores the need
for future strategies to balance agricultural economic growth with
enhanced production efficiency and reduced resource consumption
to mitigate emissions.

Urbanization effects also contributed to emission increases in
several years. For example, in 2009–2010 (3.46 million tons) and
2019-2020 (3.87 million tons), the acceleration of urbanization led to
higher emissions, likely due to changes in land use, shifts in
agricultural production methods, and increased demand for
agricultural products.

The rural population effect, conversely, acted as a mitigating
factor for emissions. In 2004-2005 and 2008-2009, it contributed to
reductions of 12.36 million tons and 1.20 million tons, respectively,

FIGURE 5
Yearly decomposition of factors influencing agricultural carbon emissions in China.
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indicating that population decline in rural areas reduced the
intensity of agricultural activity and, as a result, lowered
carbon emissions.

3.3.2 Analysis of influencing factors in functional
grain zones

Figure 6 presents the decomposition of agricultural carbon
emissions using the LMDI model reveals distinct patterns across
China’s grain functional zones: the main grain-producing area, the
main grain-consuming area, and the grain production-consumption
balance area.

In themain grain-producing area, the total effect is a net increase
of 836.67 million tons of carbon emissions. This growth is primarily
driven by the economic output effect, which adds 12,846.39 million
tons, reflecting the strong influence of agricultural production
expansion on emissions. However, substantial mitigating effects
are observed in the efficiency effect (−8,221.94 million tons), the
economic structural effect (−3,474.46 million tons), and the
agricultural structural effect (−501.08 million tons), highlighting
the role of improved efficiency and structural changes in reducing
emissions. Additionally, the urbanization effect contributes
2,019.67 million tons to emissions, while the rural population
effect reduces emissions by −1,831.91 million tons, suggesting
that rural depopulation helped curb emissions.

In contrast, the main grain-consuming area exhibits a slight net
decrease in emissions, with a total effect of −14.97 million tons. The
efficiency effect (−1,278.18 million tons), economic structural effect
(−944.54 million tons), and agricultural structural effect
(−78.10 million tons) all contribute to reducing emissions.
However, these reductions are partially offset by the economic
output effect, which increases emissions by 1,990.81 million tons.
The urbanization effect adds 585.86 million tons to emissions, while
the rural population effect further reduces emissions
by −290.82 million tons.

In the grain production-consumption balance area, the total
effect is a net increase of 852.57 million tons of emissions. Similar to

other regions, the economic output effect plays a dominant role,
contributing 4,596.06 million tons to emissions. Meanwhile, the
efficiency effect (−3,088.96 million tons), economic structural effect
(−764.61 million tons), and agricultural structural effect
(−91.97 million tons) act to mitigate emissions. The urbanization
effect increases emissions by 954.08 million tons, while the rural
population effect contributes a reduction of −752.04 million tons.

Overall, the findings emphasize that while economic output and
urbanization drive emission increases, improvements in efficiency
and structural adjustments in both the economy and agriculture play
crucial roles in mitigating carbon emissions across all regions. These
results suggest the importance of targeted policymeasures to balance
economic growth with sustainability in agricultural practices.

4 Conclusion and recommendations

This paper analyzes the spatiotemporal evolution and
influencing factors of agricultural carbon emissions in China
from 2000 to 2022 using the Standard Deviation Ellipse, Theil
Index, and LMDI model. The findings are as follows:

First, spatiotemporal evolution characteristics: Between
2000 and 2022, China’s agricultural carbon emissions exhibited a
fluctuating upward trend, particularly during 2000–2007, where
emissions consistently increased, followed by a decline post-2015.
Spatially, the center of agricultural carbon emissions gradually
shifted northwest, indicating that agricultural production
activities are increasingly concentrated in the central and western
regions of China. Second, regional differences: The overall Theil
Index reveals that the disparity in agricultural carbon emissions
intensity among Chinese provinces gradually diminished between
2000 and 2022. This change is closely linked to national policies,
industrial restructuring, and the implementation of energy-saving
and emission reduction measures. The contribution of intra-
regional differences significantly surpassed that of inter-regional
differences, with the grain production-consumption balance zone

FIGURE 6
Overall decomposition results of the influencing factors of agricultural carbon emissions in the three major grain functional zones.
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contributing the most to intra-regional differences. This indicates
that the heterogeneity of carbon emissions within this zone is more
pronounced. Third, factor decomposition: The decomposition
results from the LMDI model indicate that the economic output
effect and urbanization effect were the primary drivers of increased
agricultural carbon emissions. Conversely, production efficiency,
agricultural industrial structure adjustments, and economic
structural changes played a significant role in reducing carbon
emissions. Notably, carbon emissions increased more
prominently in the grain-producing areas and the grain
production-consumption balance zones, while emissions in the
grain-consuming areas showed a decline.

The shift of agricultural carbon emissions toward the northwest
aligns with broader agricultural policy trends in China. Policies such
as the “Western Development” strategy and incentives to promote
agricultural production in central and western China have stimulated
growth in these regions. This finding is consistent with previous
studies (Liu et al., 2021), which highlight the expansion and
improvement of agricultural productivity in central and western
China. However, while this expansion has contributed to food
security and regional development, it has also increased carbon
emissions due to intensive land use and mechanization. The
decline in emissions after 2015 can be attributed to the
implementation of stricter environmental policies, such as the
promotion of sustainable agricultural practices and the reduction
of fertilizer use, a trend echoed in earlier research.

The Theil index reveals that the reduction in disparities
among provinces reflects the impact of nationwide efforts to
standardize agricultural practices and improve production
efficiency. Policies focused on narrowing regional economic
gaps and supporting rural development have likely played a
significant role in reducing carbon emissions disparities
between provinces. Previous research similarly emphasizes
how national energy-saving and emission-reduction policies
have contributed to regional convergence in environmental
indicators (Huisingh et al., 2015; Zhang L. et al., 2022).
Notably, intra-regional disparities, particularly within the
grain production-consumption balance zones, indicate that
while regional policies have been effective in reducing inter-
provincial disparities, local factors such as land management
practices, resource availability, and stages of economic
development still lead to significant heterogeneity in emissions.

The LMDI decomposition results highlight that economic
output and urbanization are the primary contributors to carbon
emissions, aligning with broader economic trends in China. As
agriculture becomes increasingly mechanized and
commercialized, economic growth inevitably leads to higher
energy consumption and emissions. Urbanization has also
driven demand for agricultural products, further boosting
production. This supports previous findings that urbanization
is associated with growing agricultural demand and subsequent
emissions increases (Sun and Huang, 2020; Wang et al., 2016).
On the other hand, improvements in production efficiency and
structural adjustments have counteracted these pressures,
contributing to emissions reductions. These factors are widely
recognized in the literature as key components for achieving
emissions reductions (Shuai et al., 2018; Hao et al., 2022b),

particularly as the nation invests in green technology and
sustainable agricultural practices.

To promote low-carbon agricultural development, more refined
regional carbon reduction strategies need to be developed based on
specific regional conditions.

First, strengthening differentiated regional management: In
major grain-producing areas, it is essential to promote low-carbon
agricultural technologies, such as precision fertilization and water-
saving irrigation techniques, while further optimizing mechanized
agricultural operations to reduce carbon emissions from
agricultural production. Governments can offer economic
incentives, such as subsidies, to encourage farmers to adopt
green agricultural practices, gradually reducing dependence on
fertilizers and pesticides. In grain-consuming regions, where
agricultural production activities are relatively limited,
urbanization has a significant impact on carbon emissions. It is
recommended to optimize urban planning, promote energy-
efficient buildings, and encourage the use of renewable energy
to reduce carbon emissions resulting from urban expansion.
Additionally, the development of ecological agriculture in
surrounding areas can help reduce the carbon footprint of
urban food supply chains. Given the high heterogeneity of
agricultural carbon emissions in grain production-consumption
balance zones, it is advisable to strengthen carbon emission
monitoring within these regions. In areas with higher
agricultural carbon emissions, implementing carbon emission
trading mechanisms could incentivize enterprises and farmers
to adopt emission reduction measures.

Second, enhancing agricultural production efficiency and
optimizing resource allocation: Governments should support
efforts to improve agricultural production efficiency by
promoting agricultural mechanization and smart agriculture, as
well as upgrading farmland infrastructure to reduce resource
waste and optimize resource allocation. Additionally, agricultural
technical training can be enhanced to improve farmers’ operational
skills, thereby reducing unnecessary carbon emissions during
production. Precision agriculture should be advanced by utilizing
big data and IoT technology for precision fertilization and irrigation,
further improving resource utilization efficiency and reducing the
environmental burden and carbon emissions caused by
excessive use.

Third, establishing long-term monitoring and evaluation
mechanisms for agricultural carbon emissions. A national or
regional agricultural carbon emission monitoring system should
be established to regularly assess carbon emissions in different
regions and adjust related policies based on monitoring results.
Moreover, research and promotion of agricultural carbon reduction
technologies suitable for China’s diverse regional characteristics
should be accelerated, providing scientific support for managing
agricultural carbon emissions.
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