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Climate change is rapidly modifying biodiversity across the Arctic, driving a shift
from Arctic to more boreal ecosystem characteristics. This phenomenon, known
as borealization, is mainly described for certain functional groups along sub-
Arctic inflow shelves (Barents and Chukchi Seas). In this review, we evaluate the
spatial extent of such alterations across the Arctic, as well as their effects on
ecosystem-level processes and risks. Along the inflow shelves, borealization is
driven by long-term strengthened inflow of increasingly warm waters from the
south and punctuated by advection and low sea ice extreme events. A growing
body of literature also points to an emerging borealization of the other Arctic shelf
ecosystems, through a “spillover” effect, as local changes in environmental
conditions enable movement or transport of new species from inflow shelves.
These modifications are leading to changes across functional groups, although
many uncertainties remain regarding under-sampled groups, such as microbes,
and technical challenges of consistent, regular monitoring across regions. There
is also clear consensus that borealization is affecting phenology, species
composition, community traits, population structure and essential habitats,
species interactions, and ecosystem resilience. Non-dynamic environmental
factors, such as depth and photoperiod, are thought to limit the complete
borealization of the system, and may lead to intermediate, “hybrid”
ecosystems in the future. We expect current borders of Arctic and boreal
ecosystems to progress further northward and ultimately reach an equilibrium
state with seasonal borealization. Risks to the system are difficult to estimate, as
adaptive capacities of species are poorly understood. However, ice-associated
species are clearly most at risk, although some might find temporary refuge in
areas with a slower rate of change. We discuss the likely character of future Arctic
ecosystems and highlight the uncertainties. Those changes have implications for
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local communities and the potential to support Blue Growth in the Arctic.
Addressing these issues is necessary to assess the full scale of Arctic climate
impacts and support human mitigation and adaptation strategies.
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1 Introduction

Global redistributions of marine species under climate change
are leading to unprecedented changes in biodiversity worldwide
(Pinsky et al., 2013; Poloczanska et al., 2016). These redistributions
are largely driven by populations following their thermal preferences
(Burrows et al., 2019), leading to long-term poleward or depth
displacements of species with lower thermal affinities. At mid-
latitudes, poleward shifts of fish species have led to the
progressive declines of cold-affinity boreal species in favour of
warm-affinity Lusitanian species (Dulvy et al., 2008; Hofstede
et al., 2010; Engelhard et al., 2011). At higher latitudes, regions
that border the Arctic and receive the inflows from lower latitude
Atlantic- and Pacific-influenced waters are the ultimate gateways of
the poleward displacements of boreal species to the Arctic. Beyond
these frontiers is the Arctic, with its strong seasonal light variability,
and harsh environmental and living conditions, to which resident
communities are well-adapted.

Climate change and Arctic amplification are responsible for
warming rates in this region nearly 4 times faster than the rest of the
world (Rantanen et al., 2022), and are causing structural changes
across the Arctic ecosystems. Global projections suggest increasing
biomass of commercial species coming from lower latitudes and
thriving in increasingly productive, warmer, and ice-free ecosystems
(Lam et al., 2016; Lotze et al., 2019; Tai et al., 2019). However, these
projections vary strongly both in magnitude and direction among
models (Bryndum-Buchholz et al., 2019). In addition, the strong
seasonality in solar radiation will remain in the north due to the
Earth inclination on its axis that could limit boreal species’
northward progress and survival (Kaartvedt, 2008). A large body
of literature reports evidence of such northward shifts into the Arctic
by boreal species of many functional groups, driven by local habitat
modifications and advection of warm water and associated species
from lower latitudes (Polyakov et al., 2020a; Brandt et al., 2023), a
phenomenon called “borealization” (Fossheim et al., 2015). Arctic
shelves and basins vary strongly with regard to hydrological,
geochemical and biological functioning (Carmack and
Wassmann, 2006). However, they are also strongly connected
through large scale atmospheric, sympagic and oceanic
circulation patterns (Carmack and Wassmann, 2006; Wassmann
et al., 2020). Understanding the possible temporal and geographical
extent of this borealization initially observed at inflow shelves, the
risk posed to Arctic species and ecosystem functioning, and the
consequences for the dependent local human inhabitants, are
essential to facilitate planning for an adaptive, equitable
management of Arctic and sub-Arctic ecosystems, and for the
conservation of biodiversity.

Borealization of Arctic and sub-Arctic regions can be defined as
a process by which ecosystems that were historically characterised as

Arctic are progressively or transitively acquiring features typical of
more southern, boreal ecosystems (Polyakov et al., 2020a). Sea
surface temperatures in Arctic marine ecosystems are typically
near or at the freezing point year-round (in the central Arctic
Ocean) or seasonally (mostly on the shelves). In the central
Arctic Ocean, the stratification is strong throughout the year with
a cold, fresh Arctic water mass laying on top of the warmer and
saltier Atlantic water mass. The overlaying fresher Arctic water mass
contributes to high local sea-ice production.

Arctic and sub-Arctic ecosystems display very distinct
communities and functions tuned to local conditions. In first-
year ice areas, at the edge of the central Arctic Ocean and in
seasonally ice-covered shelf regions, remineralized and recycled
nutrients are used by ice-algae that can lead to a strong under-
ice bloom (Arrigo et al., 2012; Assmy et al., 2017), followed by a
stronger pelagic bloom dominated by diatoms when the ice is
melting (Ardyna and Arrigo, 2020). There is greater diatom
diversity in the sea-ice compared to the water column, where
diversity differs by region with intermediate levels in the
Canadian Arctic Archipelago and Pacific Arctic, and lower
diversity in the Russian inner shelf seas, Hudson Bay and the
Central Arctic Basin (CAFF, 2017). Microbial diversity (about
~2000 taxa for pelagic and sympagic eukaryotes, Poulin et al.,
2011) includes endemic microbial populations that have evolved
to thrive under the extreme ice-influenced local conditions (Lovejoy
et al., 2006; Lovejoy et al., 2007; Verde et al., 2016; van Leeuwe et al.,
2018; Dorrell et al., 2023). Phytoplankton especially are able to
survive prolonged dark periods that limit photosynthesis (Kvernvik
et al., 2018; Lacour et al., 2019; van de Poll et al., 2020), using flexible
strategies such as mixotrophy or overwintering as metabolically
quiescent cells or as cysts (Stoecker and Lavrentyev, 2018). Some
Arctic bacteria also use normally recalcitrant sources of organic
carbon, including terrestrial organic matter from the large rivers that
continue to flow into the Arctic even during winter (Colatriano
et al., 2018).

Zooplankton are the primary link between the primary
producers and higher trophic levels in Arctic and sub-Arctic
marine food-webs. Some 300–400 zooplankton species occur in
the Arctic water column (Kosobokova et al., 2011). Hyperiid
amphipods and large, lipid-rich mesozooplankton, such as
Calanus glacialis and Calanus hyperboreus play a crucial trophic
role in the Arctic ecosystem (Søreide et al., 2010; Kohlbach et al.,
2016; Brown et al., 2017). Gelatinous zooplankton, including
hydrozoans (e.g., Aglanta digitale), are also ubiquitous in the
Arctic pelagic niche (Kosobokova et al., 2011), and in the central
Arctic basins, the gelatinous zooplankton appears to be more
abundant than pelagic fishes (Ingvaldsen et al., 2023). The pan-
Arctic hosts over 5,000 metazoan species, including 229 fish species
(Bluhm et al., 2011b; Mecklenburg et al., 2011). Benthic
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communities sometimes rely strongly on the sympagic-benthic
coupling driven by sinking sea ice algae to the bottom after they
bloom and at ice breakup (Koch et al., 2020; Cautain et al., 2022).
Arctic demersal and benthic fish communities are mainly composed
of species such as sculpins (Cottidae), snailfish (Liparidae), eelpouts
(Zoarcidae) and eelblennies (Lumpenidae), but the benthos is
typically dominated by invertebrates including many benthic
polychaetes and other worms, molluscs, arthropods and
echinoderms. In contrast, the pelagic compartment is less diverse.
Polar cod (Boreogadus saida) sometimes represents more than 95%
of the fish species abundance (Geoffroy et al., 2023), while ice cod
(Arctogadus glacialis), saffron cod (Eleginus gracilis), capelin
(Mallotus villosus) and Arctic sand lance (Ammodytes hexapterus)
are less abundant. Mesopelagic species are scarce in the deep basins.
Glacier lanternfish (Benthosema glaciale), armhook squid (Gonatus
fabricii), and even single individuals of Atlantic cod (Gadus morhua)
are also present in the pelagic, but in low densities (Snoeijs-
Leijonmalm et al., 2022; Ingvaldsen et al., 2023).

Typically, offshore boreal ecosystems exhibit contrasting
characteristics, with warmer, saltier, and less stratified waters,
higher phytoplanktonic primary production, smaller
mesozooplankton species and abundant krill and pelagic
amphipods in the North Atlantic compared to Arctic
ecosystems (e.g., Dalpadado et al., 2003; Dalpadado et al.,
2014; Weydmann et al., 2014). Similar gradients exist in the
Pacific-Arctic but zooplankton communities on the extensive
shallow inflow shelves are dominated by neritic species
(Questel et al., 2013; Hunt et al., 2014; Ershova et al., 2015).
The boreal pelagic niche is more diverse than the Arctic one,
including a more prominent mesopelagic compartment in
deeper water hosting, among the fishes, abundant
myctophidae and stomiidae (Sameoto, 1989; Byrkjedal et al.,
2004). Boreal and Arctic communities of demersal fish and
benthic invertebrates differ in terms of traits such as
temperature tolerance windows (Aune et al., 2018; Jørgensen
et al., 2022; Logerwell et al., 2022), longevity (Ravelo et al.,
2017), and age-at-maturity. Boreal fish include many mobile
generalists of large size, such as Atlantic cod (Gadus morhua),
Pacific cod (G. macrocephalus) and walleye pollock (G.
chalcogrammus). This higher generalism implies a higher
trophic redundancy, but also connectivity (i.e., feeding link
richness) in the trophic network (Livingston and Tjelmeland,
2000; Kortsch et al., 2019). One of the key questions posed by
the occurring process of borealization is whether this process
can ultimately lead to a complete transformation of Arctic shelf
ecosystems into boreal ones (replacement scenario), or to a
hybrid version of both ecosystems (hybridization scenario,
“cocktail”), and what the consequences for overall ecosystem
functioning may be.

We review the existing knowledge on the mechanisms driving
borealization and compile the evidence of borealization across
ecosystem compartments in the marine Arctic. Our objectives are
1) to explore the spatial and temporal extent of borealization across
the Arctic shelves, 2) to explore its extent across functional groups
and consequences for ecosystem functioning, 3) to discuss the
degree of transformation of Arctic ecosystems into boreal ones,
now and in the future, 4) to discuss consequences for societies and
management.

2 The environmental context of
borealization across the pan-Arctic

The Arctic climate is driven by large scale processes within, and
interactions between, the atmosphere, the cryosphere and the ocean
(Timmermans and Marshall, 2020). Powerful local feedback
processes associated with the air-sea-ice system amplify warming
and sea-ice loss (Serreze and Barry, 2011; Ivanov et al., 2016;
Polyakov et al., 2020b; Previdi et al., 2021). The recent decades
have shown accelerated atmospheric and oceanic warming caused
by a combination of global, regional and local drivers (Polyakov
et al., 2020a; Shu et al., 2021; Isaksen et al., 2022; Smedsrud et al.,
2022). Numerous studies have reported themany transformations of
the entire Arctic system, including the intensification of hydrological
cycles (increased precipitation and river discharge), glacier and sea
ice melting and thinning, and modal shifts in atmosphere altering
ocean circulation patterns (Greene et al., 2008; Wood et al., 2015;
Box et al., 2019; Huntington et al., 2020; Polyakov et al., 2023).
Extreme seasonal ice or temperature conditions have become more
frequent (Hinzman et al., 2005; Dörr et al., 2021, Pécuchet et al.,
2024). The current warming appears to have peaked between
2012 and 2018 for most of the Arctic (Danielson et al., 2020;
Ingvaldsen et al., 2021), accompanied by record low sea ice cover
(Stabeno and Bell, 2019). Nevertheless, the years post 2018 are a
temporary reprieve, and the Arctic climate is projected to continue
to warm as a result of increasing levels of atmospheric carbon
dioxide (Pörtner et al., 2019).

Regional differences in climate change footprint across the
Arctic can mostly be explained by the different hydrologic and
geographic contexts of the sub-Arctic areas (Figure 1). These can be
separated into four categories: the inflow shelves (Bering and
Chukchi seas on the Pacific side, Barents Sea on the Atlantic
side, west Greenland shelf), the outflow shelves (Canadian Arctic
Archipelago, Western Baffin Bay, Eastern Greenland Shelf), the
interior shelves (Kara, Laptev and Siberian Seas) and the Arctic
basins (Carmack and Wassmann, 2006; Wassmann et al., 2020). Sea
ice loss in the Barents and Bering inflow shelves are strongest during
winter (Figure 2). This is a direct effect of warmer or stronger
advection of sub-Arctic waters into the Arctic (Onarheim et al.,
2018; Woodgate, 2018), and causes an increase in the extent of
thermal habitat associated with boreal ecosystems throughout the
year. Year-long suitable conditions favours the gradual borealization
of the inflow shelf ecosystems, which can occur due to advection
from the sub-Arctic seas and along the flow into the basins
(Polyakov et al., 2020a). The Chukchi Sea and interior shelves, as
well as the Canadian Arctic Archipelago, on the other hand, show
strong sea ice loss during summer (Figure 2), but are strongly
connected to neighbouring shelves through currents (Figure 1).
Progressing borealization on to the interior shelves could occur
through planktonic species advected through lateral basin-shelf or
inter-shelf exchanges when sea ice loss and warming is sufficient
(Nelson et al., 2014), and through mobile boreal shelf species
reaching their northernmost depth habitat at the inflow shelves,
thereby expanding their distribution to nearby shelves.

We used Sea Surface Temperature (SST) data to support our
general comparison of the upper ocean warming experienced by
Arctic shelves in the past century. We note that as these data are
based on surface waters, they are interlinked with the loss of sea ice
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and may not be representative of changes at depth. The NOAA
Extended Reconstructed SST V5 (ERSSTv5; Huang et al., 2017) is a
global monthly SST analysis from 1854 to the present derived from
the International Comprehensive Ocean-Atmosphere Data Set
(ICOADS) data with missing data filled in by statistical methods.
The data are available on a 2° × 2° (latitude-longitude) grid globally,
but here were restricted to latitudes north of 50°N (see coverage in
Figure 3). Several analyses were performed with this dataset. To
illustrate the regional differences in warming rates, linear trends
were calculated on the annual summer (July-September)
temperatures for each pixel of the dataset for the period
1950–2023 (Figure 3) and averaged by regions (Table 1). Regions
were defined following the Arctic Ocean and Adjacent Seas (AOAS)
from the Conservation of Arctic Flora and Fauna (CAFF). Monthly
SSTs averaged over the same regions for each year also highlight the

warming trends and the increasing length of the open water season
over time (Figure 4). Finally, decadal anomalies of summer SSTs (in
°C) were calculated. For this analysis, the annual time series of
summer mean SST for each region was built by averaging monthly
values between July and September for a given year. Anomalies were
calculated for each year by subtracting the long-term summer
average over 1900–2000, before computing averages of the
annual anomalies for each 10-year periods (1955–1964,
1965–1974, until 2015–2024). Decadal anomalies are illustrated
per region (Figure 5), and values are provided for the last
decade (Table 1).

Summer surface waters of the Arctic Ocean have been warming
unevenly over the last seven decades (Figure 3). The warming trends
are in relatively close correspondence with the sea ice loss trends
(Figure 2). When averaged by region, greatest warming trends are

FIGURE 1
Main arctic and sub-arctic oceanic currents. Adapted from Anderson and Macdonald (2015), Armitage et al. (2017), and Constantin and
Johnson (2023).
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found in the northernmost regions of the Russian (Kara, Laptev and
Siberian seas), Alaskan (Chukchi Sea) and Canadian Arctic coasts
(Beaufort Sea and the Canadian Arctic Archipelago, Table 1). Those
regions are mainly outflow shelves and interior shelves. Outflow
shelves such as the East Greenland and the Canadian Arctic
Archipelago also show signs of significant decrease in multi-year
ice and relocation of different ice types (Sou and Flato, 2009; Michel
et al., 2015). In contrast, interior shelves experience the effects of
changing Arctic coasts, such as massive erosion in non-lithified
coasts, and of run-off of freshwater and organic and inorganic
materials contained in it (e.g., Williams and Carmack, 2015;
Irrgang et al., 2022). The central Arctic basin north of Greenland
and the Canadian Arctic Archipelago did not show large trends in
SST due the quasi-permanent sea ice cover.

These warming trends in surface waters are, in some regions,
associated with both warming and a longer ice-free summer season
(deeper tones of yellow and widening of the white lines towards the
top of the panels, Figure 4). The regions with the more moderate
surface warming trends are generally those not exhibiting full sea ice
cover for any month of the year (regions without white lines in
Figure 4). Longer-term trends in summer SST anomalies (Figure 5)
confirm earlier studies revealing that the warming of the Arctic
started in most of the region in the second half of the 20th century,
with an overall acceleration in the last three decades (Bengtsson
et al., 2004; Matishov et al., 2012; Shu et al., 2021; Isaksen et al.,
2022). The Canadian Arctic (Beaufort Sea, Canadian Arctic
Archipelago and the Hudson Bay Complex) as well as the
Greenland and Kara seas exhibited the largest SST increases in
the last decade (2015–2024) compared to the long-term
average (Table 1).

Compared to other regions, inflow shelves experienced slower
warming trends in the summer (Figure 3; Table 1). However, this
observation changes when studying other seasons. The Chukchi Sea,
in autumn, and the Barents Sea, in winter, displayed the largest
warming rates of air temperature in the Arctic since the 1980’s
(Koenigk et al., 2020). Arctic waters cool to the freezing point prior
to ice formation in autumn; warmer waters thus transfer more heat
from the ocean to the atmosphere during the fall process of oceanic
heat loss (Danielson et al., 2020). The Chukchi and Barents Seas are
under the dual influence of the Arctic and the lower latitude systems
that drive very strong inter- and intra-annual variability, with
seasonal sea-ice cover, changes in temperature and important
contrasts in seasonal light regime. These seas are the main
gateways to borealization (Polyakov et al., 2020a). In the
hydrosphere, their systems have evolved toward something less
Arctic, and more similar to lower latitudes in the northern
Pacific and the Atlantic, two phenomena referred as
“Pacification” and “Atlantification”, respectively (Polyakov et al.,
2017; Danielson et al., 2020; Ingvaldsen et al., 2021). Both are driven
by anomalous advection of warmer Pacific and Atlantic water
(Woodgate et al., 2010; Woodgate, 2018; Ingvaldsen et al., 2021;
Smedsrud et al., 2022), leading to higher ocean heat transport into
the shelf ecosystems and the Arctic (Xu et al., 2024). Consequently,
average temperatures in both systems are increasing, at a rate of
+0.04°C/year since 1980 in the Bering Strait and on the Chukchi Sea
shelf (Danielson et al., 2020), and +0.05°C/year since 2000 in the
Barents Sea (Ingvaldsen et al., 2021). The inflow shelf changes are
also characterised by the loss of sea ice extent, increased open water
season duration and faster transitions (Frey et al., 2015; Danielson
et al., 2017; Onarheim et al., 2018; Dalpadado et al., 2020).

FIGURE 2
From copernicus climate indicators for sea-ice (https://climate.copernicus.eu/climate-indicators/sea-ice). Linear trends in sea ice concentration
during 1979–2023 (% per decade) for March and September. Dots indicate areas where the trends are statistically significant. Credit: ECMWF, copernicus
climate change service (C3S) C3S/ECMWF/EUMETSAT/MET Norway.
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3 Evidence of borealization across the
Arctic and impact on the functioning of
ecosystems

3.1 Changes in the environment affect Arctic
biogeochemistry and microbial
communities

Climate driven changes in atmospheric, ice and oceanic
conditions are likely resulting in shifts in the biogeochemical
processes and microbial communities at pan-Arctic scales.
However, a comprehensive understanding of regional trends and
potential disparities among regions is hampered by the scarcity of
long-term datasets of observed or modelled conditions (CAFF, 2017;
Juranek, 2022). A set of studies describing the different
hydrographic functioning and ecosystem production have
revealed a wide variety of properties and pathways in the carbon
cycle across the Arctic (Dunton et al., 2006; Grebmeier et al., 2006;
Hirche et al., 2006; Hop et al., 2006; Michel et al., 2006; Rysgaard and
Nielsen, 2006; Schmid et al., 2006; Tremblay et al., 2006; Wassmann

et al., 2006a). These carbon cycles vary in efficiency depending on
the processes transforming organic matter into nutrients (carbon
mineralisation), and nutrients into organic matter (primary
productivity). Productivity on the Arctic shelves is generally
considered to be limited by the concentrations of available
nitrogen compounds, especially in the Pacific Arctic (Mills et al.,
2018; Ko et al., 2020), rather than by irradiance limitation from sea-
ice and photoperiod (Tremblay and Gagnon, 2009; Tremblay et al.,
2015). Most of the nutrient supply is advected through inflow
shelves (Le Fouest et al., 2013b; Torres-Valdés et al., 2013;
Tremblay et al., 2015). River inputs into sub-Arctic inner shelves
may also be an important local source of nutrients and organic
matter from land (Dittmar and Kattner, 2003; Dunton et al., 2006;
Carmack et al., 2016), and estimates suggest terrestrial sources with
coastal erosion, contribute to 28%–51% of net primary productivity
in the Arctic Ocean via the Transpolar Drift (Le Fouest et al., 2013a;
Terhaar et al., 2021), but see contrasting results in Le Fouest
et al. (2013a).

At the pan-Arctic scale, rising temperatures and prolonged open
water seasons have driven substantial increases (>50% over two

FIGURE 3
Map of summer (July-September average) SST warming trends (in °C per century) between 1950 and 2024 for each pixel (2° × 2° latitude-longitude)
derived from ERSSTv5. The Arctic Ocean and adjacent Arctic seas (AOAS) regions, drawn here in black, were used for further regional analyses. These
regions are (counterclockwise from top): Bering Sea (BER), Chukchi Sea (CHU), Beaufort Sea (BEA), Canadian Arctic Archipelago (CAN), Hudson Bay
Complex (HUD), Baffin Bay (BAF), Greenland Sea (GRS), Norwegian Sea (NOR), Barents Sea (BAR), Kara Sea (KAR), Laptev Sea (LAP) and Siberian
Sea (SIB).
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decades) in sub-Arctic primary productivity, with earlier and
extended blooms of pelagic phytoplankton (Arrigo et al., 2008;
Kahru et al., 2011; Kahru et al., 2016; Hill et al., 2013; Hill et al.,
2018; Ardyna et al., 2014; Arrigo and van Dijken, 2015). In addition,
the decrease in multi-year ice and increase in first-year ice extent are
driving a temporary increase in ice-algae habitat (Lim et al., 2022).
Production increased in most regions but with varying magnitude
(Arrigo and van Dijken, 2015). The Barents Sea was the area that
experienced the highest increase in primary production over the last
two decades (Dalpadado et al., 2020; Lewis et al., 2020). Primary
production has also increased in spatial extent in the Bering Sea
during warm years (Nielsen et al., 2024). The Canadian Arctic
Archipelago, Baffin Bay and the eastern Greenland shelf display
an altered functioning, with changes in productivity spatial-
temporal patterns (Michel et al., 2015; Blais et al., 2017; Mayot
et al., 2020). Data are scarce for other shelves, but short term studies
also revealed interannual variation in production and particulate
organic carbon export between years with varying sea ice cover
(Lalande et al., 2009; Bienhold et al., 2022).

In recent years, ice dynamics and water temperature no longer
suffice to explain increases in primary production on inflow shelves
(Lewis et al., 2020). It has been hypothesised that the increased
transport of deep Atlantic waters into the Arctic might have
increased dissolved inorganic nitrogen (DIN) supply, favouring
higher primary production in downstream regions (Henley et al.,
2020; Lewis et al., 2020). However, despite increasingly northward
Atlantic water flow and subsequent increased vertical mixing,
multiple studies point to a long-term decrease in nutrients across
most of the pan-Arctic, with the exception of the pan-Arctic slope
(Oziel et al., 2022). Oxygen and nutrients seem to have decreased
within the halocline of the Eastern and Western Eurasian Basin
(Polyakov et al., 2020a). Similarly, there has been a decline in nitrate
concentrations in the Atlantic water inflow into the Barents Sea
between 1990–2010 (Oziel et al., 2017), and no long-term (35 years)
trend in nutrients from Atlantic water flowing into the Arctic north

of Svalbard (Duarte et al., 2021). In the Chukchi and Beaufort seas,
only oxygen concentration has increased (Polyakov et al., 2020a),
while nitrate and phosphate concentrations have decreased by 79%
and 29% respectively (Zhuang et al., 2021). This was hypothesised to
result from the joint effect of decreased vertical mixing following the
strengthened stratification due to the loss of multi-year sea ice, and
the increased consumption by primary producers (Zhuang et al.,
2021). At interior and outflow shelves, nitrogen discharge from river
outputs is usually quickly utilised, for example, through efficient
denitrification in the Laptev Sea (Sanders et al., 2022; Tuerena et al.,
2022), and nitrate and other dissolved inorganic nutrient fluxes from
land seem to have declined (Tank et al., 2023). Lack of observations
currently greatly limits our understanding of nutrient transport and
budgets (Torres-Valdés et al., 2016).

Changes in primary production can also be linked to changes in
phytoplankton communities. Phytoplankton communities affect
carbon flux attenuation and production regimes (Ardyna et al.,
2011; Wiedmann et al., 2020), and vary with environmental
conditions across all Arctic shelves and basins (Ardyna et al.,
2011; Min Joo et al., 2012; Lee et al., 2019; Ibarbalz et al., 2023).
For example, small algae, more efficient at assimilating nutrients and
thus potentially more competitive compared to local larger species,
have been observed in higher quantities in the Canada Basin and
coastal Canadian Arctic Ocean (Li et al., 2009; Blais et al., 2017), and
in the Atlantic water masses west of Svalbard (Lalande et al., 2013).
In the Beaufort Sea, microbial communities have transitioned
towards taxa characteristic of oligotrophic environments
(Comeau et al., 2011). In addition, strong advection at inflow
shelves has driven the northward shift of temperate species of
coccolithophores (Winter et al., 2014; Neukermans et al., 2018;
Oziel et al., 2020). In contrast, there is no evidence of temporal
changes in microbial community composition or biomass in the
North Water (northern Baffin Bay) or the Laptev Sea (Freyria et al.,
2021; Bienhold et al., 2022). In the rest of the Arctic, time series are
scarcer, but microbial communities, including phytoplankton, have

TABLE 1 SST mean trends (in °C per century) averaged over 1950–2023 for each of the Arctic Ocean and Adjacent Seas (AOAS) regions defined in Figure 3.
The 6 regions with trends larger than 3°C per century are in bold. For SST anomalies during the last decade (2015–2024) compared to the
1900–2000 period, the 5 regions with anomalies larger than +2°C are in bold.

AOAS region Mean trend (°C per century) 2015–2024 anomaly (°C)

Bering Sea +2.3 +1.6

Chukchi Sea +3.7 +1.8

Beaufort Sea +3.2 +2.6

Canadian Arctic Archipelago +2.3 +2.5

Hudson Bay Complex +3.4 +2.6

Baffin Bay +2.7 +1.9

Greenland Sea +2.3 +2.6

Norwegian Sea +1.9 +1.9

Barents Sea +2.9 +1.3

Kara Sea +4.0 +2.3

Laptev Sea +3.2 +1.2

Siberian Sea +3.8 +1.3
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FIGURE 4
SST annual cycles between 1950 and present for each of the regions of the arctic identified in Figure 3. For each year (vertical axis), the averaged SST
is plotted for each month on the horizontal axis. Months with a 100% ice cover are at a fixed value of −1.8°C (dark blue). This allows us to plot the opening
and closure of the open water period defined here as the first and last month with average temperatures above −1.8°C (white lines). Note that the colour
bar scale is different for each subplot.
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been characterised by recent studies, setting baselines for the
investigation of climate impacts (Demidov et al., 2021; Polyakova
et al., 2021; Sukhanova et al., 2021; Liu et al., 2023; Bezzubova et al.,
2024). Shifts in microbial communities are likely to drive changes in
trophic functioning, affecting the diets, phenology and development
of grazing species (Søreide et al., 2010; Daase et al., 2011). Changes
in planktonic communities and new environmental conditions can
cause harmful algal blooms (HAB), which have direct impacts on the
food-webs and human consumption (Okolodkov, 2005; Bruhn et al.,
2021). Cases of HAB have been noticeably increasing northward in
recent years, with many reports from the Pacific Arctic in particular
(Anderson et al., 2021; Anderson et al., 2022; Einarsson et al., 2022;
Fachon et al., 2024), with important impacts on top predators,
including humans (Hendrix et al., 2021; Lefebvre et al., 2022; Van
Hemert et al., 2022).

3.2 Altered habitats and feeding conditions
affect pelagic systems

Changes in the environment and in primary productivity
(species composition, spatial and temporal patterns) are
propagating through the food web, driving the borealization of
the pelagic compartments. Indeed, environmental changes trigger
contrasting responses of the boreal and Arctic pelagic communities,
due to their strong differences in biogeography, life history strategies
and functions. For example, many zooplankton communities
dominate successively across seasons and regions, varying in

their ecological niches and functional traits (Questel et al., 2013;
Balazy et al., 2018; Kimmel et al., 2018; Kimmel et al., 2023; Mańko
et al., 2020; Mańko et al., 2022; Hop et al., 2021; Darnis et al., 2022;
Mazanowski et al., 2023; Van Engeland et al., 2023; Wold et al.,
2023). Large, lipid-rich Arctic copepod species such as C. glacialis
and C. hyperboreus can utilise allochthonous production, and
survive low productivity periods owing to their large lipid
reserves (Hunt et al., 2014; Hirche et al., 2024). Arctic species
thus tend to dominate the biomass in late summer/autumn
during years with low advection and late sea ice retreat (Kimmel
et al., 2018; Spear et al., 2020). However, Arctic zooplankton have a
slower increase in respiration rate with rising temperatures
compared to their Atlantic counterparts, which implies that,
although they might be resilient to warming, Atlantic
zooplankton may become more competitive under such
conditions (Kaiser et al., 2022). In contrast, boreal species
typically consist of smaller zooplankton with less reserves. Along
the continental slope of the Atlantic Water inflow, high
concentrations of C. finmarchicus prevail (Bluhm et al., 2020).
Differing traits of Arctic and boreal zooplankton might be
adaptative of their respective environment (Renaud et al., 2018),
and a shift from lipid-rich Arctic to more boreal communities might
not have strong impacts on plankton-feeders as boreal zooplankton
occur in larger numbers, over a longer period of time, and have a
faster life cycle. However, reduced abundances of lipid-rich C.
glacialis on the Bering Sea shelf have been associated with poor
energetic condition and reduced survival of young walleye pollock
(Heintz et al., 2013).

FIGURE 5
Decadal summer (July-September) SST anomalies referenced to the period 1900–2000 for each of the regions in Figure 3.
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Warm water advection and sea-ice retreat are major
determinant of zooplankton community dominance across the
Arctic (Ershova et al., 2015; Kimmel et al., 2018; Kimmel et al.,
2023; Spear et al., 2019; Abe et al., 2020; Dalpadado et al., 2020; Drits
et al., 2023; Ramondenc et al., 2023). Krill, gelatinous zooplankton,
ichthyoplankton and young-of-the-year pelagic fish also display
different life history strategies and habitat preferences and
respond strongly to varying advection regimes (Eriksen and
Dalpadado, 2011; Eriksen et al., 2015; Eriksen et al., 2020; Oviatt
et al., 2015; Benkort et al., 2019; Deary et al., 2021; Skjoldal et al.,
2022). Adult pelagic fish are often less directly affected by variations
in environmental conditions. Boreal mobile pelagic fish can relocate
to follow the production and expand into newly suitable habitats,
thus propagating the borealization of the lower trophic levels up the
food chain, although other important factors such as recruitment
and availability of suitable spawning habitat also have a strong
impact on population spatial-temporal dynamics (Hollowed et al.,
2013b; Eriksen et al., 2017). In contrast, some Arctic species such as
polar cod are very dependent on ice to complete their life cycle, and
loss of sea-ice thus drives a loss of essential habitats for those species
(David et al., 2016; Huserbråten et al., 2019; Gjøsæter et al., 2020;
Marsh and Mueter, 2020; Deary et al., 2021; Geoffroy et al., 2023).

Long-term borealization has thus been reported on for many
pelagic compartments. Shifts from lipid-rich Arctic zooplankton to
communities of smaller individuals are of concern in western
Greenland (Møller and Nielsen, 2020), the Bering sea (Kimmel
et al., 2018; Kimmel et al., 2023), the Chukchi Sea (Abe et al., 2020;
Spear et al., 2020; Ershova et al., 2021; Mueter et al., 2021a),
Labrador, eastern Greenland and the Barents Sea (Trudnowska
et al., 2012; Weydmann et al., 2014; Eriksen, 2016; Eriksen et al.,
2017; Freer et al., 2022), and the Fram Strait, main gateway of
Atlantic inflow into the Arctic (Gluchowska et al., 2017). Subtle
changes in species composition may also be underway within neritic
species complexes (Ershova et al., 2015). Krill is also shifting in
species composition from Arctic to temperate in the Barents Sea
(Eriksen and Dalpadado, 2011; Orlova et al., 2015; Eriksen, 2016),
Svalbard, and Bering Sea (Hunt et al., 2016). Lack of long time series
hampers our ability to detect changes in zooplankton community
composition on the other shelves. Similarly, boreal gelatinous
species are thought to also extend northward on the inflow
shelves (Brodeur et al., 2002; Brodeur et al., 2008; Eisner et al.,
2014; Eriksen et al., 2017; Geoffroy et al., 2018). But drivers of their
abundance may be complex (Decker et al., 2023) and historical data
and from other shelves are limited, making temporal and regional
comparisons difficult.

Further up in the food web, the geographical retreat of polar cod
due to the loss of sea-ice is often concomitant with the northward
expansion of more southern species, such as capelin, saffron cod or
walleye pollock in the Atlantic or Pacific Arctic (Hop and Gjøsæter,
2013; Stige et al., 2019; Wildes et al., 2022; Levine et al., 2023; von
Biela et al., 2023). Increased abundance of more southern fish
species, such as capelin and Pacific sand lance, are also observed
at interior and outflow shelves: in the Canadian Arctic Archipelago
(Falardeau et al., 2017), in the Hudson Bay (Gaston et al., 2003), and
northern Baffin Bay (Ulrich and Tallman, 2021). While mesopelagic
fish have been suggested to be limited in their northward expansion
because of the light conditions (Ljungström et al., 2021; Langbehn
et al., 2022) or a combination of both light and temperature

(Chawarski et al., 2022), studies based on observations rather
than modelling have partially challenged the light hypothesis by
reporting mesopelagic sound scattering layers partly formed of
boreal fish species (e.g., glacier lanternfish Benthosema glaciale
and juvenile redfish) in the high Arctic (Knutsen et al., 2017;
Geoffroy et al., 2019; Snoeijs-Leijonmalm et al., 2022; Ingvaldsen
et al., 2023). Moreover, studies looking at both temperature and
latitude (a proxy for irradiance) have concluded that temperature
fronts might also contribute to hindering the northward range
expansion of mesopelagic fish (Chawarski et al., 2022). Data are
more limited for the inner shelves of the Kara, Laptev and East
Siberian seas, but those ecosystems are often relatively poor in
pelagic fish (Hirche et al., 2006; Schmid et al., 2006).

Pelagic borealization is affecting populations and ecosystem
functioning. Changes in zooplankton development and
community succession along the seasons have been linked to
pelagic fish diet and biomass trends (Orlova et al., 2010;
Dalpadado et al., 2024), propagating climate effects to upper
trophic levels. They also affect first year juvenile fish survival,
mainly walleye pollock and polar cod, as lipid-rich species
associated with autumn blooms during cold years are a critical
source of reserve for the juvenile fish before the winter (Kimmel
et al., 2018; Kimmel et al., 2023; Bouchard and Fortier, 2020; Dupont
et al., 2020), and as prey size impacts that of its visual predators, as
shown by bioenergetic and behavioural modelling studies
(Ljungström et al., 2020). In contrast, the sustained advection of
krill in the Barents, Chukchi and western Beaufort seas is altering
trophic controls and stabilising predator populations (Berline et al.,
2008; Eriksen and Dalpadado, 2011; Orlova et al., 2013; Ashjian
et al., 2021). Increasing co-occurrence of polar cod with other
species such as capelin or Pacific sand lance would lead to more
competition for food at inflow and interior shelves, with negative
consequences for both species (Orlova et al., 2010; Falardeau et al.,
2014; McNicholl et al., 2016; McNicholl et al., 2018; Pedro et al.,
2020). Changes in dominant forage fish and zooplankton prey have
altered marine mammals’ and seabirds’ migration patterns and diet
across the pan-Arctic, sometimes leading to lower growth rate for
chicks or altered demography (Provencher et al., 2012; Chambellant
et al., 2013; Gaston and Elliott, 2014; Falardeau et al., 2017; Gall et al.,
2017; Balazy et al., 2018; Kuletz et al., 2020; de la Vega et al., 2021;
Merkel et al., 2021; Ulrich and Tallman, 2021; Descamps et al., 2022;
Moore et al., 2022).

3.3 Changes in benthic demersal systems

Many studies have reported changes in benthic (mostly
invertebrates) and demersal (mostly fish) ecosystems across
Arctic and sub-Arctic shelves. Signals of borealization are
stronger on inflow shelves, where shifts in demersal fish
communities have been widely reported, such as in the Barents
Sea (Fossheim et al., 2015; Bergstad et al., 2018; Spotowitz et al.,
2022), in western Greenland (Post et al., 2021), as well as the
northern Bering Sea and, to a lesser extent, the Chukchi Sea
(Mueter et al., 2021a; Zhang et al., 2022). An emerging pattern
from recent studies is that borealization of inflow regions seems to
impact neighbouring areas by spillover effect. In eastern Greenland
(Emblemsvåg et al., 2022a; Emblemsvåg et al., 2022b), demersal
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communities across depths have rapidly reorganised in response to
climate change, in particular between 350 and 1000m depth.
Specifically, studies have found that Atlantic cod, beaked redfish
and deep-sea shrimps (Pandalus borealis) observed on the northeast
Greenland shelf originated from the Barents Sea populations
(Christiansen et al., 2016; Andrews et al., 2019). In addition,
across the Siberian Arctic (Kara Sea, Laptev Sea, East Siberian
Sea), North Atlantic species have expanded eastward while North
Pacific species have expanded westward (Orlov and
Volvenko, 2024).

Borealization in inflow shelves has also been documented for
benthic communities, although responses are lagged with regard to
climatic signals (Grebmeier, 2012; Jørgensen et al., 2019; Waga et al.,
2020; Zakharov et al., 2020; Calvet et al., 2024). Interestingly, the
borealization of benthic communities does not necessarily lead to an
increase in productivity or biomass (Zakharov et al., 2020 for the
Barents Sea; but see Krause-Jensen et al., 2020, for pan-Arctic
increases in seaweeds). In contrast, unchanged community
biogeography could suggest resilient communities in the Laptev
Sea (Kokarev et al., 2017), and to some degree in the Bering and
Chukchi Seas, over several decades (Grebmeier et al., 2015a but see
Grebmeier et al., 2006; Huntington et al., 2020, for biomass
declines). The lack of repeated surveys hinders our ability to
evaluate the degree of borealization of benthic communities,
especially on interior and outflow shelves, but bycatch data from
commercial or scientific bottom trawls can serve as a baseline for
future assessments (Jørgensen et al., 2022), and the Distributed
Biological Observatory in the Pacific Arctic provides time series for
macro- and megabenthic fauna (Grebmeier et al., 2015b; Grebmeier
et al., 2018).

At smaller scales, some studies have revealed the borealization of
some coastal zones across the Arctic, as suggested by an increase in
boreal fish species in lagoons on the Beaufort Sea (von Biela et al.,
2023), and by increased macroalgal cover (Krause-Jensen et al.,
2020), abundance of boreal species and coincident shifts in benthic
invertebrate communities in Svalbard fjords and near Franz Josef
Land (Kortsch et al., 2012; Węsławski et al., 2018; Al-Habahbeh
et al., 2020; Dvoretsky and Dvoretsky, 2024). However, the degree of
borealization of benthic communities in Atlantic Arctic fjords might
depend on the bathymetric features of the coastline, such as fjord
sills and the interannual strength of the Atlantic Water inflow
(Beuchel et al., 2006; Renaud et al., 2007; Jordà-Molina et al.,
2023). A more important driver of major changes in Arctic
coastal ecosystems and landscapes could instead be the melting
marine terminating glaciers (Lydersen et al., 2014; Meire et al., 2017;
Williams et al., 2021; Kavan and Strzelecki, 2023). Some sub-Arctic
coastal regions do not display any particular response to climate
change. For example, western Greenland intertidal ecosystems do
not vary with latitude, which would suggest resilience to climate
change, based on space-for-time substitution (Thyrring et al., 2021),
and in the Baydaratskaya Bay, Kara Sea, benthic communities were
unchanged until 2013, and only seemingly impacted by other local
anthropogenic impacts since then (Azovsky and Kokarev, 2019).

As in the pelagic systems, demersal and benthic borealization
appears to be mainly driven by changes in suitable habitats and prey
distribution induced by climate change. Rates of response to
environmental changes are often lagged and species-specific
(Alabia et al., 2018). At the inflow shelves, the main drivers are

the fluctuating extent of colder and warmer water masses and timing
of ice retreat. This has been shown in the northern Bering Sea and
Chukchi Sea, for both demersal and benthic communities
(Grebmeier, 2012; Nishio et al., 2020; Zhang et al., 2022), and in
the Barents Sea (Ingvaldsen et al., 2021; Nascimento et al., 2023). In
addition to expanding suitable warmer habitats, advected waters
transport demersal and benthic early life stages. Variations in water
mass extent across interannual to decadal scales have been linked to
the varying abundance of advected ichthyoplankton species, leading
to variation in dominance regime of fish larvae in the Eastern
Chukchi Sea (Randall et al., 2019; Axler et al., 2023), and in the
Barents Sea (Eriksen et al., 2015; Eriksen et al., 2017). These
fluctuations in water mass inflows are linked to large-scale
circulation patterns, such as the sub-polar gyre in the northern
Atlantic in western Greenland (Post et al., 2021), or the Arctic dipole
in other inflow shelves (Polyakov et al., 2023). While warm
conditions are maintained at inflow shelves and neighbouring
regions are gradually warming due to local changes in the
environment, mobile populations such as fish are likely able to
further expand beyond inflow shelves (Andrews et al., 2019; Orlov
and Volvenko, 2024), but demersal Arctic fish species living on the
edge of the shelves cannot move north as they run out of shelf
(Wassmann et al., 2006b; Fossheim et al., 2015). The northward
expansion of less mobile boreal benthos is likely more dependent on
the dispersion of the larval phase (Ershova et al., 2019; Meyer-Kaiser
et al., 2022), although those will may not settle successfully
(Wassmann et al., 2015; Ershova et al., 2019; Descôteaux
et al., 2022).

Shifts in species distribution can drive changes in both pelagic
and benthic-demersal life cycles, oceanic seascapes, population
structures and interspecific interactions. In the Chukchi Sea,
increasing number of boreal pre-spawning, spawning and post-
spawning walleye pollock have been observed in recent years
(Emelin et al., 2022). This could indicate an expansion of their
spawning location or range but does not necessarily correlate with
juvenile survival. Survival of the early life stages depends on species
capacity to take advantage of available food and to resist harsh
winter conditions. Polar cod, adapted to Arctic conditions, have a
unique fat storage strategy, from diatoms and Calanus origin, that
enables it to thrive in cold ice-covered region (Copeman et al., 2022).
In contrast, juvenile walleye pollock have better condition in the
southern than in the northern Chukchi Sea (Copeman et al., 2022),
which suggests that they are not yet adapted to colder northern
conditions. In the Barents Sea, climate induced changes in
temperature and food availability also drive trends in 0-group
fish lengths (Skjoldal et al., 2022) and distribution (Eriksen et al.,
2017). Apart from their lipid storage strategy, differences in
spawning timing between species is likely a key driver of their
successful survival during the Polar Night. Indeed, winter surveys
around Svalbard show that the spring spawning strategy of boreal
fish, which contrasts with winter-spawning Arctic and arcto-boreal
species, might lead to a temporal mismatch between their
planktonophagous larvae and zooplanktonic blooms (Berge et al.,
2015; Geoffroy and Priou, 2020). Large incoming boreal fish are
often generalists which are thus able to feed on boreal as well as
Arctic prey. This was shown by the diet composition of walleye
pollock in the northern Chukchi Sea, where Arctic copepods,
euphausids and polar cod were observed in their stomach

Frontiers in Environmental Science frontiersin.org11

Husson et al. 10.3389/fenvs.2024.1481420

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1481420


content (Benzik et al., 2022). Walleye pollock also consume other
incoming species, such as Pacific sand lance, whose abundance has
been increasing with the decline of sea-ice (Baker et al., 2022).
Similarly, in the Barents Sea, ctenophore species, which might
benefit from warmer conditions in the region, and snow crab
(Chionoectes opilio), which overlaps increasingly with Northeast
Arctic cod as these expand north-eastward, increased in frequency
in Northeast Arctic cod diets (Eriksen et al., 2018; Holt et al., 2021).
However, there is no sign that polar cod are increasing in Northeast
Arctic cod’s diets (Holt et al., 2019).

3.4 Ecosystem-level impacts of
borealization

3.4.1 Biological and functional diversity across
compartments

Understanding the degree of borealization of Arctic ecosystems
necessitates knowledge on biological diversity of native and
incoming communities. Efforts to catalogue species across the
pan-Arctic are still ongoing (Renaud et al., 2006; Bluhm et al.,
2011b; Bluhm et al., 2011a; Kosobokova et al., 2011; Poulin et al.,
2011; Lin et al., 2014; Jørgensen et al., 2022). The Central Arctic
Ocean can be divided in two main regions with distinct biodiversity:
the Eurasian and American regions (Alfaro-Lucas et al., 2023).
There is relatively little difference in species composition between
the central Arctic Ocean basins (Bluhm et al., 2015; Alfaro-Lucas
et al., 2023), yet substantial variation among benthic habitats within
the basins (Ramirez-Llodra et al., 2023). However, some ecological
compartments and regions are still largely under studied (CAFF,
2017; Alfaro-Lucas et al., 2023). Where long time series are available,
studies highlight the strong impact of borealization on biodiversity.
Species distribution ensemble models applied to 69 apex- and
mesopredators revealed varying trends in species richness across
the pan-Arctic over the last two decades (Alabia et al., 2023). The
authors suggested that species richness has been increasing overall in
the Arctic, in line with large range shifts, especially from large
mobile apex predators, but more strongly in interior and outflow
shelves than inflow shelves. In the Barents Sea, an 8-year study
showed a steady increase in species richness and biodiversity indices,
especially within the advected waters (Prokopchuk and Trofimov,
2019). A study on shorter time scales in the Chukchi Sea revealed
contrasting responses of functional group diversity between warm
and cooler years: during a warm year, diversity increased among
zooplankton and fish communities, decreased for bacteria, protists,
epibenthos and seabirds, and did not vary significantly for
macrobenthos, relative to a colder year (Mueter et al., 2021a).

The documented changes in Arctic biodiversity bring about
functional reconfigurations with implications for ecosystem
function and vulnerability (Ingvaldsen et al., 2021). Many boreal
species differ from Arctic ones in terms of functional characteristics,
as exemplified by fish and copepods (e.g., Aune et al., 2018). Boreal
fish species are often large, and predatory, with a generalist diet,
whereas Arctic fish are rather small benthivores like sculpins
(Frainer et al., 2017; Emblemsvåg et al., 2022a; Emblemsvåg
et al., 2022b). In East Greenland, the incoming boreal functional
traits do not compensate for the loss of Arctic traits, which leads to a
decrease in functional diversity across depths (Emblemsvåg et al.,

2022a). In contrast, in the Barents Sea, functional diversity increases
with the northward shift of functionally-rich boreal communities
(Frainer et al., 2021), but this situation might be transitory as
predation and competition between newly co-occurring boreal
and Arctic species might lead to the decline of Arctic species
(Pecuchet et al., 2020). The alteration in functional diversity is
correlated with a change in dominance of different life history
strategies, including an expansion of so-called “periodic” species,
which have a greater adaptive capacity owing to higher reproductive
output, broader diet, and migratory behaviour (Bernardo et al.,
2024). Higher functional diversity is thought to increase adaptive
capacity and affect ecosystem stability and resilience to
perturbations. However, these studies have so far been limited to
fish communities, and a pan-Arctic overview is lacking.

3.4.2 Impacts on apex predators
Changes in environmental conditions in the Arctic also affect

seabirds and marine mammals, which are often emblematic and/or
Red-listed and are thus also an important component of
biodiversity, despite low species richness compared to smaller
groups. For example, seabirds colonies are experiencing changes
in densities and species composition around the Svalbard
Archipelago (Descamps and Strøm, 2021), and in the northern
Bering Sea and eastern Chukchi Sea (Kuletz et al., 2020). Similarly,
changes in marine mammals are observed with changes in habitat
conditions: killer whales are increasingly observed in the Chukchi
Sea and elsewhere as sea-ice retreats (Ferguson et al., 2010; Stafford,
2019), in East Greenland an increase in the abundance of several
boreal cetaceans (humpback, fin, killer, and pilot whales and
dolphins) has been seen as summer sea ice has disappeared and
water temperatures have increased (Heide-Jørgensen et al., 2023),
while narwhals seem to distribute preferentially where temperatures
are colder, and might abandon their warmer habitats of Mideast and
Southeast Greenland (Chambault et al., 2020; Heide-Jørgensen et al.,
2023). Sea surface temperatures are also linked to seasonal
displacements of bowhead whales in Baffin Bay (Chambault
et al., 2018). With sea ice decline, polar bears are pushed to
more frequent long-distance swimming (Pilfold et al., 2017).
Gray whales, associated with warmer waters, occur more
frequently in the Chukchi Sea to feed on abundant prey when ice
conditions allow. However, recent warm events have been associated
with unusual mortality events in gray whales (Stewart et al., 2023),
suggesting that increased availability of prey in newly ice-free areas
was insufficient to compensate for decreasing prey availability in
more southern feeding areas. Concomitant displacements have been
observed for Arctic ice-associated species, with poorer body
condition and population status (Kovacs et al., 2011; Laidre et al.,
2015). Environmental changes and prey behaviour are also altering
migration patterns and timing of marine mammal species (Kuletz
et al., 2024).

Changes in distribution of lower trophic level communities
affect the diet of many apex predators, modifying trophic
interactions and food webs (de la Vega et al., 2021). Spatial or
compositional shifts in epibenthic invertebrate communities in the
Bering and Chukchi Sea could affect prey species of benthivorous
marine mammals like Pacific walrus and bearded seals, which are
important subsistence resources for Alaska Native communities
(Richman and Lovvorn, 2003; Logerwell et al., 2022), as well as
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benthivorous seabirds like the endangered Steller’s eiders (Richman
and Lovvorn, 2003). However, current latitudinal and regional
variability in ringed seals and beluga diets would suggest that
those species could adapt to changes in prey (Yurkowski et al.,
2016a). For polar bears, some individuals are more opportunistic
than others, and those that specialise on seals are most sensitive to
climate change impacts (Thiemann et al., 2008). Apart from changes
in diet and habitat loss, Arctic top predators will likely face an
increasing number of anthropogenic pressures, such as increased
noise and pollution from shipping, plastic pollution, increasing
disease and parasite occurrence, (Kovacs and Lydersen, 2008;
Merkel et al., 2021). Top predators have been shown to
sometimes adapt to the change in diet (e.g., Yurkowski et al.,
2016b; Vihtakari et al., 2018; Sauser et al., 2023), although not
always successfully, as changes in prey quality, notably fat content,
would affect species fitness (e.g., Descamps et al., 2022; Anderson
et al., 2023; Sauser et al., 2023). The decline of iconic marine
mammals in the Arctic is a major conservation concern, with
implications for biodiversity and cultural ecosystem services in
the Arctic.

3.4.3 Food-web impacts
Apex- and mesopredator incoming boreal species establish

new feeding links in Arctic marine ecosystems, thereby
reorganising food-webs, leading to increased food-web
connectance and decreased modularity, which is associated
with low resilience (Kortsch et al., 2015; Blanchet et al., 2019;
Pecuchet et al., 2020; Jordán et al., 2024). A core function of
Arctic food webs that is affected by borealization is the sympagic-
pelagic-benthic carbon coupling through the sinking of ice-algae
when ice melts. This function is particularly important for
benthic biomass and biodiversity (Boetius et al., 2013; Kędra
et al., 2015; Hansen et al., 2020). Indeed, several studies have
shown the strong reliance of megabenthic communities to this
coupling in the Barents Sea, northeast Greenland shelf (Cautain
et al., 2022; Cautain et al., 2024), on Siberian shelves (Schmid
et al., 2006; Lalande et al., 2009), in the Northern Bering Sea and
Chukchi Sea (Koch et al., 2020), in Baffin Bay (Yunda-Guarin
et al., 2020) and in the Canadian high-Arctic (Yurkowski et al.,
2020). The anticipated - though poorly documented (see Zhulay
et al., 2023 for the Chukchi Borderland) - decline in benthic-
pelagic coupling has important implications for ecosystem
functioning (Niemi et al., 2024). Food web and ecosystem
models can explore the consequences of declining sea ice and
new trophic interactions in an integrative approach. In the
Beaufort Sea, the shelf and slope ecosystem with strong
riverine influence and changes in salinity has likely driven
lower diversity and changes in biomass, consumption and
trophic levels of marine mammals and fish, including Arctic
key species (Sora et al., 2024). In the Barents Sea, multiple
pressures have caused changes in the food-web over time, but
an ecosystem model suggests that increased productivity fuelled
the food web through bottom-up effects after the 1990’s
(Pedersen et al., 2021). In Baffin Bay, an ecosystem model
revealed that polar cod is a key component of the food-web
structures (Pedro et al., 2023). An exploration of past dynamics
could reveal the impacts of changes in the polar cod stock on
the ecosystem.

4 Discussion

4.1 Spatial extent of borealization: the
“spillover” effect

Local changes in environmental conditions, driven by
alterations in large scale circulation patterns and fluid (water, air)
masses properties, are reported across the pan-Arctic. The strongest
impacts seem to affect the inflow shelves, where high connectivity to
very different systems result in a high interannual variability and
sensitivity to external forcings. Borealization has thus progressed
more rapidly on these shelves, affecting all trophic levels (Csapó
et al., 2021). Ecosystems inflow shelves are currently transitioning
towards a more boreal functioning but retain some Arctic
characteristics. The potential degree of borealization in the future
is discussed below. A new emerging signal, as revealed by many
recent studies reviewed here, is that interior and outflow shelves are
also experiencing borealization through climate-induced
modifications of local environmental conditions (sea-ice cover,
river runoff, temperature) that render habitat suitable for species
that are transported or actively relocate there (Figure 6).

However, the extent of this “spillover” effect of borealization
across space, time and functional groups is uncertain, due to several
knowledge and data gaps. Indeed, a recent biodiversity assessment
for the whole Arctic domain has highlighted the lack of data for the
Siberian seas (Kara, Laptev, East Siberian seas) and the Canadian
Arctic (Canadian Arctic Archipelago, Beaufort Sea, Hudson and
Baffin Bay, Alfaro-Lucas et al., 2023). In addition, for all shelves and
for the Arctic basins, data are largely restricted to the summer and
autumn seasons, with recent but limited knowledge on winter and
polar night processes (Berge et al., 2015; Berge et al., 2020; Gerland
et al., 2019), and transition periods between ice-free and ice-covered
seasons (Shogren et al., 2020). More seasonal and spatial coverage,
including land-sea connectivity at more extensive spatial scales than
currently conducted, are important for understanding physical
processes such as sea ice loss, water freshening, nutrient and
carbon cycles (Brown et al., 2020; Shogren et al., 2020;
Timmermans and Marshall, 2020), as well as biological processes
(Berge et al., 2015; Geoffroy and Priou, 2020). Deployment of
dedicated autonomous technologies are often suggested to fill this
data gap. In addition, approaches such as participatory modelling
tools have a strong potential to fill the knowledge gaps around e.g.,
winter processes, using local ecological knowledge (Pedro et al.,
2023). A more comprehensive overview and monitoring of Arctic
ecosystem borealization would also necessitate the allocation of
research resources to characterise and better understand
processes of relatively understudied compartments such as
microbial communities, epibenthos and infauna (CAFF, 2017).

4.2 Through the spyglass: a boreal Arctic in
the future?

Predicting the extent to which Arctic borealization will continue
in the future across ecosystem compartments is a priority that has
received much attention from the scientific community. Climatic
scenarios from the coupled model intercomparison project (CMIP)
suggest various trajectories for future Arctic climatic and
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oceanographic conditions, but all scenarios display similar trajectories
until the 2040s. The Artic will likely continue to warm at a faster rate
than mid-latitude systems. Arctic amplification could continue under
a low emission scenario, where ice albedo feedback would maintain
the phenomenon, but it would be less prominent in a high-emission
scenario (Ono et al., 2022). The increase in heat transport from the
Atlantic and the Pacific will likely continue and progress poleward
through the Bering Strait and the Barents Sea (Drinkwater et al., 2021;

Dörr et al., 2024). All shelves will become ice free in the summer,
irrespective of the climatic scenario, and the Barents Sea could become
ice free in winter by the end of the century (Årthun et al., 2021).
Expanding open water areas and increasing precipitation will
contribute to large and rapid changes in hydrological cycles
(McCrystall et al., 2021). Increased river runoffs should increase
stratification and subsurface warming in the central Arctic Ocean
(Nummelin et al., 2016).

FIGURE 6
Map of evidence of borealization of communities and ecosystem processes across regions. Regions that are indicated are based on the naming used
in the literature cited in the main text.
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It is challenging to assess the degree of borealization of
biogeochemical processes and microbial communities at pan-
Arctic scales. Primary production is arguably the microbial
process that has received most attention in the literature, and
numerous studies suggest an evolution towards a more boreal
functioning in the future (Ardyna and Arrigo, 2020; Noh et al.,
2024). The Pacific and Atlantic inflow shelves will likely experience
the strongest increase in primary productivity, although this is more
uncertain for the western Barents Sea, where oceanographic models
project variable directions and magnitudes of change depending on
how stratification processes are represented (Mueter et al., 2021b;
Mousing et al., 2023). However, increasing cloud cover (Bélanger
et al., 2013) and strong seasonality in light conditions at higher
latitudes are likely to limit the transition towards a completely boreal
phenology, and primary production should retain some
characteristics of an Arctic system, which would lead to arctic-
boreal hybrid functioning. Yool et al. (2015) projected that, by 2,100,
despite an increase in productivity driven by the loss of sea ice, the
Arctic will not be more productive than the Atlantic, with both
systems entering a low nutrient regime. In contrast, the Pacific,
richer in nutrients, might experience a longer rise in productivity
(Yool et al., 2015). However, the trajectory of nutrient limitation
remains a significant knowledge gap, leaving predictions of Arctic
productivity in the future uncertain (Slagstad et al., 2015; Mueter
et al., 2021b; Mousing et al., 2023). While observational data on
other microbial processes across the pan-Arctic remain limited,
experimental studies offer valuable insights into potential shifts in
crucial microbial functions. For example, temperature variations
might influence bacterial metabolic rates, phytoplankton
community structure and chlorophyll a concentrations and,
consequently, carbon cycling (Kritzberg et al., 2010).

The climate driven environmental changes will continue to
trigger distributional shifts and changes in biodiversity across
functional groups and Arctic regions. These shifts are
quantitatively explored based on species distribution models
fitted to species’ current thermal preferences. Ensemble modelling
predicts an increase in phytoplankton species richness all over the
globe under the highest warming scenario, by the end of the century,
except in the Arctic, where no trend is expected (Benedetti et al.,
2021). Other projections with similar time horizons suggest that
poleward shifts in zooplankton distribution could continue at a pace
of 8.7 km/decade, accompanied by a change in seasonal occurrence
peak up to 13 days earlier, a high species turnover, and a northward
shift of many boreal gelatinous zooplankton, sometimes only into
sub-polar regions (Villarino et al., 2015; Benedetti et al., 2021;
Pantiukhin et al., 2023; Pantiukhin et al., 2024; Cheung et al.,
2015) also predicted a northward range expansion for Pacific
pelagic fish species of 30.1 ± 2.34 (S.E.) km decade−1. However,
regional predictions for Canadian waters predict a decline in
biomass in both the Pacific and Atlantic sides (Bryndum-
Buchholz et al., 2020). In contrast, projections under a high
emission scenario reveal an increase in total forage fish biomass
in Hudson Bay, but with decreasing fish size and a shift from lipid
rich polar cod to smaller boreal fish (Florko et al., 2021). Overall,
responses to climate change are likely region-specific, as well as
species specific and are thus challenging to predict (Mueter and
Litzow, 2008; Alabia et al., 2018; Husson et al., 2020; Calvet et al.,
2024). The impact of climate change on benthic habitats may

depend on the spatial scale of the projection. In the Bering and
Chukchi seas, the habitat of many assemblages of epibenthic
invertebrates is predicted to be reduced by 50% by 2050 and
almost 100% by 2,100, with the exception of eurythermal species
such as the basket star Gorgonocephalus cf. arcticus (Logerwell et al.,
2022). At the pan-Arctic scale, however, habitat change for benthic
species might be limited in the future (Renaud et al., 2019). Habitat
loss should mainly affect currently cold and aragonite-oversaturated
areas such as northern Barents Sea and east Greenland Sea (Renaud
et al., 2019), and cold-stenothermal species such as gastropods and
bivalve mussels Musculus spp. in the Bering and Chukchi Sea,
leading to large losses of biodiversity locally (Logerwell et al.,
2022). At the ecosystem-level, long-term projections using species
distribution ensemble models suggest an increase in species richness
and functional redundancy poleward with an increase in predatory
taxa that will threaten Arctic species and decrease the modularity of
Arctic food webs in the Bering and Chukchi seas (Alabia et al., 2020).
It is predicted that the co-occurrence of boreal and arctic fish species
in borealized regions will vary from 1 year to the other, with more
Arctic species in cold years and more boreal species in warm years
(Geoffroy et al., 2023), as seen in the Labrador and Bering seas
(Marsh and Mueter, 2020).

The poleward progression of communities could lead to many
changes in seascapes, with shifts in essential habitat localisation and
altered connectivity, leading to declining stocks and a potential
increase in population mixing and hybridization by the end of the
century. Habitat forming species such as macroalgae are likely to
continue their colonisation of coastal Arctic regions, with more of
the Canada, Greenland and Svalbard coasts becoming suitable
habitats due to less ice cover for three important macroalgae
species by 2,100 (Jueterbock et al., 2013). In contrast, in the soft-
sediment dominated Beaufort Sea, kelp production has been shown
to be limited by wind speed that resuspends river and coastal
sediments and limits light penetration to the seabed (Bonsell and
Dunton, 2018). This is likely to affect nursery and feeding habitats,
although their variations are only partially understood and might be
affected by multiple factors. Along the Norwegian coast, Northeast
Arctic cod spawning locations have been fluctuating with a
northward trend, seemingly under the effect of population
demography, while the effect of climatic factors is uncertain
(Höffle et al., 2014; Opdal and Jørgensen, 2015). Similarly,
spawning locations of Northeast Arctic haddock
(Melanogrammus aeglefinus) are likely driven by density
dependence, rather than temperature (Langangen et al., 2018).
Finally, predation by boreal species has been shown to influence
capelin’s spawning area (Olsen et al., 2024). It is thus challenging to
model future locations of spawning sites. Nevertheless, modelling
studies based on thermal preferences and bottlenecks of species early
life stages can give a first estimate. Capelin is anticipated to shift
spawning north-eastward in the Barents Sea (Huse and Ellingsen,
2008). For Northeast Arctic cod, further northward shifts in
spawning sites could affect juveniles’ survival and increase their
sensitivity to spawning timing (Endo et al., 2024).

Population mixing will likely increase and would probably occur
via the Northeast and Northwest Passages (Vermeij and
Roopnarine, 2008; Kelly et al., 2010; Wisz et al., 2015). This has
likely already started, as suggested by the first observations of
interoceanic dispersals (e.g., a Pacific diatom in the Atlantic
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waters, Reid et al., 2007). The Greenland halibut Pacific and Atlantic
populations, with so far limited genetic mixing (Orlova et al., 2019),
are now increasingly interacting along the Eurasian Arctic,
suggesting that a potential reunification of those populations is
possible in the future (Orlov and Volvenko, 2024).

To summarize, all climatic scenarios point to a profound
transformation of the Arctic oceanic functioning. Under those
conditions, many species will shift, but not all, and not all the
way into the Arctic Basin, where conditions will remain harsh.
Ecosystems’ primary productivity, biodiversity, functioning and
food webs will be altered. All this suggests that Arctic marine
ecosystems might not entirely transform into a boreal
functioning, but rather stabilize in a hybrid state between Arctic
and boreal ecosystem at a latitudinal limit north of the current one,
with transient borealization during warmer periods.

4.3 Into the fog: uncertainties and
key questions

Large uncertainties and bias surround projected trajectories for
the Arctic and sub-Arctic ecosystems. Arctic Ocean circulation is
complex, with numerous feedback and potentially tipping processes
among and between the cryosphere, hydrosphere and atmosphere,
and several possible future evolutions depending on climate change
intensity (Lannuzel et al., 2020; Timmermans and Marshall, 2020).
The most recent version of the Coupled Model Intercomparison
Project (CMIP6) has persistent bias on Arctic water masses
representations, inherited from the previous version, which
necessitate major improvements, notably by using higher model
resolutions (Khosravi et al., 2022). For example, other studies
showed that heat transport from lower latitudes might be
underestimated by model with too coarse spatial resolution (Xu
et al., 2024).

Projections of community shifts in the future are also associated
with considerable uncertainties, although hard to estimate and thus
rarely mentioned in the studies. The potential for further
borealization of the ecosystem depends on species habitat
preferences, the location and connectivity of their essential
habitats (spawning, nursery, feeding grounds), and their capacity
to acclimatise and then adapt to new abiotic and biotic conditions.
Projecting species future habitats using species distribution models
is a first approach to anticipating species movement. However, those
models are often based on strong assumptions, such as
environmental niche stability, and are built around limited
number of environmental covariables, ignoring the impact of
population dynamics and interspecific interactions on species
distributions. Among environmental variables, factors that do not
vary over time are not always included. Indeed, while temperature,
salinity or oxygen, which will be affected by future climate change,
can be used as time-varying predictors of most fish species’ suitable
habitats, poleward displacement might be limited by non-dynamic
factors such as depth, light regimes, or seabed type. Considering a
species’ traits and life cycle can help estimate the likelihood of that
species to shift northward. Using this approach, it is assumed that
cod and haddock have reached their northern limit at the shelf break
of the Barents Sea and minke whale or harp seals will likely follow
the ice edge, while other species, such as capelin, redfish or snow

crab will likely be able to expand further into the Arctic (Hollowed
et al., 2013b; Hollowed et al., 2013a; Haug et al., 2017; Mullowney
et al., 2023).

When conditions in the Arctic are limiting, species that will not
be able to shift their distribution will have to acclimate, then adapt,
or die (Hoffmann and Parsons, 1990), and this will impact the pace
and extent of borealization across regions and functional groups.
Adaptation to environmental stress manifests itself mainly via two
mechanisms: the species plasticity (capacity of a genotype to express
different phenotypes under varying environmental stress), and the
selection, on evolutionary scales, of certain phenotypes. Species
phenotypic plasticity includes, among others, behavioural
flexibility and physiological tolerance, both of which are
challenging to observe in natural environments (Beever et al.,
2017) and manifest differently across a species’ range (Donelson
et al., 2019). Plasticity can be a way to cope temporarily with
environmental stress, but can also hinder adaptation in some
cases (Fox et al., 2019). It is thus important to assess species
adaptive capacity to understand species responses to climate
change and support conservation and management efforts
(Hoffmann and Sgrò, 2011). This can be done by considering the
species fundamental adaptive capacity, characterised via its
functional traits such as longevity, mobility, and dispersal
capacity (Beever et al., 2016). Such approaches, along with
experiments on species thermal adaptivity, are often suggested as
potential improvements to species distribution models (Drost et al.,
2014; Drost et al., 2016; Logerwell et al., 2022). Evolutionary models
could integrate that information and incorporate interspecific
interactions to further explore possible trajectories of co-
evolution for Arctic marine systems.

Finally, lasting borealization, emerging from species completing
their life cycle, implies that environmental conditions are suitable for
all life stages (Wassmann et al., 2015), of which early life stages and
spawning adults are often the bottlenecks (Dahlke et al., 2020).
Several species have been suggested to be able to complete their life
cycle in areas where it was previously not observed, for example, the
boreal capelin in Hudson Bay (Gaston and Elliott, 2014), the
copepod C. finmarchicus and the Atlantic hyperiid amphipod
Themisto compressa at the Fram Strait, with the latter two species
much poorer in lipid than their Arctic counterparts (Kraft et al.,
2013; Tarling et al., 2022). Connectivity between the habitats and
along dispersal routes is thus a key consideration when projecting
population shifts and species range shifts. Knowledge on thermal
preferences of early life stages enabled modellers to estimate changes
in spawning sites for cod and polar cod under various gas emission
scenarios (Dahlke et al., 2020; Sanders et al., 2022). Results of these
studies all suggest a deterioration of the current spawning sites for
both species under high emission scenarios, and more limited
impacts for low emission scenarios. In addition, some local
conditions such as depth may act as barriers to dispersal of fish
species across the pan-Arctic (Bouchard et al., 2018).

4.4 Risks and vulnerability of borealized
socio-ecological systems

Despite some uncertainties and knowledge gaps, there is a clear
consensus on the ongoing borealization of Arctic ecosystems, and its
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likely continuation in the future. Arctic endemic communities and
ecosystems are most at risk, if they are unable to adapt to the
multiple environmental stressors or to compete with new incoming
species (Kędra et al., 2015). Sympagic species or species with a strong
link to the ice, through their diet or life cycle, are particularly at risk
(Kohlbach et al., 2016), while some may survive in the pelagic zone
(Kunisch et al., 2020). The ice association is well documented for
example, for polar cod. In the Chukchi Sea, its body condition
appears to be lower during warm years, suggesting that the region is
warming beyond the species’ thermal limits (Copeman et al., 2022).
With sea ice loss, polar cod will lose its spawning habitat
(Huserbråten et al., 2019), and new incoming species could
outcompete it (Mueter et al., 2016). However, some studies
suggest that competition for food might be limited at least for
early life stages, through niche partitioning (Falardeau et al.,
2014; Bouchard et al., 2022). Moreover, in the Canadian Arctic
Archipelago and Central Arctic Ocean, the relaxation of the most
extreme conditions with climate change could benefit polar cod, at
least in the short term (Bouchard et al., 2017; Steiner et al., 2019;
Geoffroy et al., 2023). There, larval survival of polar cod increases in
years with earlier ice-breakup and warmer sea surface temperatures
(Bouchard et al., 2017).

With sea-ice loss and increased open water area, carbon
sinking and ocean acidification are likely to increase (Lannuzel
et al., 2020; Terhaar et al., 2020; Qi et al., 2022), adding to the
effect of warming to affect species habitats and distributions. The
extent of the impacts of ocean acidification on marine
populations is still not well understood. Experimental studies
show that acidification affect coastal phytoplankton species
growth, colony length and chain length, although the effect
vary across species (Thoisen et al., 2015). In addition,
increased acidification could lower phytoplankton growth rates
and amplify the decrease in primary production with warming
(Coello-Camba et al., 2014), and alter microbial community
composition (Brussaard et al., 2013; Sugie et al., 2020).
Finally, acidification can lead to the dissolution of Arctic
benthic invertebrate shells (Comeau et al., 2009; Niemi et al.,
2021) and, in combination with warming temperatures, increased
consumption by Arctic brittle stars (Wood et al., 2011). However,
some Arctic bivalves are more resilient to decreasing pH (Goethel
et al., 2017).

In addition to those climate-driven pressures, Arctic ecosystems
will experience increasing pressures frommany other anthropogenic
sources. Microplastic contamination is already affecting benthic
organisms in the Chukchi Sea and other areas of the Arctic
through local sources and transport (Fang et al., 2018; Bergmann
et al., 2022). New ice-free conditions along the shelves and
seasonally in the Central Arctic Ocean would allow Arctic
shipping year-round starting in the 2070s (Min et al., 2022),
leading to increased concentrations in pollutants (Svavarsson
et al., 2021). This increase in shipping would also be prompted
by industrial opportunities newly accessible in a future seasonally
ice-free Arctic, such as mineral, oil and gas extraction, of fishing.
Indeed, large global models project a high potential for Blue
Economy in the Arctic, with potential for new fisheries, owing to
increased local productivity and incoming new stocks (Cheung et al.,
2015). However, the latest FAO report stresses the high risk
associated with potential fishing in the Arctic due to very high

uncertainties around the future biomass projections associated with
the two main Earth system models used to force the simulations
(Tittensor et al., 2021; Blanchard and Novaglio, 2024). In addition,
climate is not the only factor affecting Arctic fisheries, and complex
cross-scale, cross-domain (ecology, society, economy) processes can
greatly affect the future of pan-Arctic fisheries (Niiranen et al.,
2018). The potential growth of biomass of commercial stocks thus
call for new management approaches (Christiansen et al., 2014;
McBride et al., 2014) and careful consideration of potential new
fishing opportunities. For example, a study investigating the
potential for a fishery on walleye pollock that are expanding into
the western Chukchi Sea highlight strong uncertainties around the
amount of biomass entering the region, the state of the stock, and the
possibility of harvesting considering the harsh local fishing
conditions (Maznikova et al., 2023). Such complex systems are
challenging to apprehend, and models are often a key tool to
anticipate future changes. To date, few models explore regional
ecosystem response to potential effects of climate change scenarios
on ecosystem services and human wellbeing, with or without
considering other human pressures such as fisheries. The few
projections that have been completed anticipate a decrease in fish
biomass or high uncertainties in biomass trajectories, thus
challenging the hypothesis of a future Blue Growth in the Arctic
(Bryndum-Buchholz et al., 2020; Whitehouse et al., 2021).

In the meantime, some traditional local fisheries are threatened
by ecosystem changes. For example, the winter ice fishery on
Greenland Halibut (Reinhardtius hippoglossoides) is now being
threatened by the progressive loss of sea ice (Hussey et al., 2017).
Fishermen in Greenland are shifting their traditional fishing
practices in response to changes in ice cover, and are observing
new species (Schiøtt et al., 2022). Local ecological knowledge,
including knowledge from Indigenous communities whose
livelihoods and cultures are tightly linked to Arctic ecosystems, is
increasingly highlighted as a most valuable tool to face future
challenges and apply an adaptive strategy to the fast changing
Arctic (Riedlinger and Berkes, 2001; Schwoerer et al., 2021).
Local fishermen and hunters have detailed knowledge on
seasonal and spatial scales that are rarely covered by any
scientific survey, and are highly useful to combine with scientific
knowledge and data do detect changes in Arctic ecosystems and
threats to traditional livelihoods (Chila et al., 2022; Falardeau et al.,
2022; Bouchard et al., 2023; Dunmall et al., 2024). Better inclusion of
this rich source of information could be done through community-
based monitoring and co-construction of scenarios to directly
inform management (Nilsson et al., 2021; Falardeau et al., 2022).
Indeed, balancing ecosystem and livelihood conservation and the
increasing economic interests in the Arctic necessitate consideration
of the whole socio-ecological system, but a holistic, interdisciplinary
and systematic approach is currently lacking to properly picture the
complexity of the Arctic socio-ecological system and the pressures
that affect it (Falardeau and Bennett, 2020; Eerkes-Medrano and
Huntington, 2021). Identified gaps include for example: the
heterogenous knowledge base across the Arctic, limited research
on cumulative impacts of climate change with other anthropogenic
pressures, a lack of knowledge on some feedbacks between
ecosystem services and human well-being, and a lack of
projection into the future for human systems (Falardeau and
Bennett, 2020). Considering the local and global importance of
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Arctic climatic and biological processes, urgent mitigation and
adaptive actions are needed (Overland et al., 2019).
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