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Introduction: Vegetation plays a crucial role in terrestrial ecosystems, acting as a
vital link connecting the lithosphere, hydrosphere, and atmosphere in terms of
energy flow and material cycling. Changes in surface vegetation significantly
regulate the water cycle, energy flow within terrestrial surfaces, and global
carbon balance.

Methods: This study focuses on nine major river basins in China to quantitatively
investigate the impacts of climate factors, vegetation dynamics, and land use
changes on carbon use efficiency (CUE) and water use efficiency (WUE).

Results: The primary controlling factors of WUE trends are NDVI (average
contribution: 33.75% ± 6.90%) and VPD (average contribution: 28.04% ±
3.98%). NDVI predominates in the Haihe, Yellow River, Yangtze River, Pearl
River, and Songliao River basins, while shortwave radiation (Srad) dominates in
the southeastern rivers and inland river areas, and humidity (Shum) in the
southwestern river basins. For CUE trends, the main controlling factors are
Srad (average contribution: 36.46% ± 3.40%) and precipitation (Pre) (average
contribution: 26.72% ± 5.20%). NDVI negatively influences the Huaihe River and
southeastern river basins, while Pre negatively influences the Songliao River and
Yellow River basins, and Srad negatively influences the Huaihe and southwestern
river basins. Pre predominates in the Huaihe, Songliao, Haihe, southwestern river
basins, and inland river areas, while Srad predominates in the Pearl River, Yangtze
River, and Yellow River basins.

Discussion: Climate factors and vegetation dynamics have significant regional
impacts on WUE and CUE across different river basins, especially the roles of
NDVI and VPD on WUE, and Srad and precipitation on CUE. These differences
underscore the importance of developing region-specific management
strategies to optimize ecosystem services in each basin.
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1 Introduction

Vegetation plays a crucial role in terrestrial ecosystems, serving as a key intermediary in
the exchange of energy and matter between the lithosphere, hydrosphere, and atmosphere.
Changes in vegetation have significant regulatory effects on the hydrological cycle, energy
transfer within terrestrial surfaces, and the global carbon cycle (Foley et al., 1996; Ostle et al.,
2009). Faced with the dual impacts of climate change and human activities, dynamic
changes in vegetation not only respond to external environmental changes but also serve as
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explicit indicators of the internal state of ecosystems. Therefore,
vegetation is considered an important indicator for assessing
ecosystem health and sensitivity to environmental changes (Qi
et al., 2019; Seddon et al., 2016). The characteristics of vegetation
changes are of significant importance for the overall adaptability and
stability of ecosystems. On the other hand, vegetation is not merely a
passive recipient of external environmental changes; it dynamically
responds to the external environment through its biophysical and
biochemical processes. In this process, vegetation exerts significant
influences on regional and global carbon-water cycling systems
through ecological and physiological processes such as
photosynthesis and transpiration (Hu et al., 2008).

Carbon Use Efficiency (CUE) determines the rate at which
energy and matter flow towards higher trophic levels, converting
plant produced carbon into microbial products and ecosystem
carbon storage. It is typically expressed as the ratio of Net
Primary Productivity (NPP) to Gross Primary Productivity
(GPP) (Lu et al., 2011; DeLucia et al., 2007). Water Use
Efficiency (WUE) in vegetation, defined as the amount of fixed
carbon per unit of water transpired, quantifies the trade-off between
carbon gain and water loss in terrestrial ecosystems. This efficiency
is commonly represented by the ratio of ecosystem biomass
production (GPP or NPP) to Evapotranspiration (ET)
(Sinsabaugh et al., 2013). A thorough understanding of the
dynamic changes and controlling factors of CUE and WUE is
crucial for predicting ecosystem responses to climate change.
CUE and WUE serve as vital indicators of carbon and water
cycling in vegetation ecosystems, reflecting vegetation growth
status and environmental responsiveness. By calculating and
analyzing these indicators, we can compare differences in carbon
and water cycling among different ecosystems and understand how
plants respond to environmental changes (Fisher et al., 2017).

Historically, studies of WUE have focused on individual plants,
with gas exchange methods offering insight at the leaf level. With
advancements in remote sensing, large-scale assessments of WUE
have become possible, expanding research to ecosystems such as
forests, grasslands, and farmlands (John et al., 2013). Remote
sensing data, especially from satellites, now enables regional and
global-scale analysis of water use efficiency, though results can vary
based on factors like vegetation type, leaf area index (LAI), radiation,
temperature, and precipitation (Xu et al., 2019). Despite these
advancements, challenges remain in understanding how these
factors influence WUE across spatial and temporal scales.

Land Use and Cover Change (LUCC) plays a significant role in
altering terrestrial carbon and water cycles by changing surface
energy balances, water availability, and nutrient flows (Liu et al.,
2023; Posch and Bennett, 2009). Studies across various regions
highlight the temporal and spatial variability of WUE. For
instance, in the Amazon Basin, researchers have observed distinct
spatial patterns of WUE that differ from those in East Asia or the
United States (Zhou et al., 2018). Zhao et al. (2020) found that WUE
in southwest China varies across vegetation types, ranking from
highest to lowest as forest, shrubland, farmland, and grassland. This
finding contrasts with results from the Loess Plateau, where Zhang
et al. (2016) ranked WUE from highest to lowest as grassland,
woodland, shrubland, and farmland. Such comparisons underscore
the need to understand how regional factors, such as climate and
land use, influence WUE and carbon-water interactions.

Regarding CUE, past studies often treated CUE as a fixed value
(~0.5), assuming that about half of the carbon assimilated is
allocated to biomass (Zhang et al., 2014). However, recent
findings challenge this assumption. For instance, (Campioli et al.,
2015) showed that CUE varies depending on environmental
conditions and vegetation types, while DeLucia et al. (2007)
argued that CUE should be considered an ecosystem specific
parameter. Remote sensing data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) revealed significant spatial
variability in CUE, influenced by geographic and climatic factors
(Chen et al., 2018; Zhang et al., 2019). This variability aligns with
global observations that suggest CUE fluctuates with climate,
ecosystem type, and human management practices.

While many studies have focused on large-scale assessments of
CUE and WUE, uncertainties remain. For example, models
estimating CUE vary in how they parameterize photosynthesis
and autotrophic respiration, contributing to inconsistent results
(Chen et al., 2018; Waring et al., 1998). Moreover, research from
regions such as the Amazon Basin, East Asia, and the Loess Plateau
presents differing conclusions on the drivers of CUE and WUE,
highlighting the importance of geographical context.

This study aims to investigate the dynamic relationships
among climatic factors, vegetation dynamics, and land use
types with carbon-water use efficiency, determining the
contributions of climatic factors and vegetation dynamics to
changes in carbon-water use efficiency. The findings
contribute to assessing the health of ecosystems in different
watersheds. Based on the characteristics of different
watersheds and their primary influencing factors, targeted
resource management strategies can be implemented to
enhance water resource utilization efficiency and carbon
cycle stability.

2 Materials and methods

2.1 Study area

China is located in the northern part of the Eastern Hemisphere,
spanning latitudes between 3.86°N and 53.55°N and between 73.66°E
and 135.05°E, and is on the eastern part of the Eurasian continent
and the western part of the Pacific Ocean. The terrain is higher in the
west and lower in the east, with mountains, plateaus and hills
dominating the terrain, accounting for about 67% of the land
area, while basins and flat principles account for about 33% of
the land area. Its mountain ranges are mainly distributed along the
east-west-northeast-southwest direction, including the Karakorum
Mountains, Yinshan Mountains, Qinling Mountains, Changbai
Mountains, Daxing’anling Mountains, Taiwan Mountains and
Hengduan Mountains. China’s climate is characterized by high
temperatures and rainy summers, cold winters with little rain,
and a high degree of consistency between the high temperature
period and the rainy period, which is a clear manifestation of the
universal law of monsoon climate. Geographically, China is located
in the world’s largest continent the eastern part of Asia and Europe,
and at the same time adjacent to the world’s largest ocean the west
coast of the Pacific Ocean, and its southwest and the Indian Ocean is
not far away. This unique geographic location determines that
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China’s climate is strongly influenced by both the continent and the
ocean, which makes the monsoon climate characteristics
particularly prominent. These climatic characteristics not only
affect China’s natural environment, but also have a profound
impact on agricultural production, water resource distribution,
and human settlement patterns (Figure 1; Table 1).

2.2 Data acquisition and processing

2.2.1 ET data
The evapotranspiration data are derived from an actual

evapotranspiration dataset, known as the Terrestrial

Evapotranspiration Data for China (TEDAC), based on the
Nonlinear Complementary Relationship (CR) model. TEDAC
operates at a spatial resolution of 0.1° and a temporal resolution
at monthly scale. The dataset spans from January 2000 to December
2017, encompassing Actual Evapotranspiration (AET). Validation
of TEDAC AET dataset was conducted using in situ measurements
from 13 eddy covariance stations, achieving Nash Sutcliffe efficiency
values ranging from 0.72 to 0.94 (https://doi.org/10.11888/
AtmosPhys.tpe.249493.file).

2.2.2 Vegetation data
MODIS/Terra NPP product originates from the

MOD17A3HGF v006 dataset provided by NASA for the years

FIGURE 1
Study area.

TABLE 1 Basic table of the nine major river basins in China.

River basin name Area (km2) Primary vegetation Climate

Continental Basin, CtB 3,338,945 Grassland, Desert Plateau mountain climate, Temperate continental climate

Southwest Basin, SWB 852,634 Forest, Grassland Subtropical monsoon climate, Plateau mountain climate

Yellow River Basin, YeRB 808,905 Farmland, Forest Temperate monsoon climate, Temperate continental climate

Haihe River Basin, HRB 316,992 Farmland, Forest Temperate monsoon climate, Temperate continental climate

Songhua and Liaohe River Basin, SLRB 1,238,125 Farmland, Forest Temperate monsoon climate

Huaihe River Basin, HuRB 323,950 Farmland Temperate monsoon climate

Southeast Basin, SEB 240,319 Farmland, Forest Subtropical monsoon climate

Yangtze River Basin, YRB 1,799,222 Farmland, Forest Subtropical monsoon climate

Pearl River Basin, PRB 570,561 Forest Subtropical monsoon climate
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2000–2017 (https://lpdaac.usgs.gov/), with a spatial resolution of
1 km × 1 km. Data processing involved using the Modis
Reprojection Tool (MRT) software for calculations.

Gross Primary Productivity (GPP) product is sourced from the
MOD17A2H dataset provided by NASA for the years 2000–2017
(https://lpdaac.usgs.gov/). This dataset features an 8-day composite
with a spatial resolution of 500 m, based on the concept of radiation
use efficiency, making it potentially valuable as input data
for models.

2.2.3 Land use data
The CLCD dataset with 30 m resolution offers higher spatial

resolution and a longer historical record compared to existing
annual land cover products such as MCD12Q1 and ESACCILC.
Third party validation of the CLCD dataset demonstrates overall
accuracy surpassing MCD12Q1, ESACCILC, FROM_GLC (Global
Land Cover Fine Resolution Observation and Monitoring), and
GlobaLand30.

2.2.4 Other data
Meteorological data including Temperature (Temp),

Precipitation (Pre), Downward Shortwave Radiation (Srad),
Specific Humidity (Shum), and Wind Speed (WS) are sourced
from the China Meteorological Forcing Dataset (CMFD) (https://
data.tpdc.ac.cn/). CMFD provides national meteorological data
from 1979 to 2018 at a spatial resolution of 0.1° and a temporal
resolution of 3 h, widely used for model driving and data analysis
research. For each station, flux data on rainy days and the following
day, as well as outliers, were excluded. Monthly mean temperature
values (Ta) and cumulative monthly precipitation (P) are derived
from daily data. Additionally, Vapor Pressure Deficit (VPD) is
calculated using relative humidity (RH, %) and Ta (°C) according
to the formula provided (http://data.cma.cn/) (Equation 1).

VPD � 0.61078 × e
17.27×Ta
Ta+237.3 × 1 − RH( ) (1)

Leaf Area Index (LAI) data are obtained from LP DAAC
(https://lpdaac.usgs.gov/); Normalized Difference Vegetation
Index (NDVI) data are sourced from the Data Center for
Resources and Environmental Sciences, Chinese Academy of
Sciences (https://www.resdc.cn/). Data for the Standardized
Precipitation Evapotranspiration Index (SPEI) are acquired from
the Scientific Data Bank (https://www.scidb.cn/).

While these datasets provide comprehensive coverage and high
spatial resolution, they are subject to inherent limitations (Table 2).
For instance, remote sensing products like MODIS may be affected
by cloud cover, atmospheric conditions, and sensor calibration
issues, potentially influencing the accuracy of derived metrics
such as NPP and GPP. Additionally, while the CLCD dataset
offers improved spatial accuracy, challenges may arise in
interpreting land use changes over time due to classification
errors or changes in land management practices.

2.3 Research method

2.3.1 Calculation method of carbon-water
use efficiency

WUE (gC/m2·mm) can be expressed as the ratio of NPP (gC/m2)
to ET (mm) (Equation 2):

WUE � NPP

ET
(2)

CUE can be expressed as the ratio of NPP (gC/m2) to GPP (gC/
m2) (Equation 3).

CUE � NPP

GPP
(3)

These calculations allow for the assessment of carbon
sequestration relative to water usage, providing insights into
ecosystem efficiency in terms of resource utilization.

TABLE 2 Data source.

Data Spatial resolution Temporal resolution Data source

Evapotranspiration, ET 0.1° Year https://data.tpdc.ac.cn/

Net Primary Productivity, NPP 500 m https://lpdaac.usgs.gov/

Gross Primary Production, GPP 500 m https://lpdaac.usgs.gov/

Land use 30 m https://zenodo.org/

Temperature, Temp

Precipitation, Pre

Downward shortwave radiation, Srad 0.1° https//www.tpdc.ac.cn/

Specific humidity, Shum 0.1° https//www.tpdc.ac.cn/

Wind Speed, WS

Vapor Pressure Deficit, VPD 0.1° http://data.cma.cn/

Leaf Area Index, LAI 500 m Year https://lpdaac.usgs.gov/

Normalized Difference Vegetation Index, NDVI 1 km https://www.resdc.cn/

Standardized Precipitation Evapotranspiration Index, SPEI 1 km https://www.scidb.cn/

Note: The resolutions of the aforementioned datasets vary. We standardized the resolution of these datasets to 1 km × 1 km using resampling methods.
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2.4 Relative contribution rate

To analyze trends in WUE, climate factors, and vegetation
factors, we employed a simple linear regression model to
determine the slope, which indicates the direction and
strength of the relationship over time. This approach provides
a straightforward method for quantifying changes in WUE and
its association with climatic variables. To minimize the influence
of non-climatic factors on WUE, we utilized the first difference
detrending method. This technique removes trends from the
data, allowing for a clearer examination of the relationships
between climate variables and WUE. Detrending is crucial in
time series analysis as it helps isolate the effect of short-term
fluctuations from long-term trends. Given the inter correlation
among climate factors, we conducted partial correlation analysis
to quantify the relationship between the detrended climate
factors and detrended WUE. This method controls for the
effects of other variables, allowing us to focus on the direct
relationship between the two primary variables of interest. By
identifying the factor with the highest partial correlation

coefficient, we determined the dominant climate factor
affecting WUE.

To further quantify the contribution of climatic factors to WUE,
we performedmultiple linear regression analysis. In this analysis, the
first differences of the climate factors served as predictor variables,
while the first difference ofWUEwas treated as the response variable
(Chen et al., 2017) (Equation 4):

Yds � a1X1ds + a2X2ds + a3X3ds + · · · · · · anXnds (4)
where, Yds represents the normalized detrendedWUE; ai denotes the
regression coefficients for each predictor variable; Xids refers to the
normalized detrended climate factors. This method allows us to
quantify how changes in climate factors contribute to variations in
WUE, providing a clearer understanding of the interplay between
climatic and anthropogenic influences.

Assuming that the dependent variable responds similarly to both
climatic trends and interannual climatic variations, the contribution
of climate to the WUE trend from 2000 to 2017 can be quantified
using the aforementioned regression coefficients and the trends of
the climate factors (Equations 5, 6).

FIGURE 2
Changes inWUE caused by land cover type conversions from 2000 to 2017 (C: Cropland; F: Forestland; S: Shrubland; G: Grassland;W:Water bodies;
Sn: Ice/Snow; B: Bare land; I: Impervious surfaces; We: Wetland. “Transition to” refers toWUE changes when other land cover types are converted to land
cover type j; “Transition from” refers toWUE changeswhen land cover type j is converted to other land cover types). (A)Cropland; (B) Forest; (C) Shrub; (D)
Grassland; (E) Water; (F) Impervious; (G) Ice/Snow; (H) Barren; (I) Wetland.
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Qc � ∑
n

i�1
aiXis trend (5)

Qac � Qc

Ys trend
*Ytrend (6)

where, Xis_trend represents the trend of the normalized climate
factors; Qc denotes the contribution of climate to the trend of
normalized WUE; Ys_trend refers to the trend of normalized
WUE; Ytrend indicates the overall trend of WUE; Qac

represents the actual contribution of climate to the WUE
trend. This comprehensive analysis enables a nuanced
understanding of the climatic influences on WUE trends over
the specified period.

3 Results

3.1 Impact of land use conversion on
carbon-water use efficiency

3.1.1 Impact of land use conversion on water
use efficiency

The average WUE values for the nine land cover types in this
study are ranked as follows: forest (1.134 gC/mm·m2) >
shrubland (1.109 gC/mm·m2) > wetland (0.848 gC/mm·m2) >

cropland (0.818 gC/mm·m2) > impervious surfaces (0.688 gC/
mm·m2) > water bodies (0.630 gC/mm·m2) > grassland
(0.522 gC/mm·m2) > bare land (0.292 gC/mm·m2) > ice/snow
(0.169 gC/mm·m2).

Woodlands and shrubs demonstrate the highest WUE. Their
conversion to other land types results in decreased WUE, with
the most significant declines observed when woodlands are
converted. Conversely, mutual conversions between shrubs
and woodlands positively influence WUE, though the changes
are greater when woodlands convert to shrubs. Vegetation
degradation has a larger impact on WUE than vegetation
restoration (Figure 2).

Between 2000 and 2017, shrubland to cropland conversion
decreased WUE by 0.30 gC/mm·m2 (26.90% contribution), while
cropland to forestland increased WUE by 0.32 gC/mm·m2

(10.21%). Other significant changes include cropland to
impervious surfaces (decrease of 0.12 gC/mm·m2, 19.48%
contribution) and grassland to cropland (increase of 0.287 gC/
mm·m2, 5.93%). Overall, conversions involving shrubs had the
highest impact on (Figure 3).

3.1.2 Impact of land use conversions on
carbon efficiency

The average CUE rankings are: ice/snow (0.429) >
shrubland (0.348) > grassland (0.325) > bare land (0.323) >

FIGURE 3
Contribution of land use change to changes in Water Use Efficiency (WUE).
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water bodies (0.320) > forest (0.293) > wetland (0.292) >
cropland (0.266) > impervious surface (0.261) (Figure 4).
From 2000 to 2017, the conversion of wetlands to cropland
decreased CUE by 0.05 (81.87% contribution), while grassland
to wetland conversion reduced CUE by 0.08 (58.72%). Forest to
grassland conversion increased CUE by 0.05 (0.63%), while
forest to cropland decreased CUE by 0.008 (59.38%).
Cropland to forestland conversion notably increased CUE by
0.44 (19.46%), showcasing forests’ carbon storage
advantage (Figure 5).

3.2 Effects of climate and vegetation
dynamics factors on carbon-water
use efficiency

3.2.1 Effects of climate and vegetation dynamics
factors on water use efficiency

WUE shows positive correlations with VPD, temperature, and
LAI across most land use types, with negative correlations observed

for solar radiation in vegetation poor areas. NDVI shows a strong
positive correlation with WUE for all but impervious surfaces, ice/
snow, and bare land. Regional analysis indicates NDVI as the
dominant factor influencing WUE (33.75% contribution),
especially in the Yellow, Songliao, and Pearl River Basins. VPD
follows with a 28.04% contribution, negatively impacting WUE
across 66.21% of the area. Wind speed and specific humidity also
significantly affect WUE (Figures 6–8).

3.2.2 The impact of climate and vegetation
dynamics factors on carbon use efficiency

Climate factors are key drivers of CUE variability.
Precipitation shows positive correlations with CUE for snow,
impervious surfaces, and water bodies but negative correlations
for forests and shrubs. Solar radiation is the primary controlling
factor for CUE trends (36.46% contribution), followed by
precipitation (26.72%) and LAI (24.71%). Temperature
generally has a negative influence, especially in the inland and
Yangtze River regions, while NDVI positively impacts 94.07% of
the total area. (Figures 9–11).

FIGURE 4
Changes in Carbon Use Efficiency (CUE) caused by land cover type conversions from 2000 to 2017 (C: Cropland; F: Forest; S: Shrub; G: Grassland;
W:Water; Sn: Snow/Ice; B: Bare soil; I: Impervious surface; We:Wetland. “Conversion to” refers to changes in CUEwhen other land cover types convert to
land cover type j; “Conversion from” refers to changes in CUE when land cover type j converts to other land cover types). (A) Cropland; (B) Forest; (C)
Shrub; (D) Grassland; (E) Water; (F) Impervious; (G) Ice/Snow; (H) Barren; (I) Wetland.
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4 Discussion

4.1 Factors influencing WUE (water
use efficiency)

The spatial distribution of Water Use Efficiency (WUE) is
primarily influenced by vegetation composition, land use types,
and their spatial distribution (Tang et al., 2014). Favorable
climatic conditions enhance vegetation growth, which, in turn,
increases WUE. However, significant spatiotemporal variations in
ecosystem WUE exist across different regions, and even within the
same vegetation type, WUE can vary significantly across various
areas. For instance, (Zhang et al., 2016) highlighted the
spatiotemporal patterns of WUE in China’s Loess Plateau from
2000 to 2010, ranking annual mean WUE from high to low as
grasslands, forests, shrublands, and croplands. In contrast, Guo et al.
(2019) analyzed WUE changes across various vegetation types in
China from 1982 to 2015 and found that deciduous broadleaf forests
exhibited the highest WUE among all vegetation types. Wang et al.
(2020) similarly studiedWUE changes on the Qinghai-Tibet Plateau
from 1982 to 2015, concluding that evergreen broadleaf forests had
the highest WUE. These disparities suggest that variations in
climatic conditions and human activities, such as irrigation,
significantly impact WUE.

Notably, human activities play a crucial role in determining
WUE. Appropriate irrigation and fertilization practices can enhance
WUE, potentially counteracting declines driven by climate and land

use changes (Tian et al., 2011). A study in the Yellow River Basin of
China demonstrated that converting grasslands to croplands or
forests improved WUE, aligning with our findings (Sun et al.,
2022). The transitions between forested and grassland areas, or
between grasslands and barren ecosystems, indicate that conversions
from high to low vegetation cover result in relative WUE decreases,
and vice versa. For example, in the Hai River Basin, the expansion of
artificial surfaces was a primary cause of WUE reduction, whereas
the landscaping of bare land contributed to WUE increases. The
dynamics of green spaces are thus a crucial factor affecting WUE
changes (Zhao et al., 2019). However, in Northeast China, the
conversion of farmland to forest ecosystems did not result in
increased WUE, likely due to regional climatic conditions. In the
arid western regions of North China, croplands exhibited higher
WUE than forestlands, highlighting the complexity of influencing
factors (Xiao et al., 2013).

Significant differences in WUE exist across various land cover
types. Bare lands typically exhibit lower WUE due to minimal
vegetation cover and high evaporation rates. Conversely, forests,
characterized by developed root systems and dense foliage, generally
demonstrate higher WUE compared to grasslands, croplands, and
wetlands. In our study, forests exhibited higher WUE values than
croplands and grasslands, consistent with previous research on
WUE variations among different vegetation types (Khalifa et al.,
2018). Variability in WUE values within grid units for different
vegetation types may contribute to discrepancies in WUE values.
These uncertainties can elucidate the differences between our study

FIGURE 5
Contribution of land use change to changes in Carbon Use Efficiency (CUE).
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and others. Overall, forestlands exhibit higherWUE than farmlands,
indicating more effective utilization of available water resources
through access to larger root zone areas, aligning with findings by
(Khalifa et al., 2018).

Furthermore, Tian et al. (2010) demonstrated that WUE varies
with land cover due to differences in carbon uptake and water
consumption. Consequently, afforested and ecologically restored
areas have become significant carbon sinks due to their strong
carbon fixation capacity per unit of water consumed. Following
the implementation of environmental restoration and watershed
programs in the 1980s, WUE across land covers increased
substantially, with trends in WUE over a 33-year period
primarily driven by higher Net Primary Production (NPP).
Previous studies on the impacts of watershed environmental
restoration (Gebremicael et al., 2017; Nyssen et al., 2010)
highlight the importance of ecological restoration and soil and
water conservation measures in enhancing the sustainability of
land and water resources.

Climate factors (temperature, precipitation, vapor pressure
deficit, solar radiation, wind speed, and soil moisture) and
vegetation dynamic factors (NDVI and LAI) influence variations
in WUE by controlling both NPP and ET (Yang Y. H. et al., 2016).
Overall, in China, NDVI has the greatest impact on WUE, as Sun
et al. (Sun et al., 2016) suggest that vegetation adjusts stomatal

conductance and water use efficiency in response to external
environmental conditions during growth, maintaining normal
growth and physiological functions. Notably, LAI and NDVI
show an increasing trend in most regions of China, reflecting an
overall “greening” (Tang et al., 2022). Our study results indicate that
greening plays a dominant role in WUE changes in most regions of
China, rather than climatic factors, consistent with previous
research (Zhu et al., 2015). LAI is consistently positively
correlated with WUE, attributed to its regulation of the ratio of
NPP to transpiration; thus, as LAI increases, plants consume more
water for NPP while soil evaporation decreases due to reduced solar
radiation and precipitation reaching the land surface (Yang Y. T.
et al., 2016).

The implications of our research findings for ecological and
agricultural practices are profound. EnhancingWater Use Efficiency
(WUE) is crucial for sustainable land management, particularly in
the context of increasing water scarcity and climate change.
Understanding the factors that contribute to improved WUE can
guide effective irrigation strategies and vegetation management
practices, thereby promoting ecological restoration and
agricultural productivity. For instance, adopting management
practices that favor specific vegetation types, such as deciduous
broadleaf forests, may enhance the overall effectiveness of water
resource management. Furthermore, strategies aimed at restoring

FIGURE 6
The correlation between Temp, Pre, Srad, Shum, VPD, WS, LAI, NDVI, and WUE across nine land use types.
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andmaintaining green spaces can positively influenceWUE, thereby
improving water resource utilization and ecosystem health. Changes
in WUE directly impact land management practices. An increase in
WUE can enhance the water use efficiency of agricultural systems,

potentially reducing irrigation demands and alleviating water stress
on surrounding ecosystems. This, in turn, may contribute to
increased crop yields while conserving water resources.
Conversely, in regions experiencing a decline in WUE, a

FIGURE 7
Contribution rates of different driving factors to the multi year average WUE. (A), Pre; (B), Temp; (C), Srad; (D), Shum; (E), VPD; (F), WS; (G), LAI;
(H), NDVI.
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reassessment of land use practices may be necessary to mitigate
adverse effects on agricultural output and ecological health.
Understanding the driving factors behind changes in WUE can
inform policymakers and land managers in developing targeted
interventions that align land use with sustainable water resource
management. In summary, the findings of this study underscore the
importance of integrating ecological factors into water resource
management strategies. As water scarcity continues to pose
challenges, enhancing WUE through scientifically-informed land
management practices is vital for maintaining agricultural
productivity and ecological integrity.

4.2 Factors influencing CUE (carbon
use efficiency)

Analyzing changes in vegetation Carbon Use Efficiency (CUE)
across the nine major river basins in China offers critical insights into
the regional carbon cycle dynamics, highlighting the role of vegetation
in regulating ecosystem carbon fluxes. CUE,whichmeasures the ratio of
carbon assimilated for growth and reproduction relative to the total
carbon uptake, is a key indicator of ecosystem productivity and carbon
sequestration potential. Zhao et al. (2021) observed that dense
vegetation tends to exhibit lower CUE than sparse vegetation, and
that forest CUE is generally lower than that of shrubs and herbaceous
plants. These findings are consistent with our study, reaffirming the
complexity of carbon allocation in various vegetation types. However,
themechanisms underpinning these differencesmay vary based on land
use history, management intensity, and species composition, which
future studies should explore further.

In contrast to Zhao et al. (2021) broad analysis of vegetation types,
our study provides new insights into the climate-CUE relationship,

specifically the influence of VPD (Vapor Pressure Deficit) on plant
physiological processes.While Law et al. (2002) reported that vegetation
CUE is positively correlated with precipitation and negatively correlated
with temperature, our results refine this understanding by isolating the
negative effects of temperature and VPD on CUE. VPD affects stomatal
conductance, which in turn regulates CO2 uptake, making it a critical
factor in plant photosynthesis and respiration. Thisfinding supports Liu
et al. (2011), further underscoring VPD’s role in limiting carbon
assimilation under water-stressed conditions, which has far-reaching
implications for future vegetation responses to increasing aridity and
climate extremes.

A particularly novel finding of our study is the observed negative
correlation between CUE and solar radiation (Srad), diverging from the
conventional understanding that increased solar energy typically
enhances biomass accumulation. While higher net solar radiation
provides ample energy for photosynthesis, our results suggest that this
relationship may be nonlinear, with diminishing returns in carbon use
efficiency due to the increased respiration costs associated with high
sunlight intensity. This sensitivity of respiration to solar radiation
warrants deeper investigation, as it challenges previous assumptions
about the direct benefits of solar energy on plant productivity,
indicating that excess radiationmay offset the gains from photosynthesis.

The role of NDVI in regulating CUE offers another important
perspective. Previous studies, such as those by Polley et al. (2010),
demonstrated NDVI’s utility as a proxy for canopy development and
its influence on CO2 fluxes. Our findings align with Liu et al. (2011),
demonstrating a significant positive correlation between NDVI and
CUE, thus highlighting the role of vegetation greenness and canopy
structure in promoting carbon assimilation. This relationship
emphasizes the importance of maintaining healthy, dense
vegetation cover, particularly in regions where CUE is vulnerable
to climatic stressors (Yashiro et al., 2010).

FIGURE 8
Relative contributions of climate factors and vegetation dynamics factors to WUE variations across nine major river basins in China.
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As climate change continues to exert increasing pressure on
ecosystems, enhancing or maintaining Carbon Use Efficiency (CUE)
through targeted land management practices is critical for sustaining
ecosystem functions. Policymakers and landmanagersmust account for
the spatiotemporal dynamics of CUE when designing interventions to
ensure that ecosystems remain productive and resilient under future
climate scenarios. Incorporating CUE dynamics into effective land-use
planning can enhance ecosystem services, such as carbon sequestration
and water resource regulation, and contribute to long-term ecological
sustainability. The findings of this study provide important insights into
the factors influencing CUE, with implications not only for theoretical
ecology but also for practical applications in land management and
agriculture. By elucidating the complex relationships between CUE,
climate, and vegetation dynamics, this study lays the foundation for
more effective and sustainable management of ecosystems and
agricultural landscapes in the face of ongoing environmental changes.

4.3 Carbon and water use efficiency in
changing environments

The changes in Carbon Use Efficiency (CUE) and Water Use
Efficiency (WUE) are closely related to land-use conversion and are
also deeply influenced by climate change and internal climate

variability. Global warming and fluctuations within the climate
system jointly drive the complex changes in the carbon and
water cycles of ecosystems. Therefore, it is necessary to further
explore the role of these climatic factors in the discussion.

The impact of internal climate variability on regional climate
and ecological processes cannot be overlooked. Ca et al. (2024)
found that the pronounced warming on the Mongolian Plateau is
partly attributable to the enhancement of internal climate variability,
rather than solely to global warming. This internal variability not
only alters regional water use efficiency by influencing temperature
and precipitation patterns but may also affect carbon cycling
processes by modulating ecosystem evapotranspiration. In this
study, WUE shows significant correlations with climatic variables
(e.g., temperature, VPD, and precipitation), particularly in regions
with dense vegetation, where internal climate variability may
amplify the effects of these climatic factors on WUE. For
example, WUE in the Yellow River, Songliao River, and Pearl
River Basins is significantly driven by NDVI and VPD, which is
closely related to the regional climate fluctuations caused by internal
climate variability. Therefore, future research should pay more
attention to how climate variability affects carbon and water use
efficiency in specific regions.

Under the context of global warming, changes in climate
patterns profoundly influence carbon and water use efficiency.

FIGURE 9
Correlation of Temp, Pre, Srad, Shum, VPD, WS, LAI, and NDVI with Carbon Use Efficiency (CUE) across nine land use types.
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Chen et al. (2024) pointed out that global warming has strengthened
the impact of the North Pacific Oscillation (NPO) on the
development of ENSO, which means that changes in atmospheric
circulation could significantly alter the distribution of precipitation

and temperature, thus affecting water use and carbon storage in
ecosystems. In this study, the positive correlations between WUE
and temperature and VPD are significant across most land types, but
in areas with sparse vegetation (e.g., bare land and ice/snow),

FIGURE 10
Contribution rates of different driving factors to the average annual Carbon Use Efficiency (CUE). (A), Pre; (B), Temp; (C), Srad; (D), Shum; (E), VPD;
(F), WS; (G), LAI; (H), NDVI.
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negative correlations are observed, possibly reflecting the increasing
water stress in these regions caused by global warming-induced
drought. Moreover, the complex relationship between CUE,
precipitation, and solar radiation suggests that global warming,
by altering the long-term trends of these climatic variables, may
have profound effects on the carbon use efficiency of ecosystems.

Future climate change scenarios (e.g., SSP245, SSP585) will
further affect carbon and water use efficiency, especially under
the dual influence of human activities and climate-driven land-
use changes. The combined effects of global warming and internal
climate variability could exacerbate the differences in carbon and
water cycles across different land types. For example, this study
found that the conversion of forests and shrublands has the greatest
impact onWUE and CUE, highlighting the importance of ecological
restoration and sustainable land management for enhancing carbon
storage capacity and water use efficiency. Future research should
further integrate simulations of climate variability and the impacts
of extreme climate events to reveal the dynamic responses of carbon
and water use efficiency under various climate change scenarios.

5 Conclusion

This study quantitatively analyzed the impact of land use
conversion, climate, and vegetation dynamics on the carbon-
water use efficiency (WUE) across nine major river basins in
China. The primary controlling factors influencing WUE trends
were identified as NDVI (Normalized Difference Vegetation Index)
and VPD (Vapor Pressure Deficit). Contributions of Pre
(precipitation), Temp (temperature), WS (wind speed), and LAI
(Leaf Area Index) exhibited relatively dispersed positive and

negative rates. Positive contributions of VPD were predominantly
observed in the Songliao River basin, Huai River basin, Pearl River
basin, and various southeastern river basins. Conversely, negative
contributions of Srad (surface solar radiation) were mainly
concentrated in inland river patches, the Huai River basin, and
southwestern river basins. The Yellow River basin, Yangtze River
basin, Pearl River basin, and Songliao River basin showed a
dominant influence of NDVI, while Srad predominated in the
southeastern river basins, Huai River basin, and inland river
patches, and Shum (soil moisture) in the southwestern river
basins. For Carbon Use Efficiency (CUE) trends, the main
controlling factors were Srad and Pre. LAI, Shum, Temp, and
VPD exhibited relatively dispersed positive and negative
contribution rates. Negative contributions of NDVI were
primarily observed in the Huai River basin and southeastern
river basins, Pre in the Songliao River basin and Yellow River
basin, and Srad in the Huai River basin, southwestern river
basins, and southeastern river basins, with WS primarily
influencing the Songliao River basin and Yangtze River basin
negatively. The Huai River basin, Songliao River basin, Hai River
basin, southwestern river basins, and inland river patches were
dominated by Pre, while the Yangtze River basin, Yellow River
basin, and Pearl River basin were dominated by Srad. This paper
focused exclusively on analyzing the annual scale variations of WUE
and CUE in Chinese river basins.

The study focused exclusively on analyzing the annual-scale
variations of WUE and CUE in Chinese river basins. However, it
underscores the crucial importance of understanding seasonal and
monthly variations to comprehensively grasp the dynamic processes
within the study area throughout the year. Therefore, future research
should intensify analyses across different temporal scales to provide

FIGURE 11
Relative contributions of various climatic and vegetation dynamic factors to changes in Carbon Use Efficiency (CUE) in nine major river basins
in China.
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a more scientific and comprehensive basis for decision-making in
related fields. The limitations of this study lie in its focus solely on
annual-scale WUE and CUE variations, without delving into the
influences of seasonal and monthly changes on these efficiencies. To
attain a more comprehensive understanding of ecosystem dynamics,
future research should emphasize multi-temporal scale analyses,
particularly concerning changes across different seasons and climate
conditions. Additionally, given the impacts of human activities,
future studies should integrate socio-economic factors to assess
their potential effects on water resource management and
sustainable agricultural practices.
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