The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Environ. Sci.
Sec. Soil Processes
Volume 12 - 2024 |
doi: 10.3389/fenvs.2024.1479712
This article is part of the Research Topic Reduction of Greenhouse Gas Emissions from Soil View all 5 articles
Importance of less fertilizer dosage and soil incorporation to reduce ammonia volatilization in rice paddy
Provisionally accepted- 1 Central Mindanao University, Maramag, Bukidnon, Philippines
- 2 Gyeongsang National University, Jinju, South Gyeongsang, Republic of Korea
In rice paddies, which exhibit higher ammonia (NH₃) emission factors than upland soils, identifying key drivers of NH₃ flux intensity is crucial. Contrary to the commonly held view that NH₃ flux is primarily governed by soil ammonium (NH₄⁺) concentrations, we found no significant relationship between NH₃ flux and NH₄⁺ levels in the soil during rice cultivation. To pinpoint a primary factor influencing NH₃ flux intensity under conventional rice cropping practices, we conducted a two-year field study applying four nitrogen (N) fertilization rates (0, 45, 90, and 180 kg N ha⁻¹) using urea [(NH₂)₂CO], the most common N fertilizer. NH₃ emissions were tracked using the ventilation method. Following N application, NH₃ flux sharply increased but rapidly returned to baseline. Half of the N applied as a basal fertilizer was incorporated within the soil, contributing only 10% of total NH₃ emissions. In contrast, top-dressed applications—20% of total N at the tillering stage and 30% at panicle initiation—accounted for approximately 90% of NH₃ loss. Seasonal NH₃ flux increased quadratically with rising N application rates, correlating strongly with NH₄⁺ concentrations in floodwater rather than soil. Grain yield responded quadratically to N levels, peaking at 120 kg N ha⁻¹ with a 37% increase over control yields. NH₃ flux intensity, defined as seasonal NH₃ flux per unit of grain yield, showed a quadratic response to N fertilization, decreasing with initial fertilizer additions (up to 38 kg N ha⁻¹) but then sharply increased with further N fertilization increase. Hence, reducing NH₄⁺ concentrations in floodwater through moderated N application and deeper fertilizer placement could be essential for minimizing NH₃ volatilization in rice systems.
Keywords: Urea, Ammonia emission intensity, Ammonia emission factor, Fertilizer incorporation, rice paddy
Received: 17 Aug 2024; Accepted: 11 Nov 2024.
Copyright: © 2024 Canatoy, Cho, Galgo, Kim and Kim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Gilwon Kim, Gyeongsang National University, Jinju, 660-701, South Gyeongsang, Republic of Korea
Pil Joo Kim, Gyeongsang National University, Jinju, 660-701, South Gyeongsang, Republic of Korea
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.