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Introduction: Measuring the coupling coordination degree between the
innovation factor allocation system and the green economy development
system, and deeply exploring the changing trends in the coupling
coordination between innovation factors allocation, including their
subsystems, and green economy development, are essential prerequisites for
achieving a high degree of coupling coordination between the two systems.

Methods: This paper, based on panel data from 30 provincial regions in China
from 2013 to 2022, measures the coupling coordination degree between
innovation factor allocation and green economy development, including their
subsystems, and explores the spatial differentiation characteristics of this
coupling coordination across the provinces in China and its three major
regions. First, an evaluation index system for the innovation factor allocation
system and the green economy development system is constructed from both
input and output perspectives. The entropy weighted TOPSIS method and the
coupling coordination degree model are then employed to explore the temporal
characteristics of the coupling coordination between innovation factor allocation
and green economy development. Second, Dagum’s Gini coefficient is used to
reveal the directional distribution of coupling coordination and the sources of
spatial disparities. Third, kernel density estimation and spatial Markov chain
methods are applied to uncover the dynamic evolution of this coupling
coordination.

Results and discussion: The study finds that the overall coupling coordination
degree between innovation factor allocation and green economy development in
China is relatively low, but it exhibits a continuous upward trend. From the
perspective of regional disparities, the coupling level between innovation
factor allocation and green economy development across Chinese provinces
shows an imbalanced spatial distribution, characterized by higher levels in the
east and lower levels in the west, with spatial disparities tending to widen. Inter-
regional differences are the primary source of these spatial disparities, followed
by intra-regional differences. While internal disparities within Eastern China are
narrowing, they are expanding within the Central and Western China. The
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development processes in these regions are often influenced by neighboring
spatial spillover effects. Finally, recommendations are proposed to enhance the
coupling coordination degree between innovation factor allocation and green
economy development in China.

KEYWORDS

green economy, innovation factor allocation, coupling and coordinated development,
temporal and spatial characteristics, weighted TOPSIS method

1 Introduction

As industrial value-added increases, the deterioration of the
natural environment also escalates (Mikhno et al., 2021), further
impacting long-term economic development (Sun et al., 2024). To
achieve sustainable economic development, it is essential to balance
growth within the constraints of ecological carrying capacity and
resource limitations (Fang et al., 2020). An increasing number of
governments in developing countries are now focusing on
developing a green economy, particularly in the context of the
Paris Agreement on climate change. Many countries have also
formulated comprehensive national green growth strategies to
establish a green economy (Lutz et al., 2017). Originally, “green
growth” was a term applied solely to the growth of ecological
industries, but the concept has now been expanded to describe
the growth of entire economies (Jänicke, 2012). From an
environmental protection perspective, developing a green
economy helps guide traditional industrial societies toward an
energy revolution in various sectors, including production,
distribution, and consumption, transforming a nation’s extensive
development model characterized by “high energy consumption,
high pollution, and high emissions.” From an economic perspective,
the “green transition” can effectively promote the process of
“structural adjustment and stable growth” (He et al., 2019). The
trend toward green economic development is a key factor in
promoting economic and social prosperity (Maria et al., 2015).

The concept of a green economy stems from the principles of
sustainable development, with technological innovation serving as a
critical pillar (Söderholm, 2020; Abid et al., 2022). Innovation is a
key driver of green economic development (Zhang et al., 2024).
Technological innovation can promote green economy development
through three key pathways: enhancing technological efficiency,
reducing pollution emissions, and upgrading industrial structures
(Ding et al., 2024). The relationship between innovation factors and
green economy development is complex, involving both direct and
indirect causal mechanisms. Technological innovation plays a
pivotal role in reducing emissions and promoting energy
efficiency, thereby positively influencing green economic growth
(Khan et al., 2022). Human innovation factors, such as education
and R&D personnel, are critical contributors to the adoption of
green technologies and the implementation of sustainable industrial
practices (Gao et al., 2023). Institutional innovation, including
environmental regulations and policy frameworks, has also been
shown to promote green development by providing the necessary
incentives and structural support (Mu et al., 2024). By optimizing
the allocation of human, capital, and institutional innovation
factors, regions can significantly enhance their green economic
development, as demonstrated by empirical studies conducted in

China and other rapidly developing economies. These findings
establish a robust causal link between innovation factor allocation
and green economy development.

Transitioning to a green economy is a pressing challenge for
China as it shifts from rapid economic growth to high-quality
development (Liu et al., 2021; Xu and Ding, 2024). While
traditional technological innovations have spurred rapid progress
in China’s economy, they have also inflicted harm on the shared
environment (Ke et al., 2022; Li et al., 2024). Currently, China has
entered a new era of high-quality development, but issues of
imbalanced and inadequate development persist due to structural
imbalances in the allocation of innovation factors (Fan et al., 2021).

Understanding the current alignment between innovation factor
allocation and green economy development, optimizing the
allocation of innovation factors, and promoting green economic
growth are critical issues that need urgent attention. This raises
important questions: How well are innovation factor allocation and
green economic development aligned? What are the trends in their
development? Are there regional disparities? To address these
questions, this paper measures the coupling coordination degree
between the innovation factor allocation system and the green
economy development system, and conducts an in-depth analysis
of the trends in the coupling coordination of various subsystems of
innovation factors, as well as the overall system with green economic
development. These insights will help the government reassess the
relationship between innovation factor allocation and green
economy development, enabling further optimization of
innovation factor allocation, promoting green economic growth,
and providing a practical basis for guiding policy direction.

2 Literature review

The distinctions in measuring innovation factor allocation in
existing literature primarily lie in the differences in measurement
subjects, perspectives, and methods (Zhao, 2024). The level of
innovation factor allocation is mainly calculated by the
comprehensive method of indicators, such as data envelopment
analysis method, entropy weight method, TOPSIS method and
random forest method (Xu et al., 2022; Liu et al., 2024; Xu et al.,
2024). Chang et al. (2024) constructed a comprehensive index of
innovation factor allocation containing four dimensions of human,
knowledge, technology and institutional innovation, and used the
entropy weight TOPSIS method to calculate the level of innovation
factor allocation according to the objective assignment method. Liu
et al. (2024) measured the efficiency of innovation factor allocation
using the super-efficient SMB-DEA model with non-
desired outputs.
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Existing studies focusing on the measurement of green economy
development have concentrated on two types of literature. The first
type of literature is devoted to the study of factors affecting the level
of green economy development (Kortelainen, 2008; Fernández et al.,
2011; Chi et al., 2014; Chen et al., 2018; Kang et al., 2020). The
second type of literature measures the combined level of green
development systems and economic development systems by
selecting different indicators (Pan et al., 2022; Herman et al.,
2023; Liang et al., 2023; Yang et al., 2023a).

Existing studies focusing on the relationship between innovation
factor allocation and green economy development can be
categorized into three types. The first is the impact of innovation
factor allocation on green economy development. Optimizing the
allocation of innovation factors promotes economic development
(Kogan et al., 2017; Costa Cavalcante, 2024), while mismatch of
innovation factors inhibits economic development (Hsieh and
Klenow, 2009; Yang et al., 2022b; Zhang et al., 2023; Wang et al.,
2023). In this process, the connotation of innovation factors extends
from general labor and capital to technology, data, and institutions
(McGrattan and Prescott, 2009; Innocenti et al., 2020; Jones and
Tonetti, 2020; Peng and Tao, 2022; Yu et al., 2023; Zhao, 2024). The
second is the impact of green economy development on innovation
factor allocation. Green economy development has a significant
impact on the synergistic development of regional green innovation
systems (Ying et al., 2021). Regions with higher levels of economic
development can provide abundant human capital, foreign
investment, R&D investment and other material conditions for
innovation (Filippopoulos and Fotopoulos, 2022; Kijek et al.,
2023). Economic development can further improve factor market
reform and optimize factor allocation (Chang et al., 2024). The third
is the interaction between innovation factor allocation and green
economy development. Existing literature usually measures the
degree of coupled coordination of innovation and economic
development systems, with different approaches to indicator
selection and measurement regions (Chen and Zhang, 2021;
Wang and Tan, 2021; Yang et al., 2022a; Su, 2022; Yin et al., 2022).

According to the findings of existing literature, most studies
suggest that optimizing the allocation of innovation factors can
promote green economic development, while the misallocation of
these factors can hinder it. Additionally, the advancement of the
green economy further contributes to the optimization of
innovation factor allocation. These studies provide the theoretical
foundation for this research. Based on this foundation, the marginal
contributions of this paper are as follows.

(1) This paper constructs evaluation indicator systems for both
the innovation factor allocation system and the green
economy development system, from the perspectives of
input and output, systematically assessing the progress
China has made in innovation factor allocation and green
economy development.

(2) Using the Entropy weight TOPSIS method and the coupling
coordination degree model, this paper measures the coupling
coordination degree between the innovation factor allocation
system and its subsystems and the green economy
development system at both the national level and across
China’s three major regions. The results indicate an overall
upward trend, though significant regional disparities remain,

laying a policy foundation for further optimization of
innovation factor allocation and the promotion of green
economy development in China.

(3) By employing the Dagum Gini coefficient, kernel density
estimation, and spatial Markov chain methods, this paper
analyzes the regional disparities, sources of differences, and
dynamic distribution of the coupling coordination between
innovation factor allocation and green economy
development. These findings contribute to a better
understanding of the diffusion patterns of technological
innovation and green economy development, providing
practical insights for the government in formulating
regionally differentiated policies.

3 Research design

3.1 Indicator system construction

3.1.1 Innovation factor allocation system
Although innovation factor allocation has not been traditionally

conceptualized as a systemic phenomenon, this paper approaches it
from a systemic perspective due to its complex interrelationships
among key sectors such as capital, labor, and R&D, which together
shape innovation performance. Recent studies further support this
systemic interpretation. Innovation factor allocation encompasses
the dynamic interactions between elements such as the institutional
environment and regional economic conditions, which reinforce
each other and operate in an integrated manner. This, in turn,
significantly influences outcomes like industrial structural
transformation and economic development (Zhao, 2024; Chang
et al., 2024). Therefore, by treating innovation factor allocation as
a system, we can gain deeper insights into its role in promoting
coordinated regional development and advancing the
green economy.

Innovation factors are the productive elements that are involved
in the innovation process and contribute positively to innovation
outcomes. These factors can be categorized into traditional
innovation factors and new innovation factors (Salter & Alexy,
2014). Traditional innovation factors are the essential production
elements that provide the foundational support for innovation
activities, including human innovation factors and capital
innovation factors. New innovation factors, on the other hand,
refer to the production elements that facilitate technological
application, technology diffusion, and institutional support for
innovation activities, encompassing technological innovation
factors, data innovation factors, and institutional innovation factors.

Current literature on evaluating the innovation factor allocation
has constructed indicator systems from various dimensions. Zhao
(2024) constructed an indicator system based on four dimensions:
human resources, capital, technology, and information. Chang et al.
(2024) developed an indicator system using the dimensions of
human resources, knowledge, technology, and institutions. Tao
and Xu (2021) and Xu and Zhao (2021) each proposed an
indicator system incorporating five dimensions: human resources,
knowledge, technology, data, and institutions. To ensure the validity
of the indicators, and taking into account the specific economic
characteristics of different regions and the actual development status
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of innovation factors, this paper selects the indicators for the
innovation factor allocation system from an input-based
perspective. (1) Human innovation factors: Indicators are selected
from the perspective of human input according to different
innovation subjects. (2) Capital innovation factors: Indicators are
selected from the perspective of capital investment according to

different innovation agents. (3) Technological innovation factors:
Indicators can be categorized into technology R&D and technology
introduction based on the source of technological innovation.
Indicators were selected from the perspective of technology R&D
and technology introduction. (4) Data innovation factors:
Infrastructure inputs that support the transfer and sharing of

TABLE 1 Indicator system of innovation factor allocation system.

Subsystems Indicators Attribute

Human innovation factors Full-time equivalents of R&D personnel in industrial enterprises Positive

Full-time equivalent of R&D personnel in higher education institutions Positive

Ratio of Education Expenditure to Fiscal Expenditure Positive

Capital innovation factors R&D Expenditures of Industrial Enterprises Positive

R&D Expenditures of Higher Education Institutions Positive

Science and Technology Expenditures as a Percentage of Fiscal Expenditures Positive

Technological innovation factors Expenditures on new product development in high-tech industries Positive

Expenditure on technological transformation of high-tech industries Positive

Number of R&D Projects in Higher Education Institutions Positive

Data innovation factors Number of Internet Web Pages Positive

Internet broadband access ports Positive

Internet broadband access users Positive

Institutional innovation factors Environmental regulation intensity: Industrial pollution control completed investment/Industrial added value Positive

Financial Regulation Intensity: Expenditures on financial regulation/Financial added value Positive

Intellectual Property Protection Index Positive

TABLE 2 Indicator system of Green economy development system.

Subsystems Indicators Attribute

Green development Energy consumption per unit of GDP Negative

Harmless treatment rate of domestic garbage Positive

Carbon dioxide emissions per unit of GDP Negative

Economic development GDP growth rate Positive

Technology market turnover as % of GDP Positive

Patents granted per capita Positive

Rationalization of industrial structure: Thiel Index Negative

Upgrading of Industrial Structure: Tertiary Industry GDP/Secondary Industry GDP Positive

Urban registered unemployment rate Negative

External capital dependence: Foreign direct investment as % of GDP Positive

Dependence on foreign trade: Total import and export as % of GDP Positive

Foreign direct investment as % of GDP Positive

Consumption per capita Positive

Number of beds in medical institutions per capita Positive

Urban-Rural Income Ratio: Disposable income per capita of urban residents/Disposable income per capita of rural residents Negative
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information are selected as indicators. (5) Institutional innovation
factors: The environmental regulation intensity, the financial
regulation intensity and the intellectual property protection
index, which break down institutional barriers and enhance the
efficiency of innovation, are selected as indicators. The specific
indicators are detailed in Table 1.

3.1.2 Green economy development systems
Current literature assessing the level of green economy

development primarily constructs indicator systems from
dimensions such as green development, economy, technology,
society, resources, environment, and health (Wang et al., 2019;
Long et al., 2021; Ma et al., 2023). Drawing on these studies, this
paper establishes a comprehensive indicator system for green
economy development, focusing on two main aspects: green
development and economic development. (1) Green
development: Indicators are selected from the perspective of
environmental protection. (2) Economic development: Indicators
are chosen from economic, social, and health perspectives, including
economic growth, innovation output, industrial structure, social
employment, foreign trade, per capita consumption, income
distribution, and healthcare. The specific details are detailed
in Table 2.

3.2 Data sources

This paper takes the panel data of 30 Chinese provinces (except
Tibet, Hong Kong, Macao and Taiwan) from 2013 to 2022 as the
research sample. The data come from China Statistical Yearbook,
China Science and Technology Statistical Yearbook, China High-
Tech Industry Statistical Yearbook, China Energy Statistical
Yearbook, China Provincial Statistical Yearbook, and Evaluation
Report on the Development Status of Intellectual Property Rights
in China.

3.3 Methods

3.3.1 Entropy weight TOPSIS method
The level of integrated development of the systems is measured

using the entropy weight TOPSIS method. Firstly, the weights of the
indicators within the system were determined using the entropy
weight method. Secondly, the level of integrated development of the
system was represented using the closeness constructed by TOPSIS.
The specific steps are as follows.

The raw data matrix for n provinces with m indicators can be
represented as Equation 1:

X � xij( )n×m i � 1, 2, . . . , n; j � 1, 2, . . . ,m( ) (1)

The first step is standardized conversion, as shown in Equations
2, 3.

Positive indicators:

xij
′ � xij −min xij( )

max xij( ) −min xij( ) (2)

Negative indicators:

xij
′ � max xij( ) − xij

max xij( ) −min xij( ) (3)

The second step is to calculate the information entropy (Ej). In
Equations 4, 5, if Pij � 0, then Pij lnPij � 0.

Ej � − 1
ln n

∑n
i�1
Pij lnPij j � 1, 2, . . . ,m( ) (4)

Pij � xij′∑n
i�1
xij′

j � 1, 2, . . . ,m( ) (5)

The third step is to calculate the weights, as shown in Equation 6.

wj � 1 − Ej∑m
j�1

1 − Ej( ) (6)

The fourth step is to calculate the weighted values of the
indicators, as shown in Equation 7.

zij � wj * xij
′ (7)

The fifth step is to calculate the Euclidean distance between the
evaluation indicator and the maximum value, as shown in
Equation 8.

D+
i �

�����������∑m
j�1

z+j − zij( )2√√
, z+j � max z1j, z2j, . . . , znj{ }

D−
i �

�����������∑m
j�1

zij − z−j( )2√√
, z−j � min z1j, z2j, . . . , znj{ }

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)

The sixth step is to calculate the level of integrated development
for area i, as shown in Equation 9.

Si � D−
i

D+
i + D−

i

(9)

3.3.2 Coupled coordination degree model
According to the coupled coordination degree model

(Norgaard, 1990), the comprehensive development level of the
innovation factor allocation system is set as Sinno, and the
comprehensive development level of the green economy
development system is set as Sdeve. The coupling degree can be
expressed by Equation 10.

TABLE 3 Stages of coupling coordination and discriminative criteria.

D-value Stages

[0, 0.3) Uncoordinated

[0.3, 0.5) Basic Coordination

[0.5, 0.7) Intermediate Coordination

[0.7, 0.9) Advanced Coordination

[0.9, 1] Superior Coordination

Frontiers in Environmental Science frontiersin.org05

Geng et al. 10.3389/fenvs.2024.1475508

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1475508


C �
2

���������
Sinno * Sdeve

√
Sinno + Sdeve

(10)

The degree of coordination can be expressed by Equation 11.

T � αSinno + βSdeve (11)
The innovation factor allocation system and the green economy

development system are equally important, so that α � β � 0.5. The
degree of coupling coordination can be expressed by Equation 12.

D �
�����
C *T

√
(12)

Combining the characteristics of the studied data, the type of
coupling coordination was categorized into five stages based on the
values of the coupling coordination degree. The specific details are
detailed in Table 3.

3.3.3 Dagum Gini coefficient
This paper employs the Dagum Gini coefficient to measure and

decompose the relative regional disparities in the coupling coordination
degree between innovation factor allocation and green economy
development in China. Furthermore, it delves into the overall
differences and origins of the coupling development between these
two systems. This approach effectively addresses the issues of spatial
differentiation origins and the cross-overlap between subsamples, and has
been widely applied in studies investigating regional disparities (Wen
et al., 2023).

According to the decomposition method (Dagum, 1997), the
overall Gini coefficient can be decomposed into intra-regional
differences (Gω), inter-regional differences (Gnb), and hypervariable
density contributions (Gt), as shown in Equation 13.

G � Gω + Gnb + Gt (13)

Equations 14–16 calculate the overall Gini coefficient, the Gini
coefficient for region j, and the Gini coefficient between regions j and
h. In these equations, yji and yhr respectively represent the coupling
coordination degree between innovative factor allocation and green
economy development for a specific province within regions j and h.
�y denotes the average coupling coordination degree across all
provinces, n represents the total number of provinces, and k is
the number of regions. nj and nh respectively indicate the number of
provinces within regions j and h.

G �
∑k
j�1

∑k
h�1

∑nj
i�1

∑nh
r�1

yji − yhr
∣∣∣∣∣∣∣∣∣∣

2n2�y
(14)

Gjj �
∑nj
i�1

∑nj
r�1

yji − yjr
∣∣∣∣∣∣∣∣∣∣

2n2
j �y

(15)

Gjh �
∑nj
i�1

∑nh
r�1

yji − yhr
∣∣∣∣∣∣∣∣∣∣

njnh �yj + �yh( ) (16)

Equations 17–19 calculate the intra-regional differences (Gω),
the inter-regional differences (Gnb), and the hypervariable density
contributions (Gt). In these equations,
pj � nj/n, sj � nj�yj/(n�y), (j � 1, 2, . . . , k).

Gω � ∑k
j�1
Gjjpjsj (17)

Gnb � ∑k
j�2

∑j−1
h�1

Gjh pjsh + phsj( )Djh (18)

Gt � ∑k
j�2

∑j−1
h�1

Gjh pjsh + phsj( ) 1 − Djh( ) (19)

Equations 20–22 calculate the relative impact (Djh) of the coupling
coordination between regions j and h. In these equations, the difference in
coupling coordination degree between regions (djh) represents the
mathematical expectation of the aggregated sample values for regions
j and h that satisfy the condition yji − yhr > 0. The hypervariable first-
order distance (pjh) denotes the mathematical expectation of the
aggregated sample values for regions j and h that satisfy the condition
yhr − yji > 0. Fj(·) and Fh(·) respectively denote the cumulative density
function of coupling coordination for the regions j and h.

Djh �
djh − pjh
djh + pjh

(20)

djh � ∫∞
0

dFj y( )∫y
0

y − x( )dFh x( ) (21)

pjh � ∫∞
0

dFh y( )∫y
0

y − x( )dFj y( ) (22)

3.3.4 Kernel density estimation
Kernel density estimation is a non-parametric method used to fit the

probability density curve of sample data by employing a smooth kernel
function as a weight (Wen et al., 2023). In this paper, kernel density
estimation is used to analyze the overall distribution, polarization trend
and ductility of the coupled and coordinated development of innovation
factor allocation and green economic development.

f (x) is the density function of the coupled coordination degree x
of innovation factor allocation and green economy development:

f x( ) � 1
nh

∑n
i�1
K

x − Xi

h
( ) (23)

In Equation 23, K(·) is the Gaussian kernel function, Xi is the
number of independent identically distributed observations, n is the
number of observations, and h is the bandwidth. The distribution
position reflects the level of coupling coordination between the
allocation of innovation factors and green economic development.
The shape of the distribution indicates the spatial disparities and the
degree of polarization in their coupling coordination. The length of
the tail reflects the extent of extensibility.

3.3.5 Markov chains
The Markov transfer probability matrix reflects the state of each

region and its probability of upward or downward transfer. The
basic approach is to discretize the regional continuum into k state
types and calculate the probability of each state type, thus
approximating the regional evolution as a Markov process.

The probabilities of the various state types for each province in
year t are represented as a 1 × k vector of state probabilities, denoted
Pt � [P1t ,P2t , . . . ,Pkt]. When the state type of coupling coordination
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TABLE 4 Degree of coupling coordination between innovation factor allocation and green economy development in China.

Regions 2013 2018 2022 Mean Rankings
(2013)

Rankings
(2018)

Rankings
(2022)

Annual
growth
rate (%)

Stage Relative
development

level

Beijing 0.776 0.747 0.751 0.764 1 1 1 −0.372 Advanced 0.561

Tianjin 0.514 0.474 0.474 0.501 6 8 11 −0.909 Intermediate 0.336

Hebei 0.358 0.43 0.406 0.383 21 14 18 1.38 Basic 1.131

Liaoning 0.445 0.399 0.385 0.411 8 19 20 −1.602 Basic 0.801

Shanghai 0.608 0.604 0.628 0.612 5 5 5 0.365 Intermediate 0.461

Jiangsu 0.676 0.621 0.638 0.633 3 4 4 −0.64 Intermediate 1.408

Zhejiang 0.626 0.624 0.654 0.622 4 3 3 0.489 Intermediate 0.948

Fujian 0.439 0.49 0.482 0.469 9 7 10 1.045 Basic 0.921

Shandong 0.504 0.499 0.525 0.505 7 6 7 0.465 Intermediate 1.562

Guangdong 0.695 0.721 0.713 0.701 2 2 2 0.287 Advanced 1.702

Hainan 0.39 0.348 0.558 0.393 18 26 6 4.08 Basic 0.279

Eastern
China

0.548 0.541 0.565 0.545 - - - 0.332 Intermediate 0.824

Shanxi 0.344 0.381 0.351 0.354 25 21 24 0.231 Basic 1.318

Jilin 0.4 0.379 0.305 0.371 14 23 30 −2.95 Basic 0.965

Heilongjiang 0.365 0.37 0.348 0.362 20 25 25 −0.515 Basic 0.557

Anhui 0.4 0.455 0.502 0.446 13 9 8 2.54 Basic 0.97

Jiangxi 0.358 0.406 0.421 0.391 22 18 17 1.805 Basic 0.632

Henan 0.4 0.424 0.471 0.422 15 15 12 1.849 Basic 1.193

Hubei 0.418 0.433 0.469 0.439 11 13 13 1.289 Basic 0.909

Hunan 0.391 0.415 0.493 0.43 17 16 9 2.614 Basic 0.868

Central
China

0.384 0.408 0.42 0.402 - - - 0.989 Basic 0.9

Guangxi 0.334 0.344 0.381 0.351 28 27 22 1.453 Basic 0.925

Inner
Mongolia

0.354 0.414 0.339 0.368 23 17 26 −0.488 Basic 1.239

Chongqing 0.375 0.379 0.383 0.375 19 22 21 0.237 Basic 0.527

Sichuan 0.394 0.442 0.428 0.419 16 11 16 0.917 Basic 1.204

Guizhou 0.332 0.329 0.387 0.327 29 29 19 1.742 Basic 0.862

Yunnan 0.336 0.325 0.332 0.317 27 30 27 −0.159 Basic 0.712

Shaanxi 0.408 0.438 0.442 0.429 12 12 15 0.886 Basic 0.735

Gansu 0.32 0.394 0.375 0.336 31 20 23 1.757 Basic 0.705

Qinghai 0.343 0.299 0.167 0.315 26 31 31 −7.688 Basic 0.905

Ningxia 0.345 0.378 0.317 0.373 24 24 28 −0.951 Basic 1.471

Xinjiang 0.324 0.334 0.309 0.328 30 28 29 −0.507 Basic 0.696

Western
China

0.351 0.371 0.351 0.358 - - - −0.02 Basic 0.884

Overall China 0.432 0.443 0.448 0.438 10 10 14 0.388 Basic 0.853
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degree transitions, it can be represented by the k × k Markov transfer
probability matrix M. The coupling coordination degree levels are
categorized into four state types—basic, intermediate, advanced, and
superior—using the quartile method, with the values from smallest to
largest denoted as k � 1, 2, 3, 4, respectively. In Equation 24, the
element Pij represents the probability that a region is in state i in
year t and transitions to state j in year t+1.

M �
P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (24)

Considering the spatial spillover effect in the neighboring
regions, the traditional Markov transfer probability matrix can be
decomposed into k conditional transition probability matrices, each
of size k × k, denoted as Equation 25.

N �

P11 1| P12 1| P13 1| P14 1|
P21 1| P22 1| P23 1| P24 1|
P31 1| P32 1| P33 1| P34 1|
P41 1|
P11 2|
..
.

P41 3|
P11 4|
P21 4|
P31 4|
P41 4|

P42 1|
P12 2|
..
.

P42 3|
P12 4|
P22 4|
P32 4|
P42 4|

P43 1|
P13 2|
..
.

P43 3|
P13 4|
P23 4|
P33 4|
P43 4|

P44 1|
P14 2|
..
.

P44 3|
P14 4|
P24 4|
P34 4|
P44 4|

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

In this matrix, Pij|k represents the probability that a province with an
initial state type i will transition to state type j in the following year, given
that the neighboring regions are of type k. The spatial relationship is
defined using the adjacency principle, where neighboring regions are
assigned a value of 1, and non-neighboring regions are assigned a
value of 0.

After prolonged transitions, the coupling coordination degree of
each province will eventually reach a stable state, remaining unaffected
by any temporal changes. Equation 26 calculates the steady state, which
is calculated from the initial state, Markov transfer probability matrix.

lim
k→∞

π k + 1( ) � lim
k→∞

π k( )M (26)

In Equation 26, π is the steady state matrix of the Markov
process with the conditions shown in Equation 27.

∑n
i�1
πi � 1, 0≤π ≤ 1 (27)

4 Results and analysis

4.1 Temporal characteristics of the coupling
coordination between innovation factor
allocation and green economy development

4.1.1 Degree of coupling coordination between
innovation factor allocation and green economy
development

The coupling coordination degree of innovation factor
allocation and green economy development is shown in Table 4.

Overall data indicate that the mean coupling coordination degree of
China’s innovation factor allocation and green economy
development is 0.438, which is in the stage of basic coordinated
development, indicating that the coupling coordinated development
of the two systems still has a large room for improvement. The
growth rate data indicate that the average annual growth rate of the
coupling coordination degree between innovation factor allocation
and green economic development in China is 0.389%. This degree
increased from 0.432 in 2013 to 0.448 in 2022, indicating that the
mutual promotion between the two systems has achieved some
positive results, with potential for further improvement.

The relative development level of the innovation factor
allocation system and the green economy development system is
the ratio of these two systems, which is greater than one indicating
that the innovation factor allocation system is superior to the green
economy development system, otherwise the opposite is true. The
relative development level data show that the overall mean is 0.853,
while the means for the eastern, central and western regions are all
less than 1. Therefore, the green economic development system in
China is currently outperforming the innovation factor allocation
system. In the short term, improving the development level of the
innovation factor allocation system would be beneficial for
enhancing the coupling coordination between the two systems. In
terms of specific provinces, the relative development level in Hebei,
Jiangsu, Shandong, Guangdong, Shanxi, Henan, Inner Mongolia,
Sichuan, and Ningxia exceeds 1, indicating that the development of
innovation factor allocation in these provinces is
relatively advanced.

In order to understand the inter-regional differences, the
coupling coordination degree data of innovation factor allocation
and green economy development in the eastern, central and western
parts of the country are compared. The mean values indicate that the
Eastern China has the highest coupling coordination degree at 0.545,
followed by the Central China at 0.402, and the Western China at
0.358, displaying a clear pattern of “higher in the East, lower in the
West.” This uneven spatial distribution aligns with the broader
trends observed in China’s economic development. The annual
growth rate data reveal that the Central China has the highest
growth rate at 0.989%, followed by the Eastern China at 0.332%, with
the Western China showing the lowest rate at −0.020%. This
indicates a narrowing gap between the Central and Eastern
China, while the disparity between the Western region and the
Central and Eastern regions is widening. The uneven spatial
distribution characteristics of the coupling coordination degree
between China’s innovation factor allocation system and green
economy development are further expanding.

At the provincial level, the mean coupling coordination degree is
classified as advanced for Beijing (0.764) and Guangdong (0.701).
The provinces classified as intermediate include Tianjin (0.501),
Shanghai (0.612), Jiangsu (0.633), Zhejiang (0.622), and Shandong
(0.505), all of which are located in the Eastern China. This indicates
that the overall coupling coordination degree in the Eastern region is
higher than that of the Central and Western regions. The ranking
data show that the rankings for most provinces remained relatively
stable, with significant changes observed only in Liaoning, Jilin, and
Hainan. Liaoning dropped from 8th place in 2013 to 20th in 2022,
Jilin fell from 14th place in 2013 to 30th in 2022, while Hainan rose
from 18th place in 2013 to 6th in 2022. Combined with the analysis
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of the annual growth rates, it can be inferred that the coupling
coordination degree in these three provinces underwent
considerable changes during the sample period.

4.1.2 Degree of coupling coordination between the
innovation factor allocation subsystem and green
economy development
4.1.2.1 Overall situation

Table 5 demonstrates that the coupling coordination degree
between the various subsystems of China’s innovation factors and
green economic development exhibited an upward trend during the
sample period. The mutual promotion and coupling coordination
between the various innovation factor inputs and green economic
development in China show a positive and expectedly favorable
trend. The coupling coordination degrees between the various
innovation subsystems and green economic development all fall
within the 0.3–0.5 range, indicating that they are in the basic stage of
coordinated development, with significant room for improvement.
The mean values indicate that the highest coupling coordination
degree is observed in the Institution-Economy system (0.496),
followed by the Human-Economy system (0.488), with the
Technology-Economy system having the lowest degree (0.413).
This suggests that during the sample period, the Chinese
government effectively promoted the coupling coordination
between innovation factor allocation and green economic
development through the establishment of appropriate policies.
However, the coupling coordination between technological
innovation factors and green economy development among
various innovation entities still requires improvement.

4.1.2.2 Inter-regional comparisons
As shown in Table 6, the coupling coordination degrees between

the innovation subsystems and green economic development in the
Eastern region are all within the 0.5–0.7 range, indicating that their
coupling coordination is at an intermediate stage. In contrast, the
Central and Western regions have coupling coordination degrees
within the 0.3–0.5 range, placing them at a basic stage of
coordination. This indicates that, during the sample period, the

coupling coordination between innovation subsystems and green
economic development in the Eastern region was significantly
higher than in the Central and Western regions, which aligns
with the regional characteristics of China’s economic development.

In Eastern China, the highest coupling coordination degree is
found in the Capital-Economy system (0.622), indicating a strong
mutual promotion between capital innovation factor inputs and
green economic development. The Technology-Economy system
has the lowest coupling coordination degree (0.539), suggesting that
enhancing the allocation of technological innovation factors is a
crucial pathway for promoting coordinated development.

For the Central andWestern regions, a common characteristic is
that the highest coupling coordination degree is found in the
Institution-Economy system (0.459 and 0.448, respectively), while
the lowest is in the Technology-Economy system (0.370 and 0.291,
respectively). This indicates that in economically underdeveloped
regions, the allocation level of institutional innovation factors is
relatively high, making it easier to promote coupling coordination.
Similarly to the Eastern region, enhancing the allocation of
technological innovation factors is also a critical pathway for
promoting coupling coordination development.

4.2 Spatial differences in the coupling
coordination of innovation factor allocation
and green economy development

Table 7 presents the overall Gini coefficient (G), intra-regional
Gini coefficient (Gω), inter-regional Gini coefficient (Gnb), and
contribution rates (Gz) for the coupling coordination degree
between innovation factor allocation and green economy
development across China and within its three major regions
from 2013 to 2022.

Figure 1A illustrates the trend in the Gini coefficient of the
coupling coordination degree between innovation factor allocation
and green economy development for China overall and three major
regions during the sample period. As shown in Figure 1A, the Gini
coefficient for the overall coupling coordination degree in China

TABLE 5 Degree of coupling and coordination between China’s innovation factor subsystem and green economy development.

Year Human-economy Capital-economy Technology-economy Data-economy Institution-economy

2013 0.476 0.468 0.409 0.442 0.495

2014 0.486 0.462 0.410 0.432 0.441

2015 0.473 0.462 0.402 0.413 0.500

2016 0.482 0.467 0.409 0.421 0.458

2017 0.493 0.481 0.422 0.428 0.513

2018 0.490 0.499 0.410 0.434 0.516

2019 0.489 0.499 0.407 0.438 0.499

2020 0.485 0.500 0.405 0.440 0.531

2021 0.505 0.508 0.424 0.447 0.523

2022 0.500 0.502 0.428 0.442 0.490

Mean 0.488 0.485 0.413 0.434 0.496
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TABLE 6 Degree of coupling and coordination between innovation factor subsystems and green economy development in China’s regions.

Year Human-economy Capital-economy Technology-economy Data-economy Institution-economy

East Central West East Central West East Central West East Central West East Central West

2013 0.606 0.410 0.352 0.610 0.392 0.325 0.538 0.330 0.286 0.580 0.357 0.310 0.538 0.462 0.448

2014 0.618 0.419 0.363 0.606 0.388 0.314 0.537 0.329 0.296 0.568 0.351 0.303 0.464 0.382 0.425

2015 0.605 0.405 0.350 0.604 0.389 0.321 0.524 0.332 0.288 0.533 0.349 0.301 0.548 0.431 0.469

2016 0.608 0.424 0.361 0.606 0.407 0.319 0.539 0.335 0.281 0.542 0.364 0.305 0.497 0.418 0.421

2017 0.615 0.437 0.380 0.616 0.427 0.336 0.550 0.344 0.305 0.547 0.371 0.315 0.570 0.477 0.462

2018 0.612 0.439 0.375 0.631 0.455 0.356 0.538 0.335 0.286 0.554 0.379 0.317 0.568 0.477 0.470

2019 0.614 0.440 0.365 0.631 0.465 0.348 0.532 0.340 0.286 0.559 0.386 0.317 0.561 0.470 0.438

2020 0.614 0.439 0.353 0.638 0.468 0.336 0.530 0.347 0.277 0.561 0.394 0.316 0.600 0.500 0.459

2021 0.632 0.462 0.377 0.644 0.481 0.344 0.549 0.370 0.291 0.566 0.402 0.325 0.563 0.519 0.458

2022 0.628 0.453 0.371 0.636 0.474 0.342 0.554 0.375 0.297 0.562 0.397 0.319 0.556 0.454 0.426

Mean 0.615 0.433 0.365 0.622 0.434 0.334 0.539 0.344 0.289 0.557 0.375 0.313 0.546 0.459 0.448
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increased from 0.1397 to 0.1594 during the sample period, with an
average annual growth rate of 1.48%. This result indicates that the
spatial disparity in China’s overall coupling coordination degree is
widening. Within the three regions, the Eastern region exhibits the
highest internal disparity, with an average Gini coefficient of 0.1310,
while the Central and Western regions show lower internal
disparities, with average Gini coefficients of 0.0553 and 0.0741,
respectively. In terms of trends, the Gini coefficient for the coupling
coordination degree in the Eastern region decreased from 0.1354 to
0.1310 during the sample period, whereas it increased from 0.0343 to
0.0553 in the Central region and from 0.0423 to 0.0741 in the
Western region. This suggests that internal disparities in the Eastern
region are gradually narrowing, while those in the Central and
Western regions are gradually expanding.

Figure 1B depicts the trend in the inter-regional Gini coefficient
for the coupling coordination degree between innovation factor
allocation and green economy development in China during the
sample period. As shown in Figure 1B, the spatial disparity between
the Eastern and Western regions is the largest, with an average Gini
coefficient of 0.2142, followed by the disparity between the Eastern
and Central regions with an average Gini coefficient of 0.1677. The
smallest spatial disparity is observed between the Central and
Western regions, with an average Gini coefficient of 0.0855. In
terms of trends, the spatial disparity between the Eastern and
Central regions is gradually narrowing, with an average annual
growth rate of −1.03% during the sample period. In contrast, the
spatial disparities between the Eastern and Western regions and
between the Central and Western regions are gradually widening,
with average annual growth rates of 0.76% and 9.35%, respectively.

Figure 1C illustrates the trend in the contribution rates of
various components to the overall Gini coefficient during the
sample period. As shown in Figure 1C, the inter-regional
disparities contribute the most to the overall disparities, with an
average contribution rate of 69.41%, displaying a trend of initial
decline followed by a subsequent rise. The second most significant
contributor is the intra-regional disparities, with an average

contribution rate of 23.53%. Lastly, the contribution rate of the
hypervariable density is the smallest, averaging 7.05%. These results
indicate that the primary source of overall spatial disparities in
China is the inter-regional differences, followed by intra-regional
disparities. The relatively minor contribution of hypervariable
density, which reflects the overlapping contributions of different
regions to the overall disparity, suggests that there is minimal cross-
overlap in the coupling and coordination degrees among provinces
within China’s three major regions. This indicates that the regional
disparities in the coupling coordination degree are primarily driven
by inter-regional disparities. The eastern regions benefit from
advanced infrastructure and robust policy support, resulting in
higher efficiency in innovation factor allocation. In contrast, the
western regions, which are more dependent on natural resources
and face weaker policy support, exhibit lower levels of coupling
coordination. Furthermore, disparities in economic structures,
resource distribution, and policy implementation exacerbate the
east-west divide.

4.3 Dynamic evolution of the coupling
coordination of innovation factor allocation
and green economy development

4.3.1 Kernel density analysis of the coupling
coordination degree of innovation factor
allocation and green economy development

A kernel density estimation plot was created to clarify the overall
distribution and dynamic trends of the coupling coordination
between innovation factor allocation and green economy
development across China and its three major regions. This is
illustrated in Figure 2.

Figure 2A illustrates the dynamic distribution of the coupling
coordination degree between innovation factor allocation and green
economy development across China. The center of the peak of the
curve is distributed to the left, indicating that a significant

TABLE 7 Gini coefficient and contribution.

Year G Gω Gnb Gz (%)

East Central West East-
central

East-
west

Central-
west

Intra-
regional

Inter-
regional

Hypervariable
density

2013 0.1397 0.1354 0.0343 0.0423 0.1826 0.2211 0.0568 21.38 75.69 2.93

2014 0.1423 0.1284 0.0527 0.0841 0.1854 0.2016 0.0756 24.17 65.84 9.99

2015 0.1457 0.1495 0.0511 0.0741 0.1908 0.2074 0.0668 25.13 63.81 11.06

2016 0.1438 0.1373 0.0544 0.0665 0.1784 0.2153 0.0745 23.52 68.17 8.30

2017 0.1332 0.1196 0.0481 0.0574 0.1649 0.2062 0.0695 22.11 72.96 4.94

2018 0.1306 0.1305 0.0382 0.0701 0.1562 0.1959 0.0691 24.36 68.55 7.09

2019 0.1375 0.1297 0.0548 0.0676 0.1507 0.2089 0.0914 23.63 70.28 6.09

2020 0.1559 0.1384 0.0655 0.0992 0.1610 0.2320 0.1159 24.46 67.60 7.94

2021 0.1406 0.1239 0.0607 0.0754 0.1404 0.2167 0.1089 23.27 71.56 5.17

2022 0.1594 0.1176 0.0932 0.1040 0.1664 0.2367 0.1270 23.29 69.67 7.04

Mean 0.1429 0.1310 0.0553 0.0741 0.1677 0.2142 0.0855 23.53 69.41 7.05
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proportion of regions have a relatively low coupling coordination
degree. The slow rightward shift of the main peak suggests a gradual,
though modest, improvement in the coupling coordination degree
over time. The decreasing peak height and increasing width, coupled
with a tailing effect, indicate growing disparities among provinces.
The presence of secondary peaks further suggests the occurrence of
polarization.

Figure 2B illustrates the dynamic distribution of the coupling
coordination degree between innovation factor allocation and green
economy development in Eastern China. The peak of the curve is
centrally located, with no significant tailing effect, and shows a
tendency to shift rightward, indicating that a substantial number of
provinces have a high level of coupling coordination. The increase in
the height of the main peak suggests a reduction in internal
disparities. Specifically, provinces with a higher average coupling
coordination degree, such as Beijing and Jiangsu, experienced
annual growth rates of −0.37% and −0.64%, respectively. In
contrast, provinces with a lower average coupling coordination
degree, such as Hebei and Hainan, recorded annual growth rates
of 1.38% and 4.08%, respectively. This trend has contributed to the

narrowing of disparities in coupling coordination degrees among
provinces in Eastern China.

Figure 2C illustrates the dynamic distribution of the coupling
coordination degree between innovation factor allocation and green
economy development in Central China. The peak of the curve is
skewed to the left, indicating that a large proportion of regions have
relatively low coupling coordination degrees. The main peak shows a
tendency to shift rightward, suggesting an overall increase in the
coupling coordination degree. Temporary secondary peaks appeared
in 2013 and 2019, indicating the presence of polarization, though this
was not sustained. The height of the peak underwent a “decline-rise-
decline” process, and the width of the main peak consistently
broadened, indicating a continuous increase in internal disparities.
Specifically, provinces with a higher average coupling coordination
degree, such as Anhui and Hubei, exhibited annual growth rates of
2.54% and 1.29%, respectively. In contrast, Jilin and Heilongjiang, with
lower average coupling coordination degrees, experienced annual
growth rates of −2.95% and −0.52%, respectively. Consequently, the
disparities in coupling coordination degrees among provinces in
Central China have been widening over time.

FIGURE 1
Gini coefficient change and contribution. (A)Overall and intra-regional disparities, (B) Inter-regional disparities, (C) Contribution rates of sources of
spatial disparities.
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Figure 2D illustrates the dynamic distribution of the coupling
coordination degree between innovation factor allocation and green
economy development in Western China. The peak of the curve is
skewed to the left, indicating that a significant proportion of regions
have relatively low coupling coordination degrees. The main peak
continuously shifts to the right, suggesting sustained growth in the
coupling coordination degree. The presence of secondary peaks
indicates the occurrence of polarization. The main peak’s height
decreases while its width expands, and a tailing effect is observed, all
of which suggest increasing disparities among the provinces in the
region. Specifically, provinces with higher average coupling
coordination degrees, such as Sichuan and Shaanxi, have annual
growth rates of 0.92% and 0.89%, respectively. In contrast, provinces
with lower average coupling coordination degrees, such as Qinghai
and Xinjiang, experience annual growth rates of −7.69%
and −0.51%, respectively. As a result, the disparities in coupling
coordination degrees among the provinces in Western China have
been widening over time.

In summary, the kernel density estimation curves for overall
China and its three major regions all exhibit a rightward shift in the
main peak, indicating a continuous increase in the coupling
coordination degree between innovation factor allocation and
green economy development in these regions. The changes in the
main peak’s position are consistent with the described

characteristics of coupling coordination between innovation
factor allocation and green economic development in each
region. The narrowing internal disparities in Eastern China,
combined with the widening disparities in Central and Western
China, contribute to an overall trend of increasing disparities among
provinces across China.

This suggests that the pathways for coupled and coordinated
innovation factor allocation and green economy development in
China exhibit significant regional heterogeneity, underscoring the
need to avoid one-size-fits-all policies (Wen et al., 2023). Stronger
local governance and more efficient policy implementation have
enabled the eastern regions to achieve innovation and green
development initiatives more effectively. In contrast, the western
regions’ reliance on resource-intensive industries hinders the
effective allocation of innovation factors toward greener
initiatives, further exacerbating the gap between these regions
and the more developed eastern areas. Moreover, Eastern China
benefits from a higher concentration of human capital, financial
investment, and technological resources—key drivers of innovation
and green economy development. Provinces in the East also enjoy
greater access to venture capital, highly skilled labor, and advanced
technological infrastructure, all of which contribute to the more
efficient allocation of innovation factors. Conversely, Central and
Western China face significant challenges in attracting these critical

FIGURE 2
Kernel density estimation. (A) Overall China, (B) Eastern China, (C) Central China, (D) Western China.
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resources, primarily due to relatively underdeveloped infrastructure
and lower levels of economic development. The uneven distribution
of resources across regions restricts the capacity of Central and
Western provinces to engage in high-value innovation activities,
further widening the gap in their coupling coordination levels.
Addressing these disparities will require region-specific policies
that strengthen local governance, diversify economic structures,
and promote the equitable distribution of innovation resources.

4.3.2 Markov chain analysis of the coupling and
coordination between innovation factor allocation
and green economy development
4.3.2.1 Traditional Markov chain analysis

The traditional Markov transition probability matrix, along with
the spatial Markov transition probability matrix that incorporates
spatial spillover effects, has been constructed to facilitate an in-depth
analysis of the spatial dynamic evolution characteristics of China’s
coupling coordination degree. In this paper, an upward transition is
defined as the movement of the coupling coordination degree from a
lower to a higher value, while a downward transition is defined as
the opposite.

Table 8 presents the traditional Markov transition probability
matrix, from which it can be observed that the probabilities along
the diagonal are higher than those off the diagonal. This indicates
that the states of the coupling coordination degree are relatively
stable, with a greater likelihood of maintaining the current state. A
clear “club convergence” phenomenon is evident among the
coupling coordination degrees of the provinces, with the
advanced and superior state types showing the highest
probabilities of maintaining their respective states from year t to
year t+1, at 92.42% and 71.64%, respectively. The higher the
development level of a province, the lower the probability of
downward transition in the following year. For example, the
intermediate state has a 24% probability of downward transition,
the advanced state has a 17.91% probability, and the superior state
has only a 7.5% probability of downward transition. This suggests
that the coupling coordination degree across China’s provinces
generally exhibits a gradient upward development trend.

4.3.2.2 Spatial Markov chain analysis
The state type of neighboring regions may influence the

transition path of a region’s state type in the following year. The
“0–1″ weight matrix is employed as the spatial weight matrix for the
Markov chain to calculate the transition probabilities. This approach
is used to examine the steady state distribution of China’s coupling
coordination degree levels from 2013 to 2022.

Table 9 presents the spatial Markov transition probability
matrix, highlighting the significant role that spatial factors play

in the transition of state types. When spatial spillover effects are
incorporated, the transition probabilities of provinces’ state types in
the following year show notable changes under different
neighborhood contexts. The state types of the coupling
coordination degree exhibit a pronounced spatial clustering
effect. For instance, when the neighborhood type is basic, the
number of observations maintaining the basic state from year t
to year t+1 is significantly higher than for other states. Similarly,
when the neighborhood type is superior, the observations
maintaining the superior state across consecutive years are also
markedly higher. The spatial Markov transition probability matrix
further demonstrates a clear “club convergence” phenomenon in the
spatial dimension. Influenced by the neighborhood’s state, the
probability of an upward transition is generally higher than that
of a downward transition. Moreover, the higher the neighborhood’s
state type, the greater the probability of an upward transition in the
region’s own state type. This indicates a trend of continuous
improvement in the coupling coordination degree between
innovation factor allocation and green economy development
in China.

4.3.2.3 Steady state forecasting
The steady state distribution of regional state type can be

effectively forecasted by calculating the limiting distribution of
the Markov transition probability matrix. Table 10 presents the
forecasted long-term evolutionary trends of the coupling
coordination degree in China.

Under the assumption of no spatial spillover effects, a
comparison between the steady-state distribution derived from
the traditional Markov transition probability matrix and the
initial state reveals a decrease in the number of provinces
classified as having basic, intermediate, and advanced state types,
while the number of provinces classified as having the superior state
type shows a significant increase. This indicates that, over the long
term, the state types of China’s coupling coordination degree tend to
gradually transition from lower to higher levels, exhibiting an
evolutionary trend of sequential progression, with an overall
improvement in the coupling coordination level.

Under the consideration of spatial spillover effects, the
evolutionary trends of the coupling coordination degree types
undergo significant changes. Over the long term, regions adjacent
to those basic state type tend to exhibit a higher occurrence of basic
state typology (45.45%) and intermediate state type (31.82%), with
no instances of the superior state type. Conversely, when
neighboring regions have higher levels of coupling coordination,
the probability of transitioning to advanced and superior state types
is significantly greater than in other scenarios.

Therefore, based on the current development trends, the
evolution of China’s coupling coordination degree between
innovation factor allocation and green economy development
appears to be optimistic. The coupling coordination degree
gradually improves over time, exhibiting a trend of high-level
regional clustering. The number of provinces in each state type
increases progressively from low to high levels. The influence of
neighboring state types shows a strong degree of synergy. Proximity
to lower-level provinces tends to reduce the extent of improvement
in the coupling coordination degree, and may even result in
downward transitions. In contrast, proximity to higher-level

TABLE 8 Traditional Markov transfer probability matrix.

t\t+1 n Basic Intermediate Advanced Superior

Basic 68 0.691176 0.235294 0.073529 0

Intermediate 69 0.246377 0.565217 0.188406 0

Advanced 67 0.044776 0.134328 0.716418 0.104478

Superior 66 0 0 0.075758 0.924242
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provinces fosters the clustering of coupling coordination degrees
towards advanced and superior state type, leading to an overall
upward trend.

5 Conclusions and discussion

5.1 Conclusions

In this paper, based on data from 30 Chinese provinces from
2013 to 2022, an indicator system was developed for China’s
innovation factor allocation system and green economy
development system. The entropy weight TOPSIS method was
applied to measure the comprehensive development level and
coupling coordination degree of the two systems. Additionally,
Dagum Gini coefficient, kernel density estimation, and spatial
Markov chain methods were utilized to uncover the
spatiotemporal characteristics and dynamic evolution of the

coupling coordination between the innovation factor allocation
system and green economy development system. The findings are
mainly as follows:

(1) The overall coupling coordination degree between innovation
factor allocation and green economy development in China
remains relatively low but shows a continuous upward trend.
This is consistent with studies that highlight China’s struggle
to balance innovation factor allocation with sustainable
growth. For instance, Dai et al. (2022) pointed out that
while R&D investment is increasing, there is still an
imbalance in how these investments are distributed across
regions, particularly favoring Eastern China over Central and
Western regions. Our study adds to this by showing that
although human innovation factors and institutional
innovation factors exhibit relatively higher coordination
with green economy development at the national level, the
overall coupling remains modest.

TABLE 9 Spatial Markov transfer probability matrix.

Neighborhood type t\t+1 n Basic Intermediate Advanced Superior

Basic Basic 10 0.8 0.1 0.1 0

Intermediate 7 0.2857 0.5714 0.1429 0

Advanced 5 0 0.4 0.6 0

Superior 0 0 0 0 0

Intermediate Basic 41 0.7561 0.1951 0.0488 0

Intermediate 30 0.2667 0.6333 0.1 0

Advanced 22 0.0909 0.1363 0.7727 0

Superior 4 0 0 0 1

Advanced Basic 13 0.5385 0.3846 0.07692 0

Intermediate 23 0.1739 0.5652 0.2609 0

Advanced 24 0 0.1667 0.7083 0.125

Superior 21 0 0 0.0952 0.9048

Superior Basic 1 0 1 0 0

Intermediate 5 0.4 0.2 0.4 0

Advanced 14 0 0 0.7857 0.2143

Superior 41 0 0 0.0732 0.9269

TABLE 10 Predicted evolutionary trend of coupled coordination degree state types in China.

Type Basic Intermediate Advanced Superior

No spatial spillover effects Initial state 0.2667 0.3667 0.1333 0.2333

Steady state 0.1837 0.1818 0.2667 0.3678

Spatial spillover effects Steady state Basic 0.4545 0.3182 0.2273 0

Intermediate 0.4409 0.3226 0.2366 0

Advanced 0.0698 0.1852 0.3221 0.4228

Superior 0 0 0.2545 0.7455
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(2) Regional disparities in the coupling coordination degree
exhibit an imbalanced spatial distribution, with higher
levels in Eastern China and lower levels in Western China.
This aligns with the findings of Shang et al. (2023), who
identified that green innovation efficiency is clustered in
Eastern regions, while Western regions lag behind due to
insufficient economic and policy support for innovation. Our
study builds upon this by demonstrating that the widening
regional disparity, as revealed by the Dagum Gini coefficient,
is driven primarily by the growing gap between Eastern and
Western China. This underscores the need for region-specific
policies to address these imbalances.

(3) Kernel density estimation indicates a long-term growth trend
in the coupling coordination degree, but also evidence of
polarization. Similar findings of regional polarization in
innovation capacities have been noted by Yang et al.
(2023b), who highlighted that Eastern regions are
advancing rapidly while Central and Western regions
struggle to keep up. Our research contributes new insights
by showing that internal disparities within Eastern China are
narrowing, while those within Central andWestern China are
expanding, indicating a need for targeted interventions in
these regions.

(4) The spatial Markov chain analysis reveals a clear “club
convergence” phenomenon in the coupling coordination
degree across provinces. This finding aligns with the work
of Jimenez-Moro et al. (2023), who observed similar
convergence patterns in regional innovation
performance across China. However, our study adds to
the literature by showing that provinces adjacent to those
with higher coupling coordination degrees are more likely
to experience upward transitions due to spatial spillover
effects, emphasizing the importance of fostering regional
collaborations to enhance innovation and green
development.

5.2 Discussion

Based on the above findings, the following recommendations are
proposed to assist local governments in adjusting resource allocation
policies and promoting green economic development.

(1) Promote the synchronized advancement of innovation
factor allocation and green economy development. The
government should prioritize the development of
institutional and human innovation factors as key
subsystems to foster green economy growth. To
implement this, targeted policies must be introduced
that support education and training in green
technologies, especially in regions with a strong
industrial base. For instance, setting up specialized
training centers focused on green skills development can
bridge the gap between workforce capabilities and the
needs of the green economy. Moreover, the government
should offer tax incentives and subsidies to companies
investing in green R&D and the adoption of clean

technologies, ensuring that institutional frameworks are
conducive to innovation in this field.

(2) Prioritize the coordinated development of innovation
factor allocation and green economy growth across
regions. In Western China, leveraging natural
resources while aligning with the region’s stage of
green development requires the establishment of
region-specific innovation zones. These zones should
focus on clean energy technologies, such as solar and
wind energy, given the region’s abundant resources.
Additionally, the government could promote cross-
regional collaboration through the formation of
innovation alliances between Western provinces and
more developed Eastern regions. This can be facilitated
by improving infrastructure to enhance the mobility of
human capital and technology. Feasibility is supported by
the existing Belt and Road Initiative, which has already
laid some groundwork for infrastructural development in
these regions.

(3) Leverage the exemplary role of the high-level regions in
Eastern China. The Eastern regions, particularly
provinces like Jiangsu and Zhejiang, have developed
successful models of coupling innovation with green
economy growth. To implement this suggestion,
governments in these regions should establish
“innovation-driven green development pilot zones.”
These zones could serve as experimental areas for
testing new policies and technologies related to green
economy development, which could then be scaled up
in other regions. Additionally, inter-regional workshops
and knowledge-sharing platforms could be created,
enabling Central and Western regions to adopt best
practices from Eastern China. This approach is feasible
given the existing provincial-level innovation platforms
that have proven effective in fostering
technology transfers.

(4) Focus on the neighboring effects in the coupling
coordination between innovation factor allocation and
green economy development. Regions with low levels of
coupling coordination should actively create
partnerships with neighboring, highly coordinated
regions. A concrete implementation path for this is to
establish “green innovation hubs” at the borders of highly
coordinated and less coordinated regions. These hubs
would act as collaboration centers, where companies and
local governments from both sides could work together on
joint innovation projects. For regions that neighbor other
low-coordination areas, regional governments should
introduce joint development agreements that prevent
industrial homogenization by promoting complementary
industries. This can be achieved by conducting regular
joint market assessments to identify areas where regional
economies can diversify and avoid competition. The
feasibility of this approach is enhanced by leveraging
regional development frameworks like the Yangtze River
Economic Belt initiative, which already promotes inter-
provincial cooperation.
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