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Undoubtedly, urbanization has improved human living conditions. However, it
has also altered the natural landscape, leading to negative consequences such as
increased Land Surface Temperature (LST) and Urban Heat Island (UHI) due to the
expansion of Impervious Surface (IS). Much research has been conducted in other
countries on the effects of changing urban landscape structures on LST and UHI
formation. However, in Sri Lanka, only a few studies have been available on this
topic, primarily concentrating onmajor cities like Colombo. Impervious Surface is
absorbing high amounts of solar energy as well, which accelerates themagnitude
of UHI in urbanized areas. Remote Sensing indices such as the Normalized
Difference Vegetation Index (NDVI), Normalized Difference Buildup Index
(NDBI), UHI, and Environmental Criticality Index (ECI) can effectively be used
to quantify the intensity of the UHI phenomenon. This study aimed to investigate
the effect of spatiotemporal variations in IS and Green Surface (GS) on UHI, LST,
and the environmental criticality in Galle Municipal Council (MC), Sri Lanka
employing multi-temporal Landsat-5 and 8 data from four different periods:
1996, 2005, 2014, and 2022. Different geospatial techniques including supervised
image classification, Urban-Rural Gradient Zone (URGZ) analysis, grid-based
analysis, UHI profiles, and regression analysis were used in the study. The
findings revealed that Impervious Surface increased by 42.3% (7.34 km2) while
Green Surface had a decline of 22.5% (3.91 km2) during the concerned period.
This landscape transition led to a 2.74 C increase in mean surface temperature in
the study area, along with a 9.5 C increase in the UHI index during 26 years. The
results further revealed that Impervious Surface rapidly developed within 4 km
(URGZ1-19) from city center, while Green Surface decreased. Newly built-up
areas within the 1.5 km gradient (URGZ1-URGZ8) were more affected by
increased LST. A positive correlation was identified between NDBI and LST,
especially in the year 2022, with an R2 of 0.457, while NDVI and LST reported
a negative R2 of 0.257. The grid-based analysis demonstrated an increasingly
positive relationship between mean LST and the fraction of Impervious Surface,
highlighting the role of built-up areas in raising LST and UHI in the MC. As a result,
very high environmental critical areas have been concentrated in and around
high-density Impervious Surface. Thus, it can be predicted that the UHI effect and
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Environmental Criticality (EC) may increase further in the future. In this context,
planning agencies should prioritize green urban planning strategies, such as
implementing green belts and urban agriculture in the study area, particularly in
and around areas with high LST and high environmental criticality. This approach
may help protect the natural environment and sustainably ensure the health of the
urban community.
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1 Introduction

In recent years, urbanization has intensified, emerging as a
major global spatial phenomenon (Withanage N. C. et al., 2023;
Withanage et al., 2024; Withanage and Jingwei, 2024). Urbanization
levels can range from micro-scale administrative areas to broader
geographical regions (Pannell, 2002). In 2018, 55% of the global
population resided in cities, with projections indicating a rise to 68%
by 2050 United Nations, Department of Economic and Social
Affairs, Population Division (2019). In developing countries
worldwide, migration from rural areas and urban infrastructure
development continue to attract populations toward cities. Rapid
growth of population is a predominant factor in the acceleration of
the urbanization process in developing countries due to the
functioning of the “push and pull” factors. This process leads to
the growth of industrialization, transportation, and infrastructure
development, as well as an increase in natural resource utilization in
urban areas. This multidimensional process is reshapes socio-
economic activities and alters the spatial distribution of Green
Surface (GS) and Impervious Surface (IS) (United Nations,
Department of Economic and Social Affairs, Population Division,
2019). Impervious surface refers to areas with high levels of built-up
coverage, typically including buildings, roads, and other
infrastructure.

Urban areas are frequently thought of as impervious areas that
are covered by roads, buildings, and other constructed structures
(Withanage N. C. et al., 2023). Rapid landscape transformations,
including the conversion of green surface and agricultural land into
impervious surface, have introduced various challenges. These issues
span multiple scales, affecting farmland fragmentation, habitat loss,
and air, water, and soil pollution, alongside the spread of vector-
borne diseases and rising Land Surface Temperature (LST) (Deng
et al., 2016; Ho et al., 2016; Son et al., 2017; Hou et al., 2019;
Ranagalage et al., 2019). Presently, scholars have identified that
impervious surface changes are compatible with variations in urban
LST, and that leads to the formation of UHI (Ranagalage et al., 2019;
Ranagalage et al., 2020).

UHI is a significant environmental issue that adversely affects
the natural environment and human health. UHI is a phenomenon
that comprises high thermal temperatures in IS compared with other
areas. Surface UHI and atmospheric UHI are the major categories of
UHI (Environmental Protection Agency, 2008). The extensive
growth of construction and the expansion of IS have contributed
to the rise in LST and the intensification of the UHI effect in urban
areas. The intensity of UHI has been influenced by the rising
temperature between 2 and 8°C within the IS (Silva et al., 2018).
Thus, Green urban planning is an essential and effective strategy for

mitigating the adverse impact of UHI since adverse impacts of UHI
have been propagated in the recent past. Therefore, systematic
investigations of UHI using remote sensing (RS) data and
techniques, integrated with geographical information systems
(GIS), have been significantly increasing.

Geospatial technology allows for optimal decision-making by
integrating geographical data models across spatial and temporal
dimensions (Withanage et al., 2024; Jayasinghe and Withanage,
2020; Wimalasena and Withanage, 2022; Withanage W. K. et al.,
2023; Wijesinghe et al., 2023; Nuwanka and Withanage, 2024;
Withanage et al., 2024). RS data is very important and reliable
source for examining the structural changes of IS and its effects on
the UHI (Weng, 2002). Advancements in RS technology have made
it possible to obtain thermal and optical data from the same sensor
platforms, which is beneficial for researching temperature
conditions and changes in Impervious Surface (Choe and Yom,
2020). Due to the lack of meteorological data, especially in
developing countries, RS methods have become an effective and
reliable source for UHI and LST assessment (Jain et al., 2020; Teferi
and Abraha, 2017; Ranagalage et al., 2019; Wijesinghe et al., 2024).
Satellite images with different time scales have provided an
opportunity to examine the magnitude of UHI in IS. High-
resolution satellite data such as National Oceanic and
Atmospheric Administration (NOAA), and Moderate Resolution
Imaging Spectroradiometer (MODIS) are highly appropriate for
examining the mass-scale impacts of air temperature as well
moderate-resolution satellite images such as Landsat and ASTER
are also fine for the analysis of LST and UHI (Weng, 2009; Cheng
et al., 2022; Priyankara et al., 2019). Nighttime light data, and
Synthetic Aperture Radar (SAR) data have also been utilized in
previous studies to assess urban LST and the UHI effect (Marconcini
et al., 2014; Paranunzio et al., 2019).

There has been a wide range of scholarly studies on the
Landscape dynamics contribution of UHI incorporating RS in
the recent past (Santos et al., 2017; Bokaie et al., 2019;
Dissanayake et al., 2019; Fonseka et al., 2019; Ranagalage et al.,
2017; Estoque et al., 2017). These studies widely focus on how Land
Use/Land Cover (LULC) changes have led to the enhancement of
the severity of UHI in developing countries. An analysis of Landsat
images from 2011 to 2019 revealed a 1.86 C increase in LST in
Narayanganj City, Bangladesh (Rishid et al., 2022). Furthermore, a
significant correlation was observed between LST and the
Normalized Differences Built-up Index (NDBI) (Rashid et al.,
2022). LULC changes have led to the growth of LST between
6.05 C from 2007 to 2020 in Wuhan City, China due to the
expansion of buildup areas (Cheng et al., 2022; Wanga et al.,
2019). Using Landsat TM/ETM+/OLI-TIRS images another study
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was conducted in Yerevan city which was in Armenia (Tepanosyan
et al., 2021). That study also pointed out that the decline of LULC
caused an increase in the impact of UHI (Tepanosyan et al., 2021).
Normalized Differences Vegetation Index (NDVI) and NDBI were
calculated using Landsat images from 2005 to 2019 in Kolkata and
found that LST had rapidly increased within the urban core due to
the increase of the IS over GS (Chatterjee and Majumdar, 2022). In
addition, a recent study focused on the space-borne sensor data set
using the Multifractal Detrended Fluctuation Analysis (MDFA) in
the Indian Himalayan foothills. That study also confirmed that the
urbanization process accelerated the UHI (Kimothi et al., 2023).

In the Sri Lankan context, several studies can be identified on
how the urbanization process and the structural transformation of
the IS affect variations of LST in cities (Ranagalage et al., 2017;
Dissanayake al., 2019; Ranagalage et al., 2019). Expansion of the
Colombo urban area and urban density positively impacted the LST
during 1988–2016 (Fonseka et al., 2019). Landsat 7 ETM + data in
2000–2001 was utilized to identify the correlation between the LU/
LC and LST distribution pattern in Colombo and they stated that the
UHI is significant in the port area (Senanayake et al., 2013;
Ranagalage et al., 2017). A few scholars have investigated changes
in landscape structure and UHI and their influences on the ecology
and socio-economic environment in peripheral urban areas such as
Gampola, and Nuwara Eliya apart from capital (Ranagalage et al.,
2019; Ranagalage et al., 2020; Arachchi, 2022).

Southern province is the 7th largest province, and it provides
residence for 2.5 million inhabitants (Kumara, 2022). Urbanization
and growing population density have led to the change of IS in this
area compared to the previous decades (Dissanayake, 2020). The
Galle MC was chosen as the study area due to its status as the fourth
largest municipality in Sri Lanka and its strategic connection to
other main cities such as Matara and Kalutara via the A2 road.
Urbanization and commuting over the past two decades have led to
a significant influx of population into the study area, which is a
popular tourist destination and port city. Only one previous study is
available in the study area that investigated LULC changes in LST
and UHI effects (Dissanayake, 2020). However, there is a gap as the
previous study did not extensively explore the relationship between
Impervious Surface expansion, LST, UHI effects along URGZ, and
the measurement of environmental criticality (EC).We attempted to
address this gap by evaluating the correlation between landscape
dynamics and UHI considering the distance effect from the city
center using URGZ and grid-based analysis. Also, our study
emphasizes the Environmental Criticality (EC) associated with
the expansion of Impervious Surface with decreasing Green
Surface. The findings of the study will assist in sustainable urban
planning and help reduce the impacts of landscape changes in the
Galle MC, thereby safeguarding the environment and securing
human health.

2 Materials and methods

2.1 Study area

The coastal city of Galle, the capital of the southern province, of
Sri Lanka is bounded to the south and southwest by the Indian
Ocean which is located in 6°.10ʹ north latitude and 80°.13ʹ east

longitude. It serves as both the district and provincial capital and is
regarded as the largest city in the Southern Province. Since the
southern province is home to the primary business hub, Galle is a
bustling city where many inheritances live and work (UDA, 2019).
In the study, Galle MC (Figure 1) was selected and it lies within the
wet zone with an average temperature of 28–30°C and
1,525–1900 mm average rainfall. Except for a few isolated peaks
of about 60–160 feet, other areas consist of flat terrain. Also, from
the agro-climatological perspective, the MC belongs to the wet zone
(Dissanayake, 2020). Especially, Galle is the third municipal council
in Sri Lanka, founded following the terms of the urban council
statute of 1865 (Abeyweera and Kaluthanthri, 2018). In 1988, Galle
City was named a World Heritage City in Sri Lanka by the
United Nations.

2.2 Description of data and preprocessing

The Landsat satellite images with a minimum cloud cover of less
than 5% or without any clouds during the wet and dry seasons were
downloaded via the United States Geological Survey (USGS) website
(USGS, Accessed on 12 November 2023). All images were projected
into WGS84/UTM 44N to maintain spatial consistency. The whole
study area belongs to path 56 and row 141. The summary of all the
data in the two sensors is included in Table 1.

To establish a thorough link between the acquired data and the
biophysical properties of the landscape, preprocessing must be done
before image classification and change detection (Land-resources,
2023). The identification of minute variations in surface reflectance
and LULC is necessary for this investigation. The thermal bands
(TM band 6 and OLI band 10) were employed for the retrieval of
LST after radiation and atmospheric corrections (Landsat 8 (L8),
2016). To process and analyze the data, Arc Map 10.8 (ESRI, 2020),
MS Office Excel (Microsoft, 1988), and Origin Pro data analysis and
graphing software (Origin Lab Corporation, 2023, MA, United
States) were used.

2.3 Methods

Several steps were followed to create LU/LC maps including
image preprocessing, classification, accuracy checking, and change
detection. Retrieval of NDVI, NDBI, NDWI, LST, UHI, and ECI was
performed using standardized equations. The technical flowchart
explaining the combination of image preprocessing, image
classification, retrieval of RS-based indices, and other geospatial
and statistical analysis is presented in Figure 2.

2.3.1 LULC classification
Both LULCs are considerably described by land-use

categorization. To promote sustainable development,
policymakers can better grasp the dynamics of environmental
change by LULC mapping (Kennedy et al., 2018; Cabral et al.,
2016). Due to spectral heterogeneity, categorizing satellite images of
urban areas is considered a complicated operation. Past researchers
have classified satellite image pixels into different classes through
various approaches (Wang et al., 2019; Rimal et al., 2017). For LULC
analysis purposes, we classified Landsat images in the years 1996,

Frontiers in Environmental Science frontiersin.org03

Chanuwan Wijesinghe et al. 10.3389/fenvs.2024.1474742

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1474742


FIGURE 1
Location: (A) Galle district in Sri Lanka (B, C) Galle MC area.

TABLE 1 Description of the Satellite Datasets.

Satellite Path/Row Date Time (GMT) Cloud cover Thermal conversion
constants

K1 K2

Landsat 5 TM 141/056 24/03/1996 04:02:02 2.00 607.76 1,260.56

Landsat 5 TM 141/056 13/02/2005 04:40:37 1.00 607.76 1,260.56

Landsat 8 OLI 141/056 10/03/2014 04:54:36 3.27 774.8853 1,321.0789

Landsat 8 OLI 141/056 26/01/2022 04:02:02 4.11 774.8853 1,321.0789
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2005, 2014, and 2022 using Maximum Likelihood Classification
(MLC) algorithm. The same Landsat images were utilized to analyze
changes in LST, UHI, IS, GS, and EC. Spatial temporal changes in
the landscape were measured through the Maximum Likelihood
Classification (MLC) algorithm, along with accuracy assessment.
Various remote sensing indices, including UHI, NDVI, NDBI,
Normalized Difference Water Index (NDWI), Visible Red and
NIR Based Built-up Index (VrNIR-BI), and ECI were calculated
to support the detailed analysis. When training data is chosen well,
MLCmay achieve a high classification accuracy, making it one of the
most commonly employed methods for LULC mapping. The
spectral characteristics gleaned from training samples are used in
supervised image classification. The signature editor was used to
manage all of the spectral signatures from the training regions for
the images that are being classed (Wijesinghe and Withanage, 2021;
Withanage et al., 2024). Also, this is commonly utilized because
regional land cover mapping may be achieved at a reasonable cost
using medium-resolution satellite remote-sensing data (Weng, 2002;

Dissanayake et al., 2019). It depends on how likely a pixel is to
belong to a particular class. The LU in the study area was divided
into four categories: IS, GS, water bodies, and others (Table 2).
Furthermore, Supplementary Figure A1 presents the LULC
information in Table 2.

2.3.2 Accuracy assessment
The stratified random sample technique was used to execute the

accuracy assessment. To compare the pixels in the identified images
with the reference data for each year, these samples were utilized.
Independent training points were employed to evaluate accuracy.
Throughout the process, 300 points were produced each year that
covered all LULC classes (Wu and Murray, 2003). Then, Google
Earth was used as reference data in the accuracy assessment. The
results were statistically presented using the confusion matrix
(Rawat and Kumar, 2015; Mohajane et al., 2018; Liu et al., 2015).
It is made up of numbers that are arranged in rows and columns and
show the different sample points assigned to each class concerning

FIGURE 2
Methodological flowchart of the study.

TABLE 2 Details of LU/LC Classes in the study area.

Ref LU/LC Details

1 Impervious surface (IS) Including buildings, roads, and all other impervious surfaces

2 Green surface (GS) Forest, grassland, and other green areas

3 Water Bodies (WB) Sea, wetland areas, swamps, irrigation and drainage canals

4 Other (OT) All other LULC types except to above
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the actual ground condition of a particular class (Congalton, 1991).
The kappa coefficient provides the intended land-use classification
with accuracy.

The user accuracy, producer accuracy, overall accuracy, and
lastly, the Kappa coefficient were calculated to measure the accuracy
of derived LULC maps (Ziaul and Pal, 2016; Sultana and
Satyanarayana, 2018). The degree of agreement between user-
given values and predetermined assigned values was determined
using the probabilistic Kappa test (Ishtiaque et al., 2017; Bokaie et al.,
2019). The following Equations 1–4 are used, in order, to compute
the producer accuracy (1), user’s accuracy (2), total accuracy (3), and
Kappa coefficient (4) (Mirzaei, 2015; United States Geological
Survey, 2018).

Overall Accuracy � ∑CCP Diagonal( )

∑CRP
× 100 (1)

where the corrected reference pixels are CRP, and the corrected
categorized pixels are CCP (Diagonal);

UserAccuracy � ∑CCP Category( )

∑CPC Row( ) × 100 (2)

where CCP (Category) is the corrected classified pixels (category)
and CPC (Row) is the classified pixels in that category (the
row total);

Producer Accuracy � ∑CCP Category( )

∑CPC Column( ) × 100 (3)

where CCP (Category) is the corrected classified pixels (diagonals)
and CPC (Column) is the classified pixels in that category (the
column total);

K �
N∑

k

i�j
xii − ∑

k

i�1
xi+ × x+i( )

N2 − ∑
k

i�1
xi+ × x+i( )

(4)

where k is the number of rows in the matrix; xii is the number of
observations in row i and column i; xi+ and x + i (upper and lower
right segment of the equation) are the marginal totals of row k and
column i. N is the number of observations (Alqurashi and
Kumar, 2014).

2.3.3 LST retrieval
LST differences in urban and rural areas can be assessed using

various methods, including URGZ analysis and grid-based analysis.
These methods have been applied in previous research conducted in
urban areas such as Kandy, Kurunegala, and Nuwara Eliya in Sri
Lanka (Ranagalage et al., 2018a; Ranagalage et al., 2019; Ranagalage
et al., 2020). Landsat Thematic Mapper (TM) data for 1996, and
2005, Landsat 8 Optical Land Imager (OLI), and Thermal Infrared
Sensor (TIR) data for 2014 and 2022 were used for the retrieval of
LST using the Split-Window (SW) technique. The LST was obtained
by Thermal Infrared (TIR) band 6 of Landsat 5 and TIR bands
10 and 11 of Landsat 8 by converting DN values into radiance values
(Ranagalage et al., 2017; Sultana and Satyanarayana, 2018;
Dissanayake et al., 2019; Jaafar et al., 2020). Here we used
thermal bands holding brightness temperatures which are
represented in Kelvin. Before LST retrieval land surface
emissivity values were derived using below Equation 5

(United States Geological Survey, 2020; Ranagalage et al., 2017;
Ranagalage et al., 2018b; Dissanayake et al., 2019).

Ɛ � mPV + n (5)
where Ɛ represents land surface emissivity; m represents (Ɛ v − Ɛ s) −
(1 − Ɛ s) FƐ v; Pv represents the amount of vegetation; n represents Ɛ s

+ (1 − Ɛ s) FƐ v; Ɛ s is soil emissivity; Ɛ v is the vegetation emissivity;
and F is a shape factor (Ranagalage et al., 2017; Ranagalage et al.,
2018a; Dissanayake et al., 2019; Aubard et al., 2019). Here we used
m = 0.004 and n = 0.986 as in previous research (Jaafar et al., 2020;
Ranagalage et al., 2017; Dissanayake et al., 2019). The proportion of
vegetation (PV) is derived from the Equation 6.

PV � NDVI −NDVImin( )/ NDVImax − NDVImin( )( )
2 (6)

where NDVI is the normalized difference vegetation index derived
from Equation 9 as in the section below. The NDVImin and
NDVImax are the minimum and maximum values of the NDVI,
respectively. Then emissivity corrected LST were retrieved using
Equation 7.

LST °C( ) � TB

1
+ λ × TB/p( )InƐ (7)

where TB = Landsat TM Band 6 at-satellite brightness temperature;
λ = wavelength of emitted radiance (λ = 11.5 µm for Landsat TM
Band 6, λ = 10.8 µm for Landsat TIRS Band 10); p = h × c/σ (1.438 ×
10–2 mK), σ = Boltzmann constant (1.38 × 10–23 J/K), h = Planck’s
constant (6.626 × 10–34 Js),c = velocity of light (2.998 × 108 m/s), Ɛ
is the land surface emissivity. Last, the LST values of Kelvin were
converted into degrees Celsius (°C) (Xiao and Weng, 2007; Li et al.,
2013; Ranagalage et al., 2017; Dissanayake et al., 2019). After
retrieving the LST for each year, the derived maps were
reclassified into five classes ranging from low to very high LST
using an equal interval method, based on their minimum and
maximum values.

The UHI index was employed to describe the UHI phenomenon
more intensively in the MC. Typically, high UHI spots indicate the
warmer regions within a city. The UHI index was calculated using
the Equation 8 as below (Sultana and Satyanarayana, 2020).

UHIindex � LSTi − LSTmin / LSTmax − LSTmin (8)
LSTi is the LST of grid points in the spatial distribution of LST,

LSTmax, and TSTmin are the maximum and minimum LST in the
study area of the particular year. As proposed by (Xu et al., 2013; Jain
et al., 2020) UHI intensity regions were also categorized into five
class as very weak UHI, weak UHI, moderate UHI, strong UHI, and
very strong UHI.

2.3.4 NDVI calculation
NDVI was used to determine the spatial temporal patterns and

quantify the amount of GS in the study area. The GS sustains local
climatic variables like precipitation, which is represented by the
NDVI (Santos et al., 2017; Estoque et al., 2017). The range of NDVI
values is −1 to 1. Negative values in this contrast virtually represent
the water bodies (Saputra et al., 2023). On the other hand, the area
with thick GS is indicated by an NDVI score close to +1. It is
frequently computed using the normalized variance between the
near-infrared band and image pixels. Equation 9 was used to derive
NDVI (Shikary and Rudra, 2020).

Frontiers in Environmental Science frontiersin.org06

Chanuwan Wijesinghe et al. 10.3389/fenvs.2024.1474742

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1474742


NDVI � NIR Band 4,5( ) − RED Band 3,4( )
NIR Band 4,5( ) + RED Band 3,4( )

(9)

The NIR band represents Band 4 in Landsat TM [0.76–0.90 µm
(wavelength)] and Band 5 in Landsat OLI [0.85–0.88 µm
(wavelength)] respectively, and the RED band represents Band
3 in Landsat TM [0.63–0.69 µm (wavelength)] and Band 4 in
Landsat OLI [0.64–0.67 µm (wavelength)], respectively. The GS
extraction was performed after masking water bodies and IS in the
study area. To extract GS from NDVI maps, a manual threshold
technique was used. The thresholds applied were 0.494 for the year
1996, 0.439 for 2005, 0.389 for 2014, and 0.345 for 2022. These
thresholds were determined by overlaying the extracted maps onto
Google Earth Pro and a color composite of Landsat (Ranagalage
et al., 2020).

2.3.5 Deriving NDBI
NDBI is another graphical indicator used to measure IS using

satellite data. Positive values in the NDBI values indicate the
presence of a built-up area. Typically, the NDBI value falls
between −1.0 and +1.0. Vegetation is generally represented by
negative values, and IS are shown by positive values. Equation
10, which presents the mid- and near-infrared bands, was used
to derive the NDBI (Ranagalage et al., 2018b; Tian et al., 2022).

NDBI � MIR Band 5,6( ) −NIR Band 4,5( )
MIR Band 5,6( ) +NIR Band 4,5( )

(10)

the MIR band represents Band 5 in Landsat TM [1.55–1.75 µm
(wavelength)] and Band 6 in Landsat OLI [1.57–1.65 µm
(wavelength)], respectively, and the NIR band represents
Band 4 in Landsat TM [0.76–0.90 µm (wavelength)] and Band
5 in Landsat OLI [0.85–0.88 µm (wavelength)], respectively. The
extraction of IS was also conducted using a manual threshold
technique, as applied in similar previous research by Ranagalage
et al. (2020). The lower threshold values for IS were 0.0471 for
the year 1996, 0.102 for 2005, −0.0798 for 2014,
and −0.0688 for 2022.

2.3.6 NDWI
NDWI was used to extract water bodies from other LULC

classes. Equation 11 was used to derive NDWI in the study area.
We also applied Otsu’s optimal binary threshold technique to
separate the water class from other classes, as described by
Ranagalage et al. (2020).

NDWI � Green −NIR/Green +NIR (11)
where Green represents band 2 and NIR is band 4 of Landsat
5 images and band 3 (Green) and band 5 (NIR) of Landsat 8 images.

2.3.7 ECI
The ECI was used to identify environmentally critical areas

based on the ratio between LST, and NDVI (Weng, 2002; Wu and
Murray, 2003). The Built-Up (BU) index, a method based on the
differences between the two, was used to determine the difference
between the NDBI and NDVI. Urban locations will be easier to
distinguish if there are fewer reflections from vegetation. Equation
12 was applied to calculate the BU index (Sapena and Ruiz, 2015;
Xiao and Weng, 2007).

BU � NDBI( ) − NDVI( ) (12)
The retrieved BU layers were first normalized using the

histogram equalization method, which ranges pixel values
between 1 and 255. Equation 13 is used to estimate the ECI
phenomena (Sapena and Ruiz, 2015; Xiao and Weng, 2007). It
has been demonstrated that increases in LST directly correspond
with ECI. On the other hand, a claimed negative association exists
between declines in GS (Sapena and Ruiz, 2015).

ECI � LST × BU 1 − 255 streched( ) (13)
Then pixel values of derived images are converted into the same

ranges between 0 and 1 using the raster normalization technique.
The higher the ECI value, the more environmentally critical. Before
extraction, the environmentally critical areas of water bodies and
green surface were excluded through masking. The spatial variation
of ECI over the study area was interpreted as very high (0.75–1), high
(0.5–0.75), moderate (0.3–0.5), low (0.25–0.3), and very low (<0.25)
as similar to the previous study conducted by (Ranagalage
et al., 2017).

2.3.8 Urban-rural gradient and UHI profile analysis
The urban-rural gradient zone analysis was used to examine the

relationship between LST, the Fraction of IS (FIS), and the Fraction
of GS (FGS) with changing distance from the city center. This
method has been applied in many previous studies on single-core
cities to identify the spatial variations of LST, IS, and GS (Estoque
and Murayama, 2017; Estoque et al., 2017; Ranagalage et al., 2019;
Ranagalage et al., 2020). The URGZs were derived following several
steps. First, 210 m × 210 m fishnet grids were prepared by snapping
the derived LST, NDBI, and NDVI maps. Second, twenty-eight
URGZs were created, considering the maximum distance from the
city center to the MC boundary (5.8 km). Here, the Galle city center
was considered as the 0 grid. Third, the mean LST, fraction of IS, and
fraction of GS were calculated for each zone using the zonal statistics
tool. Finally, regression analysis and scatter diagrams were used for
further analysis (Ranagalage et al., 2019; Ranagalage et al., 2020).
Multi-directional and multi-temporal variations of the UHI profile
were analyzed by examining the relationship between mean LST,
FIS, and FGS along orthogonal and diagonal directions from the city
center. Since Galle city is bounded by the ocean on three sides, it was
possible to derive three directional analyses: north-south, northeast-
southwest, and northwest-southeast.

2.3.9 Grid analysis
This method is also widely used in previous research on LST and

landscape structure analysis (Myint et al., 2010; Estoque and
Murayama, 2017; Ranagalage et al., 2019; Ranagalage et al.,
2020). To analyze the spatial relationship among mean LST, FIS,
and FGS, a 210 m × 210 m (7 × 7 pixels) grid was used, as previous
studies in the same domain have proven this grid size to produce
better correlations.

2.3.10 Landscape expansion index (LEI)
Nonetheless, utilizing multi-temporal remote sensing data, the

widely used LEI has shown promise in capturing the evolution of
impervious surface patterns (Tian et al., 2022). There are three types
of urban landscape extension patterns: outlying, edge, and infilling.
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“Edge-expansion” denotes the type that extends beyond the edge of
the urban built-up area; “outlying” denotes the type of newly grown
urban patches that are separated from the built-up area; and
“infilling” denotes the type where undeveloped patches in built-
up urban areas are filled with newly grown impervious surface
patches (Tian et al., 2022). The LEI, which is computed for new IS
areas using Equation 14, offers a more profound understanding of IS
and temporal dynamics (Sapena and Ruiz, 2015).

LEI � lc
p
× 100 (14)

where, lc = length of the shared edge and p = perimeter of the new
object. It ranges from 0 to 100, where the infilling type is 100 ≥ > 50
(expansion is occurring within or adjacent to already developed
areas), edge-expansion 50 ≥ > 0 (urban growth is extending
outward along the periphery of current urban areas rather than
creating new isolated patches or filling in gaps within the urban
core), and outlying = 0 (new development is occurring as isolated
patches separate from the established urban area, rather than
expanding along the edges or filling in existing gaps) (Sapena
and Ruiz, 2015).

2.3.11 Statistical analysis
To analyze the relationship between LST and other remote

sensing indices, simple Ordinary Least Squares (OLS) regression
analysis was performed using MS Excel. The level of coefficients in
all linear regression results was reported as statistically significant
(p < 0.001). Based on these regression results, scatter plots between
LST, FIS, FGS, and other remote sensing indices were created for the
years 1996, 2005, 2014, and 2022. LST, NDVI, and NDBI, NDWI,
FIS, FGS pixel values were transformed into points for this purpose.
Additionally, triangle heat map based on Origin Pro were prepared
for each year to cross-check the relationship between LST and
other indices.

3 Results

3.1 Structural changes of the landscape

Among the four LULC classes, the findings indicate that
impervious surface has shown the most significant expansion
over the past 26 years. Throughout the study period, impervious
surface areas grewmostly gradually, from 5.5 km2 (31.7%) in 1996 to
12.8 km2 (74.1%) in 2022 with indicating a 7.3 km2 growth. This
rapid growth of impervious surface occurred at the continuous
expense of green surface, which decreased from 5.6 km2 to
1.7 km2 (−3.9 km2) during the concerned period. In addition to
green surface, 3.4 km2 areas including paddy lands and homesteads
categorized under “other” have also been converted into other LULC
over the last 26 years. Considerable changes in the water bodies,
could not be detected since the MC area consists only of a few canals
and marshes. The overall accuracy rates exceeded the recommended
minimum standard of 75%, indicating a reliable classification of
LULC for each year. The Kappa coefficient was 0.84 in 1996, 0.82 in
2005, 0.80 in 2014, and 0.78 in 2022 as Supplementary Table A1. The
classified LULCmaps in the Galle MC area for 1996, 2005, 2014, and
2022 are visualized in Figure 3 and quantified in Table 3.

Impervious surface comprised 5.5 km2 of the total land area in
1996 and by 2014 it has gradually increased up to 9.7 km2. However,
by 2022, it can be seen how new impervious surface have been
created in areas with green surface and other LU types as expanding
impervious surface into 12.8 km2. The LULC transition during the
study period is visualized in Supplementary Figures A2, A3. Based
on those figures and statistics, approximately 3.5 km2 of green
surface and 3.8 km2 of other land use types were converted into
impervious surface over the last 26 years. The rapid expansion can
be detected in the central and southern areas of MC that are near to
city core. These spatial-temporal variations in the LULC classes
impacted the ecosystem health and LST and UHI intensity during
the study period.

3.2 Variations of LST and UHI intensity
distribution

Figure 4 depicts the spatial distribution of LST in the Galle MC
area for the years 1996, 2005, 2014, and 2022. In 1996, high LSTs
were concentrated in the city core. LST varied from 21.06°C to 32.4 C
in 1996, with a mean of 26.4 C. However, by 2005, areas with high
LST had substantially grown towards the eastern and central parts
and along the coastline, following the expansion pattern of
impervious surface. During this period, the mean LST has
increased to 28.9°C, showing an increase of 2.5 C. This trend
continued until 2022, with the maximum LST increasing from
33.2°C to 33.7 C and the mean temperature rising from 28.9°C to
29.1 C between 2005 and 2022, although the minimum LST
fluctuated slightly around 2014 as shown in Supplementary Table
A2. High LST began to extend in and around the city center area in
2014. In 2022, the city core and its surrounding areas had higher LST
values, which were dispersed mostly to the northern and eastern
parts of MC. The link between LST and the pattern of impervious
surface expansion is well demonstrated along road networks and
growth nodes. LST increased in the core areas, while the southern
beach area experienced significant LST changes due to impervious
surface expansion and a loss of green surface. Throughout the entire
period, most green surface in the northeastern and northwestern
regions have maintained comparatively low LST.

Results further revealed that the UHI intensity in the MC area
has also increased significantly over the 26 years as shown in
Figure 5. The data on UHI intensity over the years indicates a
substantial increase in both the minimum and maximum UHI
intensity values, reflecting a growing severity of the UHI effect.
In 1996 the UHI intensity ranged from a minimum of −2 C to a
maximum of 1°C. This suggests that surrounding areas of the
Impervious Surface core were cooler than the city areas (negative
UHI intensity), while other areas experienced only a slight UHI
effect. The UHI intensity increased significantly by 2005, with a
minimum of 4.5 C and a maximum of 9 C. This indicates that most
areas within the city were warmer than their rural counterparts, with
a marked increase in the intensity of the UHI effect compared to
1996. In 2014 minimum UHI intensity further increased to 6°C,
while the maximum remained at 9 C.

This demonstrates a continuing trend where the entire
impervious surface is experiencing higher temperatures relative to
rural areas, with the minimum intensity rising closer to the
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maximum intensity of the previous period. The minimum UHI
intensity reached 7 C by 2022, and the maximum increased to
10.5 C. This data suggests that the UHI effect has become even more
pronounced, with both the minimum and maximum intensities
showing significant increases. The impervious surface is now

consistently experiencing higher temperatures, and the peak
intensity of the UHI effect has reached new highs. Overall, this
progression indicates a consistent and substantial increase in UHI
intensity over the 26 years, highlighting the growing impact of
impervious surface and the associated changes in LULC on local

FIGURE 3
Classified LULC maps for the Galle MC (A) 1996, (B) 2005, (C) 2014, and (D) 2022.

TABLE 3 LULC changes in Galle MC (1996–2022).

Land cover Land cover changes

LULC 1996 % 2005 % 2014 % 2022 % 1996–2005 2005–2014 2014–2022 1996–2022

IS 5.50 31.76 9.79 56.51 11.93 68.90 12.84 74.15 +4.2 +1.3 +0.91 +7.34

GS 5.67 32.71 3.76 21.70 3.25 18.74 1.76 10.19 −1.9 −0.5 −1.4 −3.9

WB 0.44 2.54 0.43 2.45 0.25 1.43 0.43 2.47 −0.01 −0.18 +0.18 −0.01

OT 5.71 32.98 3.35 19.34 1.89 10.93 2.28 13.19 −2.4 −1.5 +0.4 −3.4

Total 17.32 100 17.32 100 17.32 100 17.32a 100b - - - -

aIs the total area in km2.
bIs the total area in percentage.
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climate conditions. Figure 6A [1, 2, 3, 4], (c) [8, 9, 10] further
demonstrates that the majority of weak UHI areas and low LST areas
consist of existing green surfaces from 1996 to 2022. Additionally,
areas with high LST and changes in the HUI correspond to high-
density impervious surface development during this period, as
shown in Figure 6B [5, 6, 7], (d) [11, 12, 13]. Flooring, roofing,
and concrete structures have disrupted the surface energy balance by
reducing evapotranspiration and increasing sensible heat in the city
core. This is the main reason for the day and night UHI intensity
anomalies between impervious surface and other LULC types.

3.3 Relationship between LST and other
biophysical indices

Supplementary Figure A4 illustrates the derived NDVI maps
during four distinct periods, namely, 1996, 2005, 2014, and 2022.

Supplementary Table A3 also summarizes descriptive statistics.
The minimum NDVI values have increased from −0.53 in
1996 to −0.11 in 2022. This suggests a reduction in the
number of areas with very low or negative vegetation indices.
The maximum NDVI values have slightly decreased from 0.71 in
1996 to 0.51 in 2022. This indicates that the areas with the highest
green surface or healthiest green surface have seen a decline,
suggesting potential degradation of the most vegetated areas. The
mean NDVI values have decreased from 0.41 in 1996 to 0.26 in
2022. This overall decline in the mean NDVI indicates a general
reduction in environmental health and green surface over the
years. The results suggest that over the period from 1996 to 2022,
there has been a noticeable decrease in vegetation health and
green surface density. Overall, mean and maximum NDVI values
have declined, pointing to a general degradation in green surface
quality and coverage as a result of the expansion of
impervious surface.

FIGURE 4
Spatial variations of LST in Galle MC; (A) 1996, (B) 2005, (C) 2014, (D) 2022.
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The minimum NDBI values (Supplementary Figure A4;
Supplementary Table A4) have increased from −0.57 in
1996 to −0.37 in 2022. This suggests that the areas with the lowest
NDBI values. ThemaximumNDBI values have decreased slightly from
0.46 in 1996 to 0.19 in 2022. TheNDBI data indicates that from 1996 to
2022, there has been a complex pattern of changes in impervious
surface. The minimum NDWI values have increased from −0.62 in
1996 to −0.49 in 2022 (Supplementary Table A5). This suggests that
the driest areas have become slightly less dry over time, potentially
indicating a decrease in extreme water scarcity in certain areas. The
maximum NDWI values have decreased from 0.58 in 1996 to 0.21 in
2022. This indicates that the areas with the highest water content or
surface water presence have seen a significant reduction, suggesting a
decrease in the extent or presence of surface water bodies.

Regression results derived R2 0.1962 between LST and NDVI
for year 1996 as shown in Supplementary Figure A5. This suggests
a weak positive relationship, indicating that only about 19.62% of
the variation in LST can be accounted for by the NDVI. But, in
2005 the relationship is stronger with R2 0.3241 compared to 1996,
with about 32.41% of the variation in LST being explained by
NDVI. This suggests a moderate positive correlation. By 2014 The
relationship is quite weak with R2 0.1084, with only 10.84% of the
variation in LST explained by NDVI, indicating a low positive
correlation. In the year 2022 with R2 0.2571 there is a moderate
relationship, with 25.71% of the variation in LST being explained
by NDVI, which is stronger than in 2014 but weaker than in 2005.
Overall, these R2 values suggest that the relationship between LST
and NDVI varies over time, being strongest in 2005 and weakest in

FIGURE 5
UHI intensity in Galle MC: (A) 1996, (B) 2005, (C) 2014, (D) 2022; Distribution of UHI intensity profile from city to MC boundary.

Frontiers in Environmental Science frontiersin.org11

Chanuwan Wijesinghe et al. 10.3389/fenvs.2024.1474742

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1474742


2014. The values indicate that NDVI can partially explain
changes in LST.

The regression results derived R2 0.4570 between LST and NDBI
for the year 1996. This indicates a moderate positive relationship
between LST and NDBI. About 45.70% of the variation in LST can be
explained by NDBI. In 2005 also the relationship remains moderately
strong, with 45.20% of the variation in LST being explained by NDBI
with R2 0.4520. This is very similar to the relationship in 1996. In year
2014 with R2 0.3519 the relationship is weaker compared to 1996 and
2005, indicating a moderate but decreased positive correlation. In year
2022, the relationship is moderately strong, with R2 0.4639 of the
variation in LST being explained by NDBI, slightly stronger than in
previous years. Overall, these R2 values suggest that the relationship
between LST and NDBI is consistently moderate, with NDBI
explaining a substantial portion of the variation in LST. The values
indicate that impervious surface, as measured by NDBI, have a
significant and relatively stable influence on LST over the years,
with the strongest relationship observed in 2022.

Overall, the R2 values suggest that the relationship between LST
and NDWI is generally weak, with NDWI explaining only a small
portion of the variation in LST. The strongest relationship was
observed in 2005 (R2 0.2589), indicating that water presence, as
measured by NDWI, had amore substantial influence on LST in that
year compared to other years. The regression results revealed that R2

values indicate the relationship between NDVI and NDBI has
strengthened over time, with the correlation becoming very

strong by 2022 with R2 0.7519. This trend suggests that as
impervious surface areas have increased, green surface has
correspondingly decreased, reflecting the significant impact of
urban expansion on green surface. The correlation matrix
between LST with NDVI, NDBI, NDWI over the four-time
period are graphically represented in Figure 7 below.

3.4 LST distribution along URGZs

Derived 28URGZ, showing the distribution of impervious surface
and green surface in the Galle MC area within a 210-meter radius
from the city center (Figure 8). This URGZ distribution map clearly
illustrates that FIS decreases as one moves away from the city core,
while FGS increases with distance from the city center. The map
shows that impervious surface density decreased from the urban core
toward the rural periphery from 1996 to 2022, while green surface
density increased, particularly from 2005 onwards. Figure 9 shows the
spatial pattern of mean LST and the FIS and FGS along 28 URGZs.
The highest mean LST value was recorded in URZ1 near the city
center. The highest mean LST, ranging from 28.3°C to 27.1°C, was
concentrated within URGZs 1 to 7. In 1996, the lowest mean LST was
recorded in URGZs 24, 25, and 26, with temperatures of 25.4°C,
25.5°C, and 25.6°C. The mean LST in URGZ1 was 28.3°C in 1996 and
increased to 31.7°C, 30.3°C, and 30.7°C by 2005, 2014, and 2022,
respectively. Additionally, the mean LST of all other URGZs increased

FIGURE 6
GS, IS, LST,UHI change during 1996–2022 (A) LST and GS change, (B) LST and IS change, (C) UHI and GS change, (D) UHI and IS change.
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from 1996 to 2022. The lowest mean LST in 2005 was reported in
URGZ25 at 27.7°C. In 2014, the lowest mean LST was reported in
URGZ 26 at 26.1°C. In 2022, the lowest mean LST was concentrated in
URGZ24 at 27.3°C.

The FIS within all URGZs has been rapidly increasing from
1996 to 2022. The highest FIS reported in 1996 years was 10.2% in
URGZ3. In 2005, the highest FIS was reported in URGZ9 at 8.2%. In
2014, the highest FIS was reported in URGZ8, as at 7.8%. By 2022,
URGZ 9 reported the highest FIS at 7.5%. The lowest FIS in 1996 was
located in URGZ21 at 0.2%. In 2005, the lowest FIS (0.27%) was
reported in URGZ23. In 2014, the lowest FIS was located in URGZ24
at 0.33%. In 2022, the lowest FIS was reported in URGZ26 at 0.36%.
In 1996, the highest FGS was located in URGZ12 at.

11.2%. By 2005, URGZ13 reported the highest FGS at 13.4%. In
2014, the highest FGS was located in URGZ15, recorded at 13.5%. By
2022, the highest FGS was reported in URGZ14 at 11.9%. The lowest
FGS in 1996 and 2022 was recorded in URGZ28,27, respectively. In
2022, the FGS was reported at 0.05% for URGZ28 and 0.06% for
URGZ27. Overall, the R2 values show that while there is a strong
relationship between mean LST and the fraction of impervious
surfaces along URGZ1-28, this relationship has weakened little,
particularly in the year 2022 (R2 0.2631). Conversely, the mean

LST showed a moderate negative relationship with the FGS across
three time periods except in 2014.

3.5 Multi-directional LST profile

Figure 10 shows multi-directional and multi-temporal profiles
of the mean LST and FIS for the years 1996, 2005, 2014, and 2022.
The mean LST shows a decreasing pattern from the city center to
URGZ17 in the north-south direction for all years from around
32°C–26°C. But, for the northeast-southwest and northwest-
southeast directions from the city center, the mean LST shows a
decreasing trend with some fluctuations. In all three directions and
across temporal dimensions, FIS is showing a rapidly increasing
trend, particularly noticeable in URGZ1-4.

3.6 Association of mean LST, FIS, and FGS
within grid

The spatial distribution and concentration patterns of mean
LST, FIS (%), and FGS (%) in the urban core across the 210 × 210 m

FIGURE 7
The correlation matrix between LST with NDVI, NDBI, NDWI (A) 1996; (B) 2005; (C) 2014; (D) 2022.
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grid zone from 1996 to 2022 are shown in Figure 11. The results
showed that the highest mean LST, exceeding 33°C, was
concentrated on the left side of the city core in both 1996 and
2005. However, in 2014 and 2022, the pattern changed to
concentration and no longer showed dispersion. Additionally, in
2014 and 2022, the LST within the urban core (210 m × 210 m) grid
areas showed a considerable decrease compared to the situation in
1996 and 2005. The beachside consistently exhibited lower mean
LST, ranging from 26°C to 30°C, during all four time points. During
all four time points, a high fraction of IS was distributed along the
northern side of the city core. Comparatively low FIS was observed
in the southwestern part of the urban core until 2014. After 2014, a
few vegetation patches occupied that area. Due to Galle City
inherently evolving as a fortress city and being a UNESCO
World Heritage site, the urban core area, extending 210 m ×
210 m, is primarily occupied by the fort and other historical
buildings, rather than new constructions and green surface.
Statistical analysis revealed a low positive but increasing trend in
the relationship between mean LST and FIS within Galle MC, with
an R2 value of 0.0784 in 1996 and 0.2919 in 2022 (Supplementary
Figure A6). Overall, the relationship between mean LST and the
fraction of green surface showed fluctuations, with the strongest
correlation occurring in 2014 (R2 0.1927).

3.7 Landscape expansion patterns in
galle MC

The growth patterns of the urban landscape of the Galle MC
were derived for three distinct periods: 1996–2005; 2005–2014;

2014–2022 (Supplementary Figure A7; Supplementary Table
A6). The expansion of Galle City is mostly compacted, making
the IS more continuous, as illustrated in fragmentation metrics,
when one considers the compact growth as a mix of infilling and
edge–expansion. It is also a unique feature that no outlying
patches can be identified in the IS within all three-time
period. The LEI pattern was determined based on edge
expansion and infilling. The % of edge-expansion patches were
99.9%, 95.46%, and 99.46% in the three periods, indicating a
rising tendency. An overview of the three periods reveals that
edge expansion is higher than infilling. The proportion of
infilling patches was 0.0054%, 4.53%, and 0.55% during the
3 decades. From 2005 to 2014, there was notable growth, and
from 2014 to 2022, there was an overall pattern of first increasing
and then decreasing. Throughout all periods, the quantity and
size of edge-expansion patches were continuously greater than
those of infilling patches.

3.8 Environmental criticality in galle MC

Environmental criticality maps for the Galle MC area,
derived by combining LST and NDVI images in the Galle
MC area following the steps described in the methodology
section, are illustrated in Figure 12. When deriving the ECI
maps, all areas covering green surface and water bodies were
excluded, as these areas have no criticality. According to the
derived maps, the EC has increased from 1996 to 2022, with very
high and high critical areas concentrated and expanding
outward from the city core. In the year low EC areas were

FIGURE 8
The distribution pattern of impervious surface, green surface along URGZs Galle MC.
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reported in URGZ24 as 0.27% while zone 8 reported high EC
areas as 7.35%. In the year 2005 low EC area coverage was
occupied in GRGZ23 at 0.33% and high EC area coverage was
reported by zone 9 (8.44%). In 2014 low spatial coverage of EC
was occupied in URGZ24 (0.30%) while high coverage could be
seen in zone 10 (7.76%). Overall, low or very low EC areas could
be observed on the northwestern and northeastern periphery of
MC in all four time points. The ECI typically follows the
distribution pattern of LST (Figure 4) and NDBI values
(Supplementary Figure A4) in the study area.

4 Discussion

4.1 Effect of landscape changes on LST and
UHI intensity

The results found that the growth of the impervious surface
came at the cost of reduced green surface from 1996 to 2022. The
extent of green surface decreased from 5.6 km2 (32.7%) in 1996 to
1.7 km2 (10.9%) in 2022. A 3.57 km2 area covered by green surface
and a 3.8 km2 area under another category was solely transformed

FIGURE 9
The distribution pattern of mean LST,FIS, FGS along URGZs; Results of linear regression between mean LST,FIS and FGS along URGZ, 1996, 2005,
2014 and 2022.
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into impervious surface within the concerned period. This trend is
comparable to the previous research findings observed in the Galle
MC (Dissanayake, 2020) as well as other cities like Colombo
(Fonseka et al., 2019; Senanayake et al., 2013; Ranagalage et al.,
2017), Kandy (Ranagalage et al., 2018a), Kurunegala (Ranagalage
et al., 2020), and Nuwara Eliya (Ranagalage et al., 2019). Similar
landscape changing patterns were also observed by Dissanayake
(2020) which demonstrated the rapid transformation of green
surface and other areas into impervious surface during the last
2 decades (Dissanayake, 2020). The findings indicated that there was
minimal or no significant alteration in water bodies. The increase in
residential, administration, and commercial establishments leads to
the absorption of most green surface and other LULC types by the
impervious surface. The urban growth in the Galle MC was driven
by the swift transformation of green surface into impervious surface
between 1996 and 2022. This has resulted in the emergence of

detrimental consequences, such as the formation of urban heat
islands with increasing EC.

The results of this study provided evidence of increasing LST and
UHI intensity. The mean LST in the Galle MC has experienced a 2.7 C
increase between 1996–2022, as shown in Figure 4. Also, the UHI
intensity index has shown a considerable increase from 1°C to 10°C
during the concerned period (Figure 5). TheURGZ analysis results also
demonstrated that UHI intensity is concentrated within a 1.5 km2

radius from the city core. The spatial and temporal distribution
patterns of mean LST and FIS provide a clear image of the
relationship between UHI intensity expansion and impervious
surface expansion between 1996 and 2022. On the other hand, the
mean NDVI has decreased by 0.15 within 26 years. Especially,
afterward 2005 increasing LST zones has expanded parallel to the
impervious surface expansion direction. The cause of this
phenomenon might be attributed to the recently developed urban
areas, as indicated by Dissanayake (2020). Urban expansion in the
Galle MC may lead to a subsequent rise in the overall LST and UHI
intensity shortly. The declining NDVI and inclining NDBI have
further supported this trending pattern. Though, LST and NDVI
have low negative relationship and values indicate that NDVI can
partially explain changes in LST, the inverse correlation between LST
and NDBI indicates that impervious surface have a direct effect on
raising the overall LST and UHI intensity in the study area. The
distribution maps of NDBI and ECI also indicate that impervious
surface areas with higher LST are more susceptible to environmental
criticality. Newly added impervious surfaces in the study areamay lead
to an increase in the vulnerability of LST (Dissanayake, 2020) and ECI.

4.2 Trends of urban growth in MC

The findings indicated that the Galle MC underwent
considerable landscape transformations during 1996–2022, as
demonstrated by the rapid expansion of impervious surface.
Throughout the 26 years, the impervious surface expanded by
7.34 km2 (Table 3). The rapid expansion of impervious surface
occurred more during 1996–2005. Dissanayake (2020) also found
that the Galle MC displayed a comparable trend of urban expansion,
which aligns with the findings presented in this study (Dissanayake
et al., 2019). The URGZ analysis results also proved that FIS
decreases as one moves away from the city core, while FGS
increases with distance from the city center. High fraction of
impervious surface could be observed within URGZ1-9 and it
gradually decreased toward rural periphery while green surface
density increasing. However, that study discovered that the
increase of the built-up area primarily occurred in a north-south
direction. The expansion trajectory of Galle City exhibits similarities
to other growing cities like Kandy and Kurunegala, where evidence
of the UHI effect has been documented (Fonseka et al., 2019;
Senanayake et al., 2013; Ranagalage et al., 2017; Ranagalage et al.,
2019; Dissanayake et al., 2019; Ranagalage et al., 2020). Though,
Ranagalage et al. (2020) discovered that urban expansion in
Kurunegala primarily took place in the southern direction,
following a linear pattern, in Galle, it is apparent that
urbanization occurred mainly along the north-south direction
showing a compacted growth as Figure 10 (Ziaul and Pal, 2016).
This growth pattern is related to the location of MC as a coastal city,

FIGURE 10
Multi-directional UHI profiles in Galle MC based on themean LST
and the FIS.
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which limits its expansion towards the south which collaborated
with the findings of Dissanayake (2020). However, due to the rich
urban heritage dating back to the colonial era, the city is linked to
other cities such as Matara and Kalutara via the A2 road. Indeed, the
urban expansion along the A2 road is also significant. The improved
physical and social infrastructure facilities have had a substantial
influence on the increasing pattern of urbanization within the
concerned period. This is supported by the rising demographic
data observed in the Galle MC area between 1996 and 2022. This is
further supported by the growth in the population of the Galle urban
area, which has risen from 86,568 in 1996 to a subsequent increase of
109,695 in 2022 (Department of Census and Statistics, 2023).

4.3 Policy implications to minimize UHI
effect and EC

In light of the impervious surface expansion with decreasing green
surface pattern and tendency, city planning agencies such as the Urban
Development Authority (UDA) and MC should adopt sustainable city

planning strategies, such as the implementation of green concepts in
urban planning as suggested by other scholars (Senanayake et al., 2013;
Ranagalage et al., 2017; Dissanayake, 2020). These strategies may
include the establishment of green belts and the promotion of urban
agriculture since the green surface has a cooling effect on LST due to its
ability to generate cool island effects through evapotranspiration
(Ranagalage et al., 2017; Dissanayake, 2020). These measures would
be essentially in the high LST andUHI intensity hot spot areas including
along busy roads and other dense settlement zones in and around the
city core within URGZ1–9 identified as in (Figure 8). Since
transportation networks have greatly affected compacted urban
growth, the liner green belts beside the roads will be more effective
in reducing the effect of heat emitted from automobiles.

4.4 Limitations and future research
directions

Though this research focused on quantifying the linear
relationship between LST and impervious surface expansion,

FIGURE 11
210 × 210 m polygon grid showing maps of the Mean LST, FIS (%), and the FGS (%) in 1996, 2005, 2014, and 2022 in Galle urban core.
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further investigation is necessary to explore the nonlinear
relationship between LST and impervious surface, as well as the
inverse correlation between NDVI, NDBI, ECI, and urban growth.
This analysis should be incorporated with additional data on
precipitation and temperature, similar to the suggestions made by
Fonseka et al. (2019). Due to time and resource constraints, we did
not perform short-term (monthly/annual) trend analysis of UHI.
However, to enhance the robustness and reliability of similar studies
in the future, we recommend including short-term trend analysis. In
future research, high-resolution thermal remote sensing images can
be utilized to derive more precise LULCmaps and other indices such
as LST, NDVI, and NDBI, ensuring improved reliability by
mitigating the impact of cloud cover, as observed in Landsat
images. Additionally, those indices are not only reliant on the
LULC classes as well other variables such as wind speed, solar
radiation, and surface moisture, have an impact on the situation
(Dissanayake et al., 2019). However, it is not feasible tomeasure such

variables using Landsat data. Furthermore, the measurement of
nighttime temperature using Landsat data was unattainable.
Similar to the findings of (Dissanayake, 2020) it is crucial to do
further research to determine if the Galle MC has reached its
maximum capacity in terms of available land for new IS
(Dissanayake, 2020).

5 Conclusion

Our study emphasized the spatial and temporal alterations in
LST and UHI intensity linked to structural changes in the
impervious surface in Galle MC. It highlighted that Galle MC
experienced rapid impervious surface expansion over the 26 years
while green surface showed a considerable decrease. The study
specifically focused on the effect of impervious surface expansion
upon LST and UHI intensity that occurred between 1996 and 2022,

FIGURE 12
Environmental Criticality Index in Galle MC: (A) 1996; (B) 2005 (C) 2014; (D) 2022 [Note: WB and GS were excluded].
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utilizing Landsat data. The results found that the rapid expansion of
impervious surface by 7.34 km2 between 1996 and 2022 has
significantly caused the decline of green surface and other LULC
types. The study demonstrated that rapid urban growth extended
into rural peripheries, and the FIS contributed to the rise in mean
LST. This has led to an increase in LST, UHI, and the emergence of
environmentally critical areas, in and around the Galle MC. The
mean LST experienced a 2.7°C increase during 26 years. By 2022, the
expanded impervious surface regions exhibit the highest
concentrations of LST and EC, surpassing the conditions
experienced in 1996. The regression results revealed that
impervious surface expansion has a greater impact on LST since
there is a strong positive correlation between NDBI and LST. Thus,
green urban planning strategies are essential to minimize the adverse
effects of UHI and environmental criticality in the study area,
especially for identified UGZ. Land use planning and other
related regulations should be updated considering the findings of
these remote sensing-based biophysical indices. And also, this
method can be applied to other Cities along with high-resolution
satellite data and validation techniques. Due to very rare previous
research, this study can be used as an urban planning road map that
focuses on the green city concept and human security.
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