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The nitrate–nitrogen (NO3-N) concentration is a key variable affecting the
ecosystem services supported by headwater streams. The availability of such
data monitored continuously at a high frequency (in parallel to hydrometric and
other water quality data) potentially permits a greater insight into the dynamics of
this key variable. This study demonstrates how single-input single-output (SISO)
system identification tools can make better use of these high-frequency data to
identify a reduced number of numerical characteristics that support new
explanatory hypotheses of rain-driven NO3-N dynamics. A second-order
watershed managed for commercial forestry in upland Wales
(United Kingdom) provided the illustrative data. Fifteen-minute rainfall time
series were used to simulate NO3-N concentration dynamics and the
potentially associated dynamics in dissolved organic carbon (DOC) and runoff,
monitored at the same high resolution for two 30-day periods with a differing
temperature regime. The approach identified robust, high-efficiency models
needing few parameters. Comparison of only three derived dynamic response
characteristics (DRCs) of δ, TC, and SSG for the three variables for the two
different periods led to new hypotheses of rain-driven NO3-N dynamics for
further exploratory field investigation.
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1 Introduction

With advances in sensor technology, more researchers and practitioners are
continuously monitoring nitrate–nitrogen (NO3-N) dynamics and other water quality
variables at a high frequency, i.e., sub-daily or sub-hourly (Burns et al., 2019). For NO3-N,
this reveals the importance of diel and seasonal cycles (Halliday et al., 2013; Kermorvant
et al., 2023) and complex short-term responses to rain events (Brunet et al., 2021). Time
series of NO3-N may also contain apparent interactions with other water quality variables,
such as dissolved organic carbon (DOC) (Ledesma et al., 2022) or phosphate (Graeber
et al., 2024).
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As the accuracy and reliability of continuous in-field NO3-N
measurements have increased (Pellerin et al., 2013), so has the
imperative to make the most of the information-rich time series that
can now be collected (Burns et al., 2019). Improved evaluation of
watershed models capable of simulating complex nitrate dynamics
over wide time scales is possible with the higher-frequency data
(Jiang et al., 2019). Where numerous water quality data streams are
combined with synchronous data streams of potential controlling
variables (e.g., solar radiation and rainfall), real-time “machine
learning” can make rapid predictions of water quality changes for
hazard mitigation (Tang et al., 2022; McGill and Ford, 2024).
Similarly, numerical methods used for extracting 1) the dominant
cycles and trends within NO3-N time series; 2) quantifying the
strength of dynamic relationships between a water quality variable
and the controls on these dynamics; and 3) deriving dynamic
response characteristics (DRCs) particular to the watershed, land
use, or climate setting become credible. One such class of methods
capable of extracting contained dynamics is system identification
(SI) tools or models (Box et al., 2008). Typically, these methods
differ from machine learning approaches or models built on
biogeochemical–hydrological processes by the implicit goal of
parsimony (Taylor et al., 2007). The goal is to simulate the
dominant modes of behavior within a time series with the fewest
number of model parameters in the least complex conceptual model
structure. When the number of model parameters can be limited in
this way (while still simulating outputs with high accuracy),
uncertainty in the individual estimates of parameter values is
constrained. The resultant reduced uncertainty may then lead to
greater confidence in feasible interpretations of the process
dynamics (Jones et al., 2014). Furthermore, by not “forcing”
preconceived process dynamics to fit observed time series, new
aspects of our perceptual understanding of water quality behavior
may emerge from SI modeling (Burns et al., 2019).

Watercourses may have anthropogenically elevated
concentrations of dissolved NO3-N as a result of elevated
nitrogen inputs to watersheds or through watershed disturbance.
For example, in upland Wales (United Kingdom), soil and
vegetation disturbances associated with commercial conifer
forestry have been shown to lead to elevated NO3-N losses to
headwater streams (Neal et al., 2011; Halliday et al., 2013),
risking acidification and eutrophication downstream. The
instrumented headwater stream in upland Wales chosen for this
illustrative study has been affected by such commercial forestry with
its associated impacts on NO3-N concentrations and other water
quality variables (Ormerod and Durance, 2009; Jones and Chappell,
2014). This watershed is the 2-km2 Trawsnant, with over 90% of its
area covered by managed commercial conifer plantations. Lancaster
University instrumented the watershed as part of the “Diversity of
Upland Rivers for Ecosystem Service Sustainability” (DURESS)
project within the Biodiversity and Ecosystem Service
Sustainability (BESS) research program. The stream gauging
station was installed at 52.12596° N, 3.74740° W, at a height of
322 m within the Welsh uplands. Approximately 44% of the
watershed is covered by podzolic soil, 48% by histosol, and the
remaining 9% by gleysol (Jones and Chappell, 2014). The geology
comprises Ordovician sedimentary rocks (Cwmere and Yr Allt
formations). A water quality station was located close to the
stream gauge to collect parallel high-frequency time series of

NO3-N (dissolved and total), organic carbon (dissolved and
total), water temperature, pH, and electrical conductivity. A
network of automated rain gauges supported these stations.
These parallel time series, all collected at a high frequency at
every 15 min, permitted the comparison of rain-driven NO3-N
dynamics with those of DOC and hydrological dynamics. Previous
studies have indicated that watershed hydrological responses to
rainfall and DOC concentrations may help in understanding the
rain-driven NO3-N dynamics in similar low-order streams (Halliday
et al., 2013; Koenig et al., 2017; Burns et al., 2019). A single-input
single-output (SISO) form of system identification modeling (Taylor
et al., 2007) was used in this study to quantify the rain-driven NO3-N
dynamics. The complexity of the accepted models was minimized
(using numerical measures of efficiency and over-parameterization)
to aid the hydrological/biogeochemical interpretation, as done by
Jones and Chappell (2014), Jones et al. (2014), and Chappell et al.
(2017a). The overall aim was to demonstrate the value of using a
SISO system identification tool for quantifying rain-driven water
quality dynamics, with the example of dissolved NO3-N within a
small stream emanating from a conifer plantation. The specific
research objectives are to

1. Demonstrate the value of using SISO system identification to
extract information from multiple water quality time series
monitored at a high frequency along with parallel
hydrometric data;

2. Quantify the degree of model complexity required to simulate
rain-generated, dissolved NO3-N concentration dynamics,
along with reference dynamics of DOC concentration and
streamflow; and

3. Gain consistent process interpretation (feasible hypotheses:
following Beven and Chappell, 2021) from the identified
values of SISO model parameters and their derivative DRCs
from SISO model application to two periods differing in
temperature.

2 Methods

The novelty of the approach illustrated comes from the
combination of water quality and hydrometry monitored at a
high frequency with SISO system identification modeling (Jones
et al., 2014; Chappell et al., 2017a).

2.1 Monitoring dissolved NO3-N and carbon
plus hydrometric variables at a
high frequency

A 430-L/s trapezoidal flume (Genesis Composites Ltd.,
Glenrothes) was used to generate the critical flow for discharge
measurement. The water level was monitored at a tapping point
installed within the throat of the flume using a
CTWM82X5G4C3SUN pressure transmitter (Sensortechnics Ltd.,
Rugby). This was undertaken every 15-min and recorded using a
CR1000 data logger (Campbell Scientific Ltd., Shepshed). Local
deviation from the theoretical calibration was checked with salt
dilution gauging. Rainfall was measured using two SBS500 rain
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gauges (Environmental Measurements Limited, South Shields)
connected to the same CR1000 data-logging systems.

The water quality station was located 60 m upstream of the
flume. The dissolved NO3-N and organic carbon were measured
continuously in the field at the same 15-min intervals as the
hydrometric measurements (rainfall and discharge) using an in-
field “Spectrolyzer” (version 2) with an optical path length of 35 mm
(s::can Messtechnik GmbH, Vienna). To prevent the voltage from
dropping below 12 vDC, which would deactivate the unit, a 24-vDC
power supply was used. The optical windows of the spectrolyzer
were cleaned twice weekly with 10% hydrochloric acid applied to a
small brush. Then, once per week, the measurement windows were
soaked in the same solution for 5 min as a further cleaning step. The
station incorporated an auto-sampler so that water samples could be
taken for laboratory analysis for NO3-N and DOC by the accredited
analytical laboratories of UKCEH. These samples were used for the
adjustment of the s::can RIVCOL global calibrations to the local
Trawsnant water (e.g., Jones et al., 2014). The regular cleaning
regime minimized the magnitude of steps in the concentration
time series before and after each cleaning episode. To remove
these small steps, exponential development of precipitates and
algal growth on the windows over the exact 3–4-day periods
between cleaning was assumed and removed using 15 lines of
code in MATLAB (Jones et al., 2014). Stream temperature at the
water quality station was monitored in parallel to the other variables
using a CS547A probe (Campbell Scientific Ltd.).

2.2 SISO system identification modeling of
rain-driven dynamics

The SISO system identification tool used to quantify the rainfall
to NO3-N dynamics through a series of storm events was the Refined
Instrumental Variable Continuous-time Box–Jenkins IDentification
(RIVCBJID) algorithm within the CAPTAIN Toolbox for MATLAB
(Taylor et al., 2007). This continuous-time variant of this Refined
Instrumental Variable (RIV) method describes the SISO system with
differential equations (Young, 2015) rather than different equations
of the discrete-time variant. RIV methods gain their skill in
capturing dynamics by incorporating

(i) an initial pre-filtering stage to remove high-order noise
(i.e., dynamics much shorter than the shortest time
constant of the system) that affects the identification of the
true model structure and

(ii) the covariance matrix (Box et al., 2008) that is used explicitly
to find the most robust model with the least uncertainty.

2.2.1 Model structure
To reiterate, the form of the model identified by RIVCBJID may

be expressed in ordinary differential equation terms. The simplest
form of the dynamic model identified (i.e., with the least number of
hydrological/biogeochemical components) is called a first-order
model. With rain-driven nitrate concentration as an example,
this model would be (ignoring initial conditions)

dCNO3−N t( )
dt

+ αCNO3−N t( ) � βr t − δ( ),

where CNO3−N is the stream nitrate–nitrogen concentration (mg/L
monitored at a 15-min interval), r is the total rainfall per 15-min
period (mm/15min), δ is the pure time delay between rainfall and an
initial CNO3−N response (number of 15-min periods in this study), α
is the parameter capturing the rate of NO3-N exhaustion (/15 min),
β is the parameter capturing the magnitude of NO3-N production or
gain (mg/L 15-min/mm), and t is time in 15-min periods. The SISO
data being modeled that contain more complex dynamics than
higher-order models (e.g., second-order) may be defined (Jones
et al., 2014). Prior to interpretation (see Section 2.2.3), these are
typically decomposed by partial fraction expansion into multiple
first-order components.

Similarly, the first-order SISO model illustrated may be
expressed as a first-order transfer function in continuous time
(sometimes abbreviated to CT-TF):

NO3 −N � b

s − a
e−sδr; s ~

d

dt
,

where s is the Laplace operator, a � −α, and b � β. The structure of
the CT-TFmodel identified (whether first-order or a higher order) is
often shown in the form of a triad [den num del], where the number
of denominators, den (i.e., number of a terms in the lower part of a
transfer function), number of numerators, num (i.e., number of b
terms in the upper part of a transfer function), and the number of
time steps of pure time delay, del (where time-step length multiplied
by del = δ) are shown in square parentheses. For a first-order model,
there is only one denominator (or a term), so the triad would take
the form [1 num del]. Rain-driven runoff dynamics sometimes
exhibit nonlinearity, where the magnitude of a nonlinearity term
(p) is sometimes shown with a superscript outside the parentheses,
e.g., [den num del]p (refer to Chappell et al., 2012 for example).

2.2.2 Application to high-frequency time series of
NO3-N, DOC, and runoff

RIVCBJID was applied to time series of dissolved NO3-N
concentration, DOC concentration, and stream discharge per unit
area (i.e., runoff), with rainfall as the common input reference. A
period of 234 days (09 January 2013 to 31 August 2013; in ISO
8601 ordinal date format 2012-374 to 2012-608) of synchronous 15-
min time series was considered for analysis (Figures 1A, B).

Previous analysis of DOC time series from the Trawsnant
watershed demonstrated differences in SISO chemograph responses
between seasons (Jones et al., 2014). Thus, in this study with a NO3-N
focus, dynamics are quantified and compared between a 30-day
period in late winter–spring (19 February–21 March; 2012-415 to
2012-445; Figure 1C) with those of a 30-day period in the early
summer (27 May–26 June; 2012-512 to 2012-542; Figure 1D). The
former had an average stream temperature of 2.8°C, and the latter,
9.4°C (see Figure 1B). The periods selected exhibit modest discharge
responses but marked NO3-N and DOC chemograph responses to
rainfall (Figures 1A, C, D). The two periods also contrasted in their
water balance. The discharge per unit area for the selected 30-day
early-summer period was a much smaller proportion of the rainfall
(i.e., 58 mm of 123 mm of rainfall) when compared with the late-
winter–spring period (i.e., 49 mm of 51 mm of rainfall). The higher
stream temperatures in the early-summer period are likely to have
resulted from higher levels of net radiation (data available but not
presented). These higher levels of net radiation are likely associated
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with higher wet-canopy evaporation rates (and transpiration) from
the upland conifers in the early-summer period (Page et al., 2020).
These higher rates of evaporation may explain the observed reduced
discharge per unit rainfall input in the summer period.

2.2.3 Process interpretation of rain-driven
dynamics within the identified model structures

The process of interpretation of key terms within identified
transfer functions may be described by three DRCs (Jakeman
et al., 1993). These DRCs are i) the time constant or TC; ii) the
steady-state gain or SSG; and iii) the already identified pure time
delay or δ. A time constant is derived directly from an identified
value of a:

TC � Δt
a
,

where Δt is the time step in the observations (15 min in this
example). This derived TC is the rate of exhaustion (or recession)
of the concentration (or runoff) response (expressed as time) following
the unit input of rainfall (mm). The SSG is similarly derived directly
from an identified value of a and b:

SSG � b

a
.

This derived SSG is, for example, the magnitude of the NO3-N
concentration increase (mg/L) for a unit input of rainfall (mm). For a
model of runoff where the input and output units are identical, the

FIGURE 1
Time series of 234 days (09 January 2013 to 31 August 2013) at a 15-min resolution for the 2-km2 Trawsnant stream in upland Wales
(United Kingdom). Subplot (A) time series of dissolved NO3-N concentration (mg/L), DOC concentration (mg/L), and unit area discharge (mm × 20); (B)
time series of DOC concentration (mg/L) and stream temperature (°C); (C) 30-day “cold” (late winter–spring) period selected for SISO model
identification; and (D) 30-day “warm” (early summer) period selected for SISO model identification.
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SSG is simply the simulated runoff coefficient (Chappell et al., 2006).
The identified parameter of the pure time delay (δ) is the delay
between a unit input of rainfall (mm) and a unit NO3-N or DOC
concentration (mg/L) response (or runoff response, mm).

3 Results

First-order SISO models (applied to 15-min resolution data)
could describe most of the dominant modes of dynamics between a
rainfall input and an output of either NO3-N, DOC, or runoff (for
either 30-day period; Figures 2, 3). Higher-order SISO models (e.g.,
more complex second-order models that may represent two parallel
pathways with their own dynamics) could be identified. All of these
higher-order models, however, failed the Young Information
Criterion (YIC), indicating that higher model complexity was not
justified by the information content of the data (refer to Chappell
et al., 2012 for example).

Table 1 shows the SISO transfer function parameters of the
identified models and the derived estimates of the DRCs that may be
interpreted in hydrological or biogeochemical terms (Jones et al.,
2014). The efficiency of the identifiedmodels at capturing the output
dynamics is given with the metric of Rt

2 (i.e., simplified
Nash–Sutcliffe efficiency; Chappell et al., 2012). Although the
models capture most of the dominant modes of rain-driven

dynamics, they do not capture them all (i.e., Rt
2 < 1.0). Visual

inspection of the simulated versus observed NO3-N and DOC
chemographs and runoff hydrographs (Figures 2, 3) provides the
same finding. These apparent discrepancies provide additional
insights beyond the interpretations gained from the DRCs and
are therefore discussed.

4 Discussion

First, the interpretations of rain to NO3-N concentration
modeling are presented, followed by additional interpretations
arising from parallel modeling of rain–DOC and
rain–runoff dynamics.

4.1 Dissolved NO3-N response to a unit input
of rainfall in a cold versus warm period

A unit input of rainfall within the contiguous series of three
early-summer storms delivered a similar unit increase in the
dissolved NO3-N concentration to that of the pair of contiguous
winter–spring storms. In the early summer, a 16.3-mg/L increase in
the NO3-N concentration per mm rainfall (above the instantaneous
response) was observed against a slightly smaller increase of

FIGURE 2
Observed and SISO-simulated time series for the 30-day “cold” period in late winter–spring (19 February–21 March 21 2013; ordinal date: 2012-
415 to 2012-445). Subplot (A) NO3-N concentration (mg/L); (B) DOC concentration (mg/L); and (C) runoff (mm, scaled by × 30 for model identification).
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13.7 mg/L in the NO3-N concentration per mm rainfall in the late
winter–spring (Table 1). In some contrast, a large delay between the
rainfall input and dominant mode of the concentration response of
5 h (i.e., 20 × 15-min time -steps) was observed in the case of late
winter–spring storms. This was halved to 2.5 h (i.e., 10 × 15-min
time steps) for the case of early-summer storms. With the storm pair
in the winter period, the pulse of the NO3-N concentration receded
to two-thirds of its peak within 53.2 h (in the identified purely linear
system). In contrast, in the summer period, the same rate of NO3-N
exhaustion was achieved in only 35.0 h, a 52% faster rate. Thus, the
NO3-N response per unit rainfall input appeared more quickly and
depleted more quickly in the warmer, early-summer events than in
the colder winter–spring events.

The antecedent runoff (a measure of catchment wetness:
Chappell et al., 2017b) for the small events in the summer was
slightly larger than that for the winter period (Figures 1C, D).
This may have resulted in a reduced delay in developing a
perched water table and, hence, lateral flow in the NO3-N and
DOC-rich organic surface layers of the forest floor (see Chappell
et al., 1990; Winter et al., 2024) in these summer events. Drier
antecedent conditions for the selected winter events may have

additionally delayed the availability of NO3-N in the upper soil
through limits on mineralization and nitrification (Reynolds and
Edwards, 1995; Rusjan et al., 2008; Koenig et al., 2017; Burns
et al., 2019). Alternatively, the colder temperatures in the winter
period may have limited the mineralization in the upper soil
(Guntiñas et al., 2012). The faster exhaustion of the rain-driven
NO3-N signal at the water quality station in the headwater stream
in the summer may be due to a higher rate of denitrification
within the channel because of the higher temperatures
(Figure 1B; Halliday et al., 2013; Kermorvant et al., 2023).
Alternatively, if the size of the NO3-N shallow source is
limited and comparable for both periods, the faster responses
in the summer period could have led to quicker exhaustion of the
limited NO3-N pool (e.g., Vaughan et al., 2017).

Clear diurnal cycles in the NO3-N concentration time series
emerge in the warmer period (Figures 1D, 3A). These have not been
modeled with the SISO models utilized (negatively affecting model
efficiency) but could be modeled using other SI models such as
UCDHR (e.g., Halliday et al., 2013; Mindham et al., 2018). The
greater sensitivity of the watershed to diurnal cycles in temperature
(and its controlling net radiation) in the summer is interesting as it

FIGURE 3
Observed and SISO-simulated time series for the 30-day “warm” period in the early summer (27 May–26 June 26 in 2023; ordinal date: 2012-512 to
2012-542). Subplot (A) NO3-N concentration (mg/L); (B) DOC concentration (mg/L); and (C) runoff (mm, scaled by × 30 for model identification).
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parallels the SISO modeling finding of greater sensitivity of NO3-N
response (“flashiness”) to rainfall inputs in this period.

4.2 Comparison with the DOC response

The dynamics of the rain-driven concentration response of
DOC in the Trawsnant stream in the winter–spring and early-
summer events was comparable to that of dissolved NO3-N. The
increase in the DOC concentration in the stream from the same
unit input of rainfall was only marginally larger between the
winter–spring and early-summer storms (i.e., an increase of
40.8–42.2 mg/L in the DOC concentration per mm rainfall).
Similar to the NO3-N response, the long delay before the initial
response of the dominant DOC response of 3 h, 45 min in the
winter–spring events reduced to 2 h, 15 min in the early-summer
events (67% faster), and the storm-related pulse in the DOC
concentration decreased more quickly in the summer months
(i.e., TC 49.6 to 24.73 h: Table 1). This finding may imply that the
dominant hydrological (i.e., antecedent conditions or water
pathways) and/or biogeochemical controls affecting rain-
driven NO3-N dynamics between the two 30-day periods are
the same for the DOC concentration.

Compared to NO3-N, the magnitude of the response in the
DOC concentration was considerably greater for the same unit
input of rainfall. For example, in winter–spring, a 40.8 mg/L DOC
increase per mm rainfall above the instantaneous response versus
13.7 mg/L increase per mm rainfall for the NO3-N concentrations
was observed. Thus, the Trawsnant watershed yielded more DOC
than NO3-N for the same rain event conditions. Figure 1B shows
an increasing trend of the DOC concentration (starting on
approximately day 2012-520), following the increase in stream
temperature (starting approximately on day 2012-465). This may
be caused by an increase in DOC production on the forest floor

(Christ and David, 1996). Changing DOC:NO3-N stoichiometry
in the stream may have then given rise to the more rapid
exhaustion of NO3-N identified by the SISO modeling of the
early-summer period (Ledesma et al., 2022). As a counter to this,
the rate of exhaustion increased more with DOC than NO3-N
between the two periods (i.e., 50.1% reduction versus 34.2%
reduction, respectively).

4.3 Comparison with streamflow generation

The SISO analyses yielded [1 1 15]0.30 and [1 2 3]0.99 rain-runoff
models for the first and second periods, respectively (Table 1). This
indicates that one hydrological pathway (or multiple paths
combining to exhibit an apparent unitary behavior) dominates
the Trawsnant hydrological response of the two studied periods
with relatively small discharge events. The response, however,
exhibited a marked increase in the residence time of the response
from the winter–spring to the summer period, with the TC
increasing by 217% from 47.5 to 150.4 h (Table 1). The
dominant rainfall-runoff response had less than a 15-min initial
delay (i.e., less than the time step of the data) in the winter–spring
events, whereas the concentration responses had a pure time delay of
300 and 225 min for the NO3-N and DOC, respectively (Table 1).
These pure time delays in the dominant NO3-N and DOC
concentration response reduced to 150 and 135 min, respectively,
while increasing to 45 min for the rainfall-runoff response in the
early-summer period. These findings, using rainfall runoff as a
reference, may support the idea that the changes in the dynamics
between the two periods have a strong biogeochemistry control
rather than a purely hydrological control.

It should be noted that the apparent diel cycle in the runoff
between summer rainstorms (Figure 3C) has been experimentally
measured to be an artifact of the pressure transmitters used (see also

TABLE 1 Structure and parameters of the identified SISO first-order models applied to NO3-N concentration, DOC concentration, and runoff data given a
rainfall input.

Relation I Model Rt
2 YIC a b TC SSG

19 February–21 March (“cold period”)

Rain-NO3-N 1.0 [1 1 20] 0.811 −9.51 0.0046959 0.064239 53.23 13.68

Rain-DOC 0.69 [1 1 15] 0.805 −9.37 0.0050423 0.20559 49.58 40.77

Rain-runoff 0.38 [1 1 0]0.33 0.935 −11.33 0.0052678 0.022249 47.46 0.52

27 May–26 June(“warm” period)

Rain-NO3-N 0.75 [1 1 10] 0.861 −10.37 0.0071362 0.11635 35.03 16.31

Rain-DOC 0.90 [1 1 9] 0.807 −9.48 0.010116 0.42726 24.71 42.24

Rain-runoff 0.30 [1 2 3]0.99 0.910 −10.63 0.001662 1.3591 150.42 0.56

0.01311

Themodel structure is given in the form [den num del]p. Term den is the number of transfer function denominators (i.e., recession or a parameters). Term num is the number of transfer function

numerators (i.e., gain or b parameters). Term del is the number of time steps of pure time delay between input and output response (where time-step length multiplied by del = δ), while p is the

magnitude of the nonlinearity term within the Store Surrogate Sub-Model (Chappell et al., 2012). All models have an instantaneous component, I (without dynamics; Young, 2006), and its

magnitude is in the units of the input variable. YIC is the Young Information Criterion, heuristic measure of model over-parameterization, and Rt
2 is the simplified Nash–Sutcliffe efficiency

measure (Chappell et al., 2012). The DRCs are derived directly from the identified a and bmodel parameters. The TC is the transfer function time constant (h) and is derived from the value of

the parameter a. The SSG is the steady-state gain (in units of the output variable/input variable) and is derived from the values of the a and b parameters used in combination. Note that the rain-

runoff models were identified after first multiplying the runoff by 30 (thereby affecting the values of the a and b parameters in Table 1). Initial values of SSG for the rain-runoff models were

consequently divided by 30 and then added to the instantaneous component (I), before presentation in the table.
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Mindham et al., 2018) rather than a natural diel cycle in the stream
discharge (that can be present in other local watersheds; Kirchner,
2009). This contrasts with the natural diurnal cycle in the NO3-N
concentration time series (Figures 1D, 3A).

5 Conclusion

The SISO system identification tool of RIVCBJID identified
models of rain-NO3-N, rain-DOC, and rain-runoff over 30-day
periods (each including 2–3 rain events) that have a high
simulation efficiency (Rt

2) of between 0.807 and 0.935
(Table 1). The water quality models comprised only four
model parameters, namely, I (an instantaneous component
with no dynamics; Young, 2006), δ, a, and b (Table 1). The
runoff models required either five parameters, namely, p (a
nonlinearity term), I, δ, a, and b or six parameters, namely, p,
I, δ, a, and two b values (Table 1). The two b values provide a first-
order model (i.e., one a parameter) in series. Water quality or
hydrological models with such a small number of parameter
values but high simulation efficiency are described as
parsimonious (Chappell et al., 2017a). Slightly higher-order
models (e.g., second-order models with two a values and two
b values) were identified. These were, however, rejected as being
“over-parameterized” (i.e., not justified by the dynamics in the
data) for the selected Trawsnant events as the YIC values changed
by more than +1 with higher model orders (Chappell et al., 2012).

Similarities and contrasts in behavior between rain-driven NO3-
N concentration dynamics between the two periods and with the
other two variables (DOC concentration and runoff) were observed.
For both water quality variables, the increase in the concentration
per unit input of rainfall (SSG) remained similar in the cold and
warm periods, as did the simulated runoff coefficient (i.e., SSG for
the rain-runoff system). The SSG for the rain-DOC dynamics
remained similar despite the increasing trend in the DOC
concentration at times between storms (Figure 1B). In contrast, δ
and TC for both water quality variables were much shorter (i.e., the
system was more responsive) in the warmer period. This occurred as
the hydrological system became more damped (i.e., δ and TC
increased), perhaps highlighting the potential importance of the
non-hydrological (e.g., biogeochemical) differences between the
two periods.

The differences and similarities in the dynamics (between
periods and variables) have feasible hydrological and
biogeochemical interpretations based on the published findings of
others. Whether these feasible interpretations are the dominant
cause of the dynamics identified for the 2-km2 Trawsnant stream (in
upland Wales) , however, requires further field investigation (and
subsequent numerical analysis). These further field investigations
would benefit from high-frequency NO3-N concentration time
series at distributed locations within the watershed (Jones and
Chappell, 2014; Burns et al., 2019), such as the litter layer,
topsoil, upstream channels, and riparian zones. Similarly,
improved rejection of feasible hypotheses would benefit from the
collection and analysis of a greater number of potentially controlling
variables at the watershed outlet (Burns et al., 2019; Li et al., 2022)
and distributed throughout the watershed.

Additionally, the SISO models identified and interpreted in
this study were for two 30-day periods with modest discharge
responses but marked NO3-N and DOC chemograph responses
to rainfall. The robustness of the interpretations so far presented
needs further evaluation by application to i) similar types of
events in other years of record; ii) other seasons (e.g., autumn);
iii) more complex storm periods with larger discharge responses;
and iv) other water quality variables monitored in parallel (e.g.,
pH and electrical conductivity). These analyses are
now planned.

Combining SISO system identification with high-frequency
water quality and hydrometric data is, therefore, suggested as an
approach to support more robust experimental designs of
investigations into the rain-driven dynamics of NO3-N and other
important water quality variables.
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