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The global climate crisis is escalating, and how to reduce land use carbon
emission (LUCE) while promoting social and economic development is a
global issue. The purpose of this study was to investigate the spatio-temporal
evolution characteristics and influencing factors of LUCE at the county scale. To
accomplish this goal, based on Zibo County land use data and societal energy
consumption statistics, for predicting the net LUCE in 2010, 2015, and 2020. GIS
spatial analysis and spatial autocorrelation model were utilized to investigate the
spatio-temporal evolution characteristics of LUCE. The geographical and
temporal weighted regression (GTWR) model was used to investigate the
influencing factors and spatial differences. The findings demonstrate that: (1)
the rate of land use change in Zibo City decreased between 2010 and 2020, with
the overall land use motivation falling from 0.14% to 0.09%. The area of arable
land, forest land, and grassland decreased, while the amount of water, developed
land, and unutilized land increased. Between 2010 and 2020, net carbon
emissions in Zibo City increased significantly, from 3.011 × 107tC to 3.911 ×
107tC. The spatial distribution of LUCE followed a clear pattern of “elevated in the
east and diminished in the west, elevated in the south and diminished in the
north.” The spatial agglomeration characteristics of LUCE are obvious, and the
overall trend of the Moran I value is falling, from 0.219 to 0.212. The elements that
determine LUCE vary greatly by location, with themost major influences being, in
descending order, energy consumption per unit of GDP, urbanization rate, land-
use efficiency, and population size. The energy consumption per unit of GDP has
the greatest impact on Linzi District, with coefficients ranging from 55.4 to 211.5.
The study clearly depicts the spatio-temporal distribution of carbon emissions
resulting from land use in Zibo City and the factors that contribute to them.
Simultaneously, it provides a scientific framework for improving land use
structure and implementing low-carbon programs throughout the region.
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1 Introduction

In terms of the environment, global warming and frequent natural disasters, economic
development has resulted in a considerable increase in carbon emissions (Jia et al., 2023;
Huang et al., 2024). As a result, tackling the climate change caused by these emissions has
become a critical global concern (Meng et al., 2023). Land is the physical medium for
human society and environmental processes, and it is inextricably linked to carbon
emissions (Xia et al., 2023). According to research, land use and cover changes account
for roughly one-third of total human-caused carbon emissions (Zhang et al., 2018). This
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ranks land use changes as the second most major source of carbon
emissions, after fossil fuel combustion (Chen et al., 2023; Zhao et al.,
2023). These changes have an important influence on the rise in
carbon emissions (Yu et al., 2013; Li et al., 2022).

Currently, China leads the world in carbon dioxide emissions
and energy consumption (Lin et al., 2021; Chen et al., 2022). As a
result, reducing carbon emissions in China has emerged as a critical
international issue. Hence, the Chinese government has regularly
expressed China’s plans to cut carbon emissions and combat climate
change in major forums to reach a carbon dioxide emission peak by
2030 and be carbon neutral by 2060 (Wang et al., 2022; Yan et al.,
2022). Exploring solutions for reducing carbon emissions from land
use is crucial for achieving green and low-carbon development goals.

Recently, domestic and international academics have conducted
substantial research on carbon emissions from land use. The
primary focus of this research is on measuring carbon emissions,
as well as the spatial and temporal patterns and factors that influence
them. The primary goal of this research is to account for carbon
emissions. According to the Intergovernmental Panel on Climate
Change (IPCC) carbon emissions inventory, the carbon emissions
factor technique has been widely used in carbon emissions
accounting due to its scientific, systematic, and simple calculation
qualities, as demonstrated by prior research (Han and Ge, 2023). For
example, Zhang et al. (2022) used the carbon emissions factor
approach to calculate carbon emissions from various land use
types in the Yellow River Delta. Their research found that arable
land and land earmarked for building were the biggest sources of
carbon emissions. Forest land, grassland, watersheds, and
undeveloped areas, on the other hand, served as significant
carbon sinks in the metropolis (Zhang et al., 2022). Similarly,
Meng et al. (2023) used the carbon emissions coefficient
approach to quantify carbon emissions from land use in nine
provinces of the Yellow River Basin. They discovered that carbon
emissions from construction land had a major impact on regional
carbon emissions (Meng et al., 2023).

Based on accounting methods, researchers conduct extensive
investigations into the geographical and temporal evolution
characteristics, as well as the influencing variables, of land use
carbon emissions. Existing research by professionals and scholars
has analyzed carbon emissions at many scales, including provincial
area (Chuai et al., 2015; Dong et al., 2015), city cluster (Zhang et al.,
2018; Li L. et al., 2023), city area (Huang et al., 2021; Tang et al.,
2022), and metropolitan area (Wang et al., 2023), to analyze carbon
emissions’ spatial and temporal patterns. Commonly used methods
in these studies include spatial autocorrelation analysis (Wei et al.,
2023) and standard deviation ellipse modeling (Cai and Li, 2024).
For instance, Cui et al. (2018) employed the spatial autocorrelation
method, utilizing Landsat image data and socio-economic statistics,
to examine the spatial attributes of carbon emissions in the Yangtze
River Delta. The study revealed a noteworthy positive correlation
between carbon emissions and regional land use (Cui et al., 2018).
Scholars primarily focus on research methods and models when
studying the factors that influence a phenomenon. Some commonly
used methods and models include the logarithmic mean division
index (LMDI) model (Zhang et al., 2021; Zhao et al., 2021; Liu C. X.
et al., 2023), geographically weighted regression (GWR) model
(Fang et al., 2023), spatio-temporal geographic weighted
regression (GTWR) model (Tian et al., 2022; Yang et al., 2024),

geographic detector (Song et al., 2022; Zhang et al., 2024) and
stochastic impacts by regression on population, affluence, and
technology (STIRPAT) model (Zhang and Xu, 2017; Yang and
Liu, 2023). For instance, Liu S. T. et al. (2023) employed the
LMDI decomposition model to investigate the drivers of carbon
emissions from agricultural land in China, and the findings revealed
that the level of the agricultural economy plays a significant role in
the increase in carbon emissions. Yang and Liu. (2023) conducted a
study using a spatio-temporal geographic weighted regressionmodel
to examine the factors that influence carbon emissions in Xinjiang.
The study revealed that factors such as population size, urbanization
rate, and land use efficiency have a significant impact on carbon
emissions (Liu S. T. et al., 2023b). Similarly, Guo et al. (2023)
employed the STIRPAT model to assess the degree of influence of
carbon emissions factors in the production-life-ecological space in
Heilongjiang Province (Guo et al., 2023). Additionally, Chen et al.
utilized the LMDImodel to analyze the factors affecting LUCE in the
Northeastern Black Soil Region. Their findings indicated that per
capita gross domestic product is decisive in carbon emissions (Chen
et al., 2023).

Although domestic and foreign scholars have gradually
improved their study on land use carbon emissions, the following
shortcomings remain: (1) In terms of research methodology, most
scholars use geographic probes, geographically weighted regression,
and other models to analyze land use carbon emissions based on the
spatial distribution scale, and few scholars have carried out research
on land use carbon emissions in both the temporal and spatial
dimensions. (2) In terms of the scale of the research, scholars have
focused on the geographical areas of provinces, municipalities,
urban agglomerations, and metropolitan areas. Provinces, cities,
urban agglomerations, metropolitan areas, and other geographical
areas to carry out research for the county unit of land use carbon
emission mechanisms, effects, and factors affecting relatively few
studies, ignoring the spatial heterogeneity within the region, the
county is China’s basic administrative unit, and there have been
studies showing that counties have a strong potential for carbon
reduction; (3) in the content of the study, land use change is one of
the important sources of global carbon emissions, but from a land
use change is one of the important sources of global carbon
emissions, but fewer scholars have conducted research on carbon
emissions from the perspective of land use change.

Shandong Province has developed the “Shandong Province
ecological and environmental protection industry high-quality
development “311” project 3-year action plan (2023–2025) “in
the context of “double carbon”. As a modern industrial city and
one of the three major ecological and environmental protection
industry clusters, Zibo City’s government has issued the “Zibo City
Deepening the Conversion of Old and New Dynamics to Promote
Green, Low-Carbon, and High-Quality Development Three-Year
Action Plan (2023–2025),” which promotes the city’s green, low-
carbon growth trend (Zhang and Zhang, 2023). Industrial cities emit
more carbon than average cities. And, being a typical contemporary
industrial city and a major petrochemical base in China, Zibo City
has particular characteristics as a research subject.

In the selection of influential factors, it is found by observing
previous studies that these influencing factors are always related to
population (Wu et al., 2024), land (Li and Lin, 2022), economy
(Zhou and Cao, 2022), and energy (Cao and Yuan, 2019). For
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example, Cai and Li, (2024) found that the level of urbanization,
population size, and economic volume have a significant impact on
carbon emissions based on a geodetector study Cai and Li, 2024, and
Zhao et al., (2021) used the LMDI model to study the influencing
factors of carbon emissions in the Pearl River Delta, and the study
showed that the land use change, energy structure, energy efficiency,
economic development, and population all contribute to the
increase of carbon emissions from land use. Most of these
scholars studied the influencing factors of the study area from a
certain dimension of time or space, while this paper is based on the
GTWR model, which makes it easier to reveal the spatial and
temporal heterogeneity of the influencing factors of carbon
emissions. Carbon emissions in Zibo City County vary spatially
and temporally, and these variations are influenced by a variety of
causes. Combining existing studies and Zibo City’s regional
characteristics, taking data accessibility into account, this paper
screens the influencing factors of land use carbon emissions from
the perspectives of population size, land use, socioeconomics, and
energy consumption, respectively. Finally, four significant
influencing factors were identified: population size, urbanization
rate, land use efficiency, and energy use per unit of GDP.

In view of this, this paper analyzes the land use changes and
spatial and temporal characteristics of carbon emissions in Zibo City
using three periods of land use remote sensing data and social energy
consumption data in 2010, 2015, and 2020, and analyzes the carbon
emission agglomeration characteristics based on the county unit and
1 km grid scale, and finally analyzes the carbon emission influencing
factors of Zibo City’s land use by the spatiotemporal geographical
Finally, the GTWR model was used to assess the factors that
influence carbon emissions from land use in Zibo City.

In recent years, Zibo city districts and counties have a large gap
in the level of development and are faced with industrial
transformation, large resource consumption, technological
backwardness, and other low-carbon development problems. This
paper analyzes the spatial and temporal characteristics of land use
carbon emissions and influencing factors based on the perspective of
land use change and proposes scientific references for the
development of carbon emission reduction.

2 Materials and methods

2.1 Study area

Zibo City is located in Shandong Province’s center region and is
part of the Shandong Peninsula City Cluster. It is located west of the
provincial capital of Jinan, north of Binzhou, east of Weifang, and
south of Linyi. The city’s geographical coordinates are 35°55′20″ to
37°17′14″ north and 117°32′15″ to 118°31′00″ east. The State
Council recognizes Zibo City as a modern industrial city, with
petrochemicals being the leading industry. The city’s topography
features higher heights in the south and lower elevations in the
north, as well as mountainous hills in the south. The Yellow River
also flows through the northern part of the city (Figure 1). Zibo’s
GDP (gross domestic product) was CNY 456.18 billion in 2023,
representing a 5.5% increase over the previous year. The territory is
now divided into five districts: Linzi, Zichuan, Boshan, Zhangdian,
and Zhoucun. Additionally, there are three counties in total:

Huantai, Gaoqing, and Yiyuan. Zibo covers 596,500 ha and has a
population of 4.7 million residents.

2.2 Research data

The data used in this analysis include land use data, energy
consumption data, GDP statistics for districts and counties, and
Zibo City’s urbanization rate from prior years. This study’s land use
data is based on 2010–2020 land use raster data provided by the
Chinese Academy of Sciences Resource and Environment Science
and Data Centre. The data has a resolution of 30 m. The
2010–2020 Zibo Statistical Yearbook provides data on energy
consumption and GDP for districts and counties (Table 1). To
maintain data comparability across years, this analysis uses the
administrative division of 2022 as a reference point.

2.3 Methods

Scholars at home and abroad have conducted a large number
of studies focusing on the fields of land use carbon emissions
accounting, spatial and temporal evolution characteristics of
land use carbon emissions, influencing factors of land use
carbon emissions, and low carbon land use optimization, with
different authors selecting different research methods based on
the actual situation of the research object (Figure 2). In the
research method of spatial and temporal evolution
characteristics, the spatial autocorrelation model can analyze
the internal and external characteristics of the observational data
of the study area from both global and local aspects, reflecting
the spatial clustering characteristics, and the standard deviation
ellipse model is often used to analyze the distribution and
development trend of a set of data; in the research method of
influencing factors, the geodetector explores the relationship
between two variables by examining the degree of coupling
between the two variables, and the LMDI model can
effectively identify and quantify the degree of contribution of
each influencing factor, the GWR model is used to explore the
characteristics of spatial changes and influencing factors at a
certain scale, and the GTWR elaborates the spatial-temporal
evolution characteristics of the study content in both time and
space dimensions, which is more useful for revealing the spatial-
temporal heterogeneity of the different influencing factors
within the study area.

Therefore, considering the reality of the study area and the
environmental background, the spatial autocorrelation model is
more useful for exploring the characteristics of carbon emissions
agglomeration in Zibo City, while the time span of the study is large,
it is more reasonable to choose the GTWR model to explore the
spatiotemporal heterogeneity of the study area in both time and
space dimensions.

2.3.1 Land-use dynamics approach
This paper examines the land use dynamics to analyze the

changes in land use types in the study area. Land use dynamics
refers to the extent of change in the area of each land use type over a
specific period of time, reflecting the speed and intensity of the
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change (Li X. P. et al., 2023). A higher land use dynamics indicates a
more significant change in land use types. Hence, the land use
dynamics can serve as a clear indicator of the overall transformation
of Zibo City or specific land use categories during the course of the
study period.

The term “single dynamic attitude” refers to the measurement of
the extent and rate of change of a specific land use type within a
particular timeframe in the study area. On the other hand, the
“comprehensive land use dynamic attitude” is used to assess the

overall change of land use in the study area over a specific period of
time. This is calculated using the following formula (Equations 1, 2)
(Han and Ge, 2023):

K � Rb − Ra

Ra
×
1
T
× 100% (1)

Z �
∑n
c�1
ΔZc−d

2∑n
c�1
ΔZc

×
1
T
× 100% (2)

FIGURE 1
Location of the Zibo city.

TABLE 1 Research data sources of Zibo City.

Aspects
Data type Source

Carbon emissions accounting land use data https://www.resdc.cn/

energy consumption data IZibo City Statistical YearbookJ

Influencing factor GDP IZibo City Statistical YearbookJ

permanent population IZibo City Statistical YearbookJ

urbanization rate IZibo City Statistical YearbookJ
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Where K represents the dynamic attitude of single land use (Unit:
%), Ra and Rb respectively represents the area of land use types in the
early and late periods of the study area (Unit:km2), and T represents
the interval time between the early and late periods. Z represents the
dynamic attitude of comprehensive land use (Unit:%), ΔZc−d
represents the absolute value of the conversion area of type x
land to other land types, and ΔZc represents the area of the
initial land use type.

2.3.2 Methodologies for measuring LUCE
This study employs the carbon emissions coefficient approach,

which is extensively utilized to compute the carbon emissions of
various land use kinds. Drawing on extensive research conducted by
numerous researchers, the land use types are classified into two
categories: carbon source land and carbon sink land (Huang and
Zhou, 2022; Cheng et al., 2024). Carbon source land comprises
arable land and construction land, whereas carbon sink land
encompasses arable land, forest land, grassland, watershed, and
unutilized land. The carbon emissions factor method can directly
measure arable land, forest land, grassland, watershed, and
unutilized land. However, the carbon emissions from
construction land primarily stem from human production and
life. This can be indirectly calculated using energy consumption
data (Li X. et al., 2023). Obtaining energy consumption statistics for
development land in the county is challenging. However, this study
manages to acquire it by using the proportion allocation of the
county to the city’s GDP (Liu C. X. et al., 2023).

2.3.2.1 Methodologies for measuring direct LUCE
The carbon emissions from land usage on cultivated land, forest

land, grassland, aquatic areas, and vacant land have shown
consistent stability over an extended period. These emissions can
be accurately quantified using the carbon emissions coefficient
approach. The calculating formula is as follows (Yan et al., 2022):

CZ � ∑Ci � ∑n
i�1
Ai × Bi (3)

Where Cz indicates direct LUCE(Unit:tC); i represents land use type;
Ci represents the LUCE type i (Unit:tC); Ai represents the total area
of type i land use; Bi represents the Carbon emissions coefficient of
different land use types (Table 2).

2.3.2.2 Methodologies for measuring indirect LUCE
Land serves as both a natural source and sink for carbon, as well

as a medium for human activities that generate carbon emissions.
Indirect carbon emissions are primarily determined based on energy
usage statistics. Based on the current circumstances in Zibo City, a
total of 10 energy sources have been chosen for computation. These
include raw coal, coke, natural gas, crude oil, petrol, diesel, kerosene,
fuel oil, liquefied petroleum gas and electricity. The calculating
formula is as follows (Yan et al., 2022):

Cj � ∑n
m�1

Cm × Dm × Em (4)

Where Cj indicates indirect LUCE (Unit:tC); m stands for energy
type; Cm represents the M-type energy consumption data; Dm

represents the conversion coefficient of standard coal of the m
energy source; Em represents the carbon emissions coefficient of
the m energy source (Table 3).

2.3.3 Exploratory spatial data analysis methods
Spatial autocorrelation theory, unlike previous spatial analysis

methods, is employed to assess if the spatial arrangement of
variables exhibits clustering. It is a prominent approach for
quantitatively addressing the issue of spatial correlation in
geographic variables. Moreover, it is better suited for uncovering
the spatial distribution characteristics of the data and facilitates
visual representation. This theory comprises two components:
global spatial autocorrelation and local spatial autocorrelation
(Zhang et al., 2022).

Global spatial autocorrelation is employed to evaluate the
general pattern and trend of the data in order to ascertain if a
phenomenon is concentrated in a particular place. On the other

FIGURE 2
Land use carbon emissions study.
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hand, the local Moran index is utilized to quantify the areas where
high and low attribute values cluster together. This article uses global
spatial autocorrelation to examine carbon emissions in Zibo City,
while local spatial autocorrelation is utilized to assess the grid units
at a 1 km size in the Zibo area.

Spatial autocorrelation is typically quantified using theMoran’s I
index, which measures global spatial autocorrelation. The index is
constructed as follows (Equations 5, 6) (Wu et al., 2022):

IG �
n∑n
i�1
∑n
j�1
Wij xi−�x( ) xj−�x( )

∑n
i�1

∑n
j�1
Wij( )∑n

i�1
xi − �x( )2

(5)

IL �
n xi − �x( )∑n

j�1
Wij xj − �x( )

xi − �x( )2 (6)

Where xi and xj are the measure values of the elements on the i and j
counties respectively, and i≠j; �x represents the average value of

measurement elements in the study area;Wij represents the distance
space weight matrix.

The value of Moran’s I is between (−1,1). The closer the value is
to 1, the stronger the spatial positive correlation is; 0 means that
there is no spatial autocorrelation; the closer the value is to −1, the
stronger the spatial negative correlation is (Tan et al., 2023).

2.3.4 Spatio-temporal geographically weighted
regression (GTWR) models

Presently, the prevailing models used for the dissection of
influencing components encompass the LMDI decomposition
model, the STIRPAT model, the GWR model, and others. This
work differs from prior studies by utilizing the approach developed
by Huang et al. to include temporal characteristics into the
conventional geographically weighted regression model, resulting
in the proposal of a GWTR model (Zhou et al., 2021; Rong et al.,
2023). The model offers a more accurate explanation of spatial
phenomena and effectively addresses the issue of temporal and
spatial non-stationarity. It describes the spatio-temporal evolution
of the study content in both time and space dimensions and is
valuable for uncovering the spatio-temporal heterogeneity of various
influencing factors within the study area.

In order to account for the variations in socio-economic
environment and natural ecological conditions across the study
area, it is imperative to investigate the specific impact of different
influencing factors in different regions, taking into consideration
both spatial and temporal aspects. The expression for the spatio-
temporal geographically weighted regression model (GTWR) is as
follows (Equation 7) (Shi et al., 2022):

Yl � β0 ul , vl , tl( ) +∑p
k�1

βk ul , vl , tl( )Xlk + αl (7)

Where Yl is the explained variable of the l sample region; (ul, vl, tl) is
the spatio-temporal coordinate of the l sample region; β0(ul, vl, tl) is
the spatio-temporal intercept of the l sample region; βk(ul, vl, tl) is
the regression coefficient of the k explanatory variable in the l sample
region; Xlk is the observed value of the k explanatory variable in the l
sample area; αl is the random disturbance term of the l sample
region; p is the number of explanatory variables.

TABLE 2 LUCE coefficient reference.

Land use type Carbon emissions factor Unit This paper adopts

Cropland 0.4595 (Rong et al., 2023) kg/(㎡·a) 0.0422

0.0422 (Yang et al., 2020) kg/(㎡·a)

Forest −0.6125 (Yang et al., 2020) kg/(㎡·a) −0.0578

−0.0578 (Rong et al., 2023) kg/(㎡·a)

Grassland −0.0021 (Rong et al., 2023) kg/(㎡·a) −0.0021

Water −0.0253 (Yang et al., 2020) kg/(㎡·a) −0.0252

−0.0252 (Rong et al., 2023) kg/(㎡·a)

Unused land −0.0005 (Rong et al., 2023) kg/(㎡·a) −0.0005

TABLE 3 Carbon emissions coefficients of different energy types.

Energy
type

Conversion factor for
standard coal kgce/kg

Carbon emissions
coefficient t/tce

Raw coal 0.7143 0.7559

Coke 0.9714 0.8550

Natural gas 1.2143 0.4483

Crude oil 1.4286 0.5857

Gasoline 1.4714 0.5583

Diesel oil 1.4571 0.5921

Kerosene 1.4714 0.5714

Fuel oil 1.4286 0.6185

Liquefied
petroleum gas

1.7143 0.5024

Electric power 0.1229 0.2123

Note: Carbon Emissions Coefficient based on IPCC 2006.
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3 Results

3.1 Land use change

The land uses raster data from Zibo City in 2010, 2015, and
2020 were evaluated with ArcGIS10.6 software. This analysis
provided the current land use status of Zibo City for each year
and looked into any changes that occurred.

Analyzing land use motivation in Zibo City reveals (Table 4)
that the city’s overall attitude towards land use motivation
decreased from 0.14% in 2010–2015 to 0.09% in 2015–2020.
This suggests that Zibo City’s pace of land use change
decreased between 2010 and 2020. Between 2010 and 2015, the
amount of cultivated land, forest land, and grassland decreased,
while the area of water, construction land, and unused land
increased. The most common reason for using construction
land was 0.71%. Between 2015 and 2020, the amount of farmed
and unutilized land decreased, while the area of forest land,
grassland, waterways, and construction land increased. The
greatest increase in land use was recorded on unutilized land,
reaching 1.58%. Overall, arable land, construction land, and
unutilized land changed at a rapid pace between 2010 and
2020. Construction land saw the greatest gain, with a growth
rate of 0.59%. Zibo City’s urbanization rate of Zibo City has been
continuously increasing in recent years, resulting in increased
demand for construction land due to economic development and
an extension of the total area of construction land.

Table 5 shows that the types and areas of land use in Zibo City
have changed to varied degrees (Figures 2–4). From 2010 to 2020,
construction land experienced the greatest rise in the transfer
area, growing by 65.168 km2. Water came next, increasing by
0.85 km2. The highest decline in transfer area was found in arable
land, with a fall of 61.449 km2. Grassland experienced the second
biggest drop, with a reduction of 2.416 km2. The smallest
decrease in transfer area was observed in unutilized land,
which decreased by 0.25 km2. Between 2010 and 2020,
construction land area increased the most, owing mostly to
the conversion of arable land. This represented 88.7% of the
entire transfer of construction land area. Conversely, arable land
area decreased the most, owing primarily to its conversion into
construction land. This accounted for 77.7% of the total transfer
of arable land area, including interconversion between arable and
built-up land. The primary sources of forest land are grassland
and cropland, while the primary sources of grassland are
cropland and forest land. Farmland is the main contributor to
water supply, and unutilized land is reduced in size through land
use adjustments. Zibo City’s economic development and land use
structure adjustment have accelerated urban construction,
resulting in the expansion of construction land into non-
construction areas such as cropland, forest land, and
grassland, leading to an increase in the total area of
construction land.

In general, land use in Zibo City has changed significantly
during the research period, with an increase in water and
construction land and a decrease in arable land, forest land,
grassland, and unutilized land. The overall trend in land use
dynamics is downward, indicating that land use changes in Zibo
City are gradually stabilizing.

3.2 Characteristics of the spatial and
temporal evolution of LUCE

3.2.1 Characteristics of temporal evolution
The carbon emissions and carbon sequestration of six different land

use types in Zibo City, including cropland, forest land, grassland,
watershed, construction land, and unutilized land, were computed
using Equations 3, 4, respectively. These land use types were then
divided into two main categories: carbon sources and carbon sinks.
Table 6 shows a large rise in carbon emissions from 2010 to 2020, from
3.017 × 107t to 3.918 × 107t. This amounts to an average annual growth
rate of 9 × 105t. Notably, construction land is the most significant
contributor to carbon emissions, accounting for more than 99% of the
total. Carbon uptake at the carbon sinks increased gradually between
2010 and 2020, from 63,636.9t to 64,381.8t. The average annual growth
rate was 74.49t. Forest land accounted for about 90% of total carbon
uptake. To summarize, the rate at which carbon sinks are growing is
significantly lower than the rate at which carbon emissions are
increasing. Between 2010 and 2020, Zibo City’s net carbon
emissions increased quickly from 3.011 × 107t to 3.911 × 107t. This
indicates that the land in Zibo City has improved its capacity to absorb
carbon, but it is still far from being able to meet the demands of carbon
emissions. Additionally, the consumption of fossil energy in Zibo City
has increased year by year during the study period, and the proportion
of industrial output value has also risen. This is closely linked to Zibo’s
positioning as a modern industrial city. In future carbon reduction
targets, the government should prioritize the green transformation of
enterprises, the research and development of low-carbon technology,
and the optimization of land-use structures to enhance
energy efficiency.

3.2.2 Characteristics of spatial evolution
To explore the changes in carbon sources and sinks in Zibo City

between 2010 and 2020, we calculated the carbon emissions from land
use in all districts and counties of ZiboCity.We divided the districts and
counties into five categories based on their carbon absorption and
emissions levels: low value, sub-low value, medium value, sub-high
value, and high value.We then used ArcGIS10.6 software to display and
represent the data (Figure 5). Figure 5 (2a-2c) shows that the spatial
distribution of carbon sinks in Zibo City is reasonably stable. The
southern mountainous regions, including Zichuan District, Boshan
District, and Yiyuan County, exhibit high carbon sink values due to
their dense forest cover. Conversely, northern locations, such as
Gaoqing County, Huantai County, and Zhangdian District, have
poor carbon sink values because they are primarily agricultural and
building terrain. This generates a spatial pattern in which, with the
exception of Zhangdian District, Zhoucun District, and Huantai
County, carbon sinks in Zibo City other districts and counties
decreased between 2010 and 2020. Among them, Zichuan District
had the largest decrease, with an average annual decrease of 89.57t.
Figure 5 (2d-2f) clearly shows significant spatial changes in the amount
of carbon sources in Zibo City County. The carbon sources in each
district and county exhibited an upward trend, with Gaoqing County
transitioning from a low-value area to a second-low-value area, Huantai
County transitioning from a second-high-value area to a high-value
area, and Yiyuan County and Zhoucun County transitioning from a
second-low-value area to a medium-value area. Overall, the pattern
observed is “high in the east, low in the west, and high in the north and
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TABLE 4 Dynamic degree of land use in Zibo City from 2010 to 2020 (Unit:%).

Land use type 2010–2015 2015–2020 2010–2020

Cropland −0.26 −0.16 −0.21

Forest −0.04 0.01 −0.02

Grassland −0.07 0.01 −0.03

Water 0.10 0.07 0.09

Settlement 0.71 0.45 0.59

Unused land 1.56 −1.58 −0.07

Comprehensive land use dynamic degree 0.14 0.09 0.11

TABLE 5 Transition matrix of land use in the Zibo City from 2010 to 2020(Unit:km2).

2020-Land use type and area

2010-Land Use Type Grassland Cropland Settlement Forest Water Unused land Total

Grassland 717.287 10.284 4.782 14.665 0.455 0.812 748.284

Cropland 11.376 2,837.543 83.886 7.755 3.725 1.166 2,945.450

Settlement 1.499 25.354 1,080.021 2.056 0.473 0.034 1,109.437

Forest 14.953 7.468 3.289 1,003.835 0.394 1.127 1,031.066

Water 0.452 2.685 0.673 0.374 90.330 0.049 94.564

Unused land 0.301 0.668 1.954 0.479 0.036 30.578 34.016

Total 745.868 2,884.001 1,174.605 1,029.163 95.414 33.766 5,962.818

FIGURE 3
The present situation of land use in Zibo City from 2010 to 2020. (A) 2010, (B) 2015, (C) 2020.
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south”. Notably, Huantai County experienced the largest increase in
carbon emissions. Huantai County exhibits the most significant
increase in carbon emissions, with an average annual rise of 1.298 ×
105t. Figure 5 (2g-2i) illustrates that the net carbon emissions and
carbon sources in Zibo City’s county area follow a similar pattern of
change. The regions with high carbon values are primarily situated in
Zhangdian and Linzi districts, as well as other central areas. Conversely,
the regions with low carbon values are mainly found in the southern
and northern areas, including Gaoqing County and Yiyuan County.
During the study period, the carbon sink land in ZiboCounty, including
forest land, grassland, waters, unused land, and other land, was unable
to absorb the carbon emissions from cropland and construction land.
As a result, the overall net carbon emissions increased, with the highest
values primarily found in the central and eastern parts of Zibo. Zibo
City’s net carbon emissions have continuously followed a regional
trend, with higher emissions in the east and south and lower emissions
in the west and north. Furthermore, the gap between net carbon

emissions in the northern and southern areas has increased.
Simultaneously, the carbon emissions coming from the energy
consumption during land construction greatly outweigh those from
arable land. From 2010 to 2020, carbon sinks only accounted for
approximately 0.2% of carbon sources, indicating that relying solely
on land carbon absorption is insufficient to offset the carbon emissions
from energy consumption. As a result, in ZiboCity, the primary focus of
carbon reduction measures should be on energy consumption and
industrial structure.

3.3 Characteristics of spatial clustering
of LUCE

3.3.1 Global spatial autocorrelation
A global spatial autocorrelation study of net carbon emissions

in Zibo counties was conducted using ArcGIS10.6 software.

FIGURE 4
Visualization of land use transfer matrix in Zibo City from 2010 to 2020.

TABLE 6 Changes in carbon source and carbon sink in Zibo City from 2010 to 2020.

Carbon Sources/104t Carbon sinks/t

Year Cropland Settlement Carbon
emissions

Forest Grassland Water Unused
land

Carbon
sink

quantity

Net carbon
emissions/104t

2010 12.4 3,005.3 3,017.7 −59,655.7 −1,572.7 −2,391.4 −17.1 −63,636.9 3,011.3

2015 12.3 3,155.8 3,168.1 −59,522.7 −1,567.2 −2,403.7 −18.4 −63,512 3,161.7

2020 12.2 3,905.9 3,918.1 −59,548.6 −2,403.7 −2,412.6 −16.9 −64,381.8 3,911.7
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Table 7 shows the results, including Moran’s I value, z value, and
p-value for net carbon emissions in Zibo counties from 2010 to
2020. Table 3 shows that the Moran’s I values for 2010–2020 are
consistently positive. This indicates that counties with high net
carbon emissions in the Zibo county area are close to other high-
value counties, while low-value counties are close to other low-
value counties. Therefore, the net carbon emissions within the
Zibo City area show a positive autocorrelation. The test statistic
shows that all years from 2010 to 2020 meet the confidence
requirement of P< 0.1. From 2010 to 2015, Moran’s I value
gradually increased, indicating a rising geographical correlation
of net carbon emissions in Zibo City. From 2015 to 2020, Moran’s
I value decreased, indicating a weakening trend in the
geographical correlation of net carbon emissions in Zibo
County. In general, the net carbon emissions of Zibo counties
show a noticeable clustering pattern, with some smoothness in
the spatial correlation of these emissions. However, the overall
trend of Moran’s index is a progressive drop, indicating a
reduction in the clustering of net carbon emissions at the Zibo
district and county levels. Because the global spatial
autocorrelation only shows the worldwide characteristics of
carbon emissions from land use in Zibo County, this research
uses the local spatial autocorrelation to investigate the local
spatial evolution characteristics of carbon emissions from land
use in Zibo County.

3.3.2 Local spatial autocorrelation
This study uses ArcGIS10.6 software to examine the internal

spatial relationships of net carbon emissions in Zibo City from
2010 to 2020. Zibo City’s net carbon emissions are divided into
1 km-scale grid cells for 2010, 2015, and 2020. Local spatial
autocorrelation analysis is then applied to these grid cells. The
findings indicate that the local spatial autocorrelation in Zibo
City remained reasonably stable from 2010 to 2020. Table 8 and
Figure 6 demonstrate that during the last decade, the areas with a
high concentration of agglomeration have primarily been in
Zhangdian District, Linzi District, Zichuan District, Boshan
District, and other central areas of Zibo. This shows a very
modest expansion compared to 2010, with Zhangdian District
having the most coverage. The concentration of high-low
agglomerations is primarily found in Yiyuan and Gaoqing
counties. In 2020, the area of high-low agglomerations will
gradually extend towards the central region of the country, as
compared to 2010. Areas with low-high and high-low
agglomeration are primarily found in Zhangdian District, Linzi
District, Zichuan District, and other central areas of Zibo. These
areas are now smaller than they were in 2010. The low-low
agglomeration areas are mainly concentrated in Zichuan District,
Boshan District, Yiyuan County, and other southern parts of Zibo.
These areas are showing a slow expansion trend. The study
demonstrates that the agglomeration effect of high-high and low-

FIGURE 5
Sankey diagram of land-use change 2010–2015 and 2015–2020.
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low agglomeration areas of net carbon emissions in Zibo City is
strengthened. Furthermore, it has been noted that the majority of
areas with high (low) values of net carbon emissions are located near
together. This means that the disparities in net carbon emissions
among the counties of Zibo have escalated.

3.4 Analysis of factors affecting LUCE

3.4.1 Influence factor selection
To avoid the presence of a strong connection among the

specified influencing factors, which could result in inaccurate
estimation results for the model, a multiple covariance test on
the selected components was performed using SPSS software. The
Variance Inflation Factor (VIF) was less than 5, and the tolerance
exceeded 0.1. These findings indicate that there was no significant
multicollinearity among the influencing factors. Four key
parameters that had a substantial impact were ultimately chosen:
population size, urbanization rate, land use efficiency, and energy
consumption per unit of GDP. The impact factors have the following
meanings: the population size is represented by the total resident
population of each district and county, while the urbanization rate is
represented by the ratio of the resident population to the resident
population of cities and towns. Land-use efficiency is characterized
by the ratio of construction land to the total area of the land, as
construction land is the main source of carbon emissions. Energy
consumption per unit of GDP is represented by the ratio of total
energy consumption to regional GDP, as carbon emissions from
energy consumption contribute significantly to the overall increase
in carbon emissions.

Furthermore, the GTWR model’s intricacy may increase the
danger of overfitting when the sample size is insufficient. To solve
this problem, first, the model and data were cross-validated by using
Python software, the dataset was divided into a training set and test
set, and the results were averaged after repeating several times, and

finally, the results of the model performance evaluation were
obtained, and the results showed that the model fit to the data
reached 0.7320, which indicated that the model had a better
explanation of the data, and avoided the appearance of
overfitting. Second, based on a large number of literature
readings, we found that most scholars use the GTWR model to
analyze a small sample size (He and Yang, 2023; Yang et al., 2024),
which to some extent indicates that GTWR does not need a large
number of samples to support, and its advantage is that it simplifies
the process of data collection and processing, and even without a
large number of samples to support, it is still possible to analyze the
characteristics of a specific group.

Simultaneous, this paper compares the regression outcomes of
the spatio-temporal geographically weighted regression model
(GTWR) to the ordinary least squares regression model (OLS),
the time-weighted regression model (TWR), and the geographically
weighted regressionmodel (GWR) to ensure precision and relevance
(Table 9). The comparison revealed that the spatio-temporal
geography-weighted regression model had the highest fit
R2 among the four models: ordinary least squares regression
model, time-weighted regression model, geography-weighted
regression model, and spatio-temporal geography-weighted
regression model. Simultaneously, the spatio-temporal
geographically weighted regression model, which integrates both
spatio-temporal and spatial dimensions, offers more advantages in
visually representing data. As a result, the spatio-temporal regionally
weighted regression model was ultimately chosen to examine the
spatial and temporal variations in the primary factors influencing
carbon emissions.

3.4.2 Spatio-temporal geographically weighted
regression analyses

The study aimed to comprehensively analyze the factors and
spatial variations affecting carbon emissions from land use in Zibo
County. The distribution of regression coefficients in 2010, 2015,
and 2020 was visually represented using the natural breakpoint
method in ArcGIS 10.6 software. This analysis was based on the
findings of the spatio-temporal geographically-weighted regression
model (Figure 7).

When the regional and temporal differences in the regression
coefficient of population size are taken into account, it is observed
that population size has the least impact on net carbon emissions in
Zibo County. However, all coefficients have a positive effect, which is
increasing year after year. This is a consequence of the growing
population, which leads to a rise in carbon emissions caused by
human activities. Specifically, there is an increase in indirect carbon
emissions, as well as emissions from living and energy sources.
Additionally, the expansion of urban areas and the conversion of
non-construction land into construction land contribute to a net
increase in carbon emissions within the region. The spatial
distribution of net carbon emissions in Zibo City follows a clear
pattern of “strong in the north and weak in the south”. The areas
with high carbon emissions, such as Gaoqing County, Zhoucun
District, Zhangdian District, and Linzi District, are primarily
characterized by arable land and construction land, high
population density, and significant resource consumption. These
factors contribute significantly to the overall net carbon emissions
from land use. On the other hand, the areas with low carbon

TABLE 7 Descriptive statistics of Moran Index of Zibo City from 2010 y to
2020.

Year Moran’s I Z P

2010 0.2193 1.7248 0.085

2015 0.2229 1.8099 0.070

2020 0.2122 1.672 0.095

TABLE 8 A number of different types of grids.

Spatial autocorrelation analysis 2010 2015 2020

Not Significant 3,820 3,782 3,744

High—High Cluster 664 684 706

High—Low Cluster 15 16 15

Low—High Cluster 32 31 24

Low—Low Cluster 1,026 1,044 1,068
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emissions, namely, Yiyuan County and Boshan District, are mainly
mountainous regions with a small population and lower levels of
economic development. Consequently, their influence on carbon
emissions is relatively minor.

When the regional and temporal variations in the regression
coefficient of the urbanization rate are taken into account, the
impact of the urbanization rate on the county of Zibo City can
be observed as initially increasing and then gradually diminishing.
The cause for this is Zibo City’s fast urbanization, which increased

urban population density and accelerated the growth of secondary
and tertiary industries. This resulted in an improvement in
economic activity and an abundance of mineral resources, oil,
and natural gas. Zibo City is an important petrochemical
industry base. However, in the pursuit of industrialization and
urbanization, the region neglected to prioritize the protection of
the ecology and the improvement of habits, and a rise in
urbanization rates correlates with a rise in carbon emissions.
However, in the later period, the urbanization rate of Zibo City

FIGURE 6
Spatial variation of carbon source and carbon sink of land use in Zibo City from 2010 to 2020. (Unit:104t). (A) 2010-Carbon sinks, (B) 2015-Carbon
sinks, (C) 2020-Carbon sinks, (D) 2010-Carbon source, (E) 2015-Carbon source, (F) 2020-Carbon source, (G) 2010-Carbon emissions, (H) 2015-Carbon
emissions, (I) 2020-Carbon emissions.
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slowed down and shifted its focus towards high-quality,
environmentally friendly, and low-carbon development. As a
result, the urbanization rate has a diminished impact on
promoting carbon emissions. The spatial distribution exhibits a
pattern of high values in the northern and southern regions and low
values in the central region. The places with high values each year are
primarily concentrated in Gaoqing County and Yiyuan County,
among others. Gaoqing County is predominantly characterized by
agricultural land, whereas Yiyuan County and Boshan District are
primarily covered by forests. As a result, the existing land usage in
these areas contributes to a lower level of urbanization compared to
other regions. As the rate of urbanization increases, the economy
and industrialization also develop. This leads to a shift in investment
towards secondary and tertiary industries. In certain situations, this
can encroach on carbon sinks like forest land and grassland,
reducing the amount of carbon sinks in the county and
increasing carbon emissions. Although the urbanization level in
these areas is low, the rate of increase is fast, which ultimately
promotes higher carbon emissions in areas with low
urbanization rates.

When regional and temporal changes in the regression
coefficient of land use efficiency are taken into account, it is
discovered that land use efficiency has a positive impact on net

carbon emissions in Zibo County. However, this positive impact
fades over time, and in some areas of the county, it even has a
negative effect. This is because the growth of construction land has
resulted in a rise in carbon emissions caused by human activities.
These indirect carbon emissions far outweigh the carbon emissions
caused by changes in land use, resulting in an overall improvement
in the efficiency of carbon emissions from land use. However, by
altering and optimizing the arrangement of land usage, enhancing
pollution and carbon reduction technology, and adopting new
energy sources extensively, the impact of land use efficiency on
carbon emissions is diminished. The spatial distribution of land use
efficiency in Zibo City follows the pattern of “high in the north and
low in the south”. The high-value areas are concentrated in
Zhangdian District, Linzi District, and others. This distribution is
primarily attributed to the dominance of arable land, construction
land, and other land with carbon sources in Linzi District, Gaoqing
County, Zhoucun District, and similar areas. Due to the rapid socio-
economic growth, the construction land in all districts and counties
of Zibo City has expanded, leading to the encroachment of forest
land, grassland, and other carbon sinks. As a result, there has been
an increase in indirect carbon emissions caused by land
construction. It is evident that improving land use efficiency can
assist in reducing carbon emissions.

When considering changes in the regression coefficient of unit
GDP energy consumption, it is clear that unit GDP energy
consumption has the greatest impact on Zibo City’s net carbon
emissions. Overall, it contributes positively to reducing carbon
emissions. However, in 2010, certain countries faced an
inhibiting influence. From 2010 to 2020, Zibo City’s industrial
development was rapid, consistent with its stance as a modern
industrial city and a significant petrochemical base. This

FIGURE 7
1km grid scale County carbon emissions local Moran Index scatter plot of Zibo city from 2010 to 2020. (A) 2010, (B) 2015, (C) 2020.

TABLE 9 Comparison of model parameters.

Model types
OLS TWR GWR GTWR

R2 0.999,435 0.999,639 0.999,692 0.999,989

AICc 161.137 192.232 218.103 724.572
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development is closely related to energy consumption. Zibo City’s
entire industrial output value has steadily increased, leading to an
overall improvement in the economic status of its districts and
counties. In 2020, the industrial output value over a certain
threshold in Zibo City reached 468,495 million, surpassing other
industries by a significant margin. The rapid industrialization of
Zibo City has caused a substantial increase in the utilization of
mineral resources, oil, and natural gas energy in the area. However,
low conversion efficiency has resulted in a significant amount of
carbon emissions. Consequently, the net carbon emissions per unit
of GDP energy consumption in Zibo City play a crucial role in
driving the overall carbon emissions. The spatial distribution of
energy consumption per unit of GDP in Zibo City follows a pattern
of being “high in the east and low in the west”. The areas with high
values are primarily located in Linzi and Zhangdian Districts, which
are characterized by high economic development and substantial
energy consumption. This distribution plays a significant role in
influencing net carbon emissions. The areas with high values are
primarily located in Linzi and Zhangdian Districts, which are
characterized by high economic development and substantial
energy consumption (Figure 8).

4 Discussion

4.1 Applications

With China’s economy expanding rapidly and urbanization on
the rise, the amount of land required for urban development is
gradually increasing. Consequently, carbon emissions from land use
changes have emerged as a significant contributor to global carbon
sources (Yu et al., 2022; Kang et al., 2023; Chuai et al., 2024). In light
of this context, China has set a “dual-carbon” goal and is rapidly
adopting efforts to meet it. Zibo City, being an established industrial
city and a significant petrochemical hub, is primarily driven by
petrochemicals and construction materials. It heavily relies on fossil
fuels such as petroleum and coal, resulting in significant carbon
dioxide emissions and other pollutants. Hence, this study focuses on
Zibo City to evaluate the regional and temporal patterns of carbon
emissions from land use, as well as the factors that influence them.

Regarding the regional and temporal changes in the emissions
characteristics of carbon from land use, Han et al. investigated the
geographical and temporal characteristics of carbon emissions in
resource-based regions using the carbon emissions coefficient
approach and spatial autocorrelation model (Han et al., 2021).
Gui et al. (2023) studied the agglomeration of carbon emissions
in counties in Guangdong Province using the same methods. Yang
et al. (2023) focused on the counties in Shanxi Province and used the
spatial autocorrelation model to analyze the spatial autocorrelation
of the carbon ecological pressure index based on measuring the
carbon emissions from construction land. To quantify carbon
emissions caused by land use, the research cited above uses the
carbon emissions coefficient technique. Additionally, the spatial
autocorrelation model is used to analyze the spatial and temporal
changes in carbon emissions. Consequently, the findings of this
paper are highly scientifically valid and generalizable. Previous
research analyzed carbon emissions at the county level without
considering clustering tendencies within each county. Therefore,

this paper aims to investigate the spatial characteristics of carbon
emissions from land use in Zibo City by conducting global spatial
autocorrelation analyses at the county level and local spatial
autocorrelation analyses at a more detailed 1 km grid scale unit.

Within the field of research on the determinants of carbon
emissions resulting from land use, Fan et al. investigated the
factors that influence carbon emissions from land use in Hubei
Province. They used geo-detectors and discovered that the amount
of construction land, regional gross national product, urbanization
rate, and resident population size all have a significant impact on
regional carbon emissions (Fan et al., 2024). Tian et al. (2023)
analyzed the factors influencing carbon emissions in the Beijing-
Tianjin-Hebei region using a geographically weighted regression
model. Their study revealed that population size, urbanization rate,
and energy intensity are all major factors influencing carbon
emissions in the region (Tian et al., 2023). Fang et al. (2023) used
geographic probes and regionally weighted regression modeling to
identify significant influencing factors and explore spatial
heterogeneity. They discovered that regional gross national product
had the greatest influence on carbon emissions (Fang et al., 2023).
This study’s findings show that carbon emissions in Zibo City have
been steadily growing over time. Zibo City’s economy is mostly driven
by secondary industries. There is a noticeable spatial disparity among
counties, particularly in districts and counties with a lot of
construction land, high energy consumption, and large
populations, all of which contribute significantly to carbon
emissions. These findings are consistent with previous studies and
provide credence to the scientific validity of this paper’s research
results. This study focuses solely on analyzing the factors that
influence carbon emissions from land use from a spatial
standpoint. It does not take into account the combined spatial and
temporal perspective. Therefore, this paper utilizes a spatio-temporal
geographically weighted regression model to examine the influencing
factors from both temporal and spatial angles. Additionally, it
analyzes the spatial heterogeneity of the counties in Zibo City.

Zibo City recognized as a regional hub by the State Council, is a
contemporary industrial city and a significant petrochemical center.
It has large deposits of oil, natural gas, and other resources.
Conducting a study on carbon emissions from land use in Zibo
City holds immense practical importance for the region’s industrial
transformation and the advancement of high-tech enterprises.

4.1.1 Optimisation of land use structure
The conclusions of this research’s land use change study provide

suggestions for optimizing and modifying Zibo City’s land use
composition. The analysis of land use change reveals that
satisfying regional carbon emissions demand through carbon sink
absorption in Zibo City is challenging. Rapid development and
urbanization in Zibo City have resulted in an expansion of
construction land and a corresponding increase in carbon
emissions. The average annual growth rate of carbon emissions
has reached 900,000 tonnes, far exceeding the capacity of carbon
sink absorption during the same period. In the future, Zibo City
should prioritize adjusting the blue-green space pattern, specifically
by transforming farms back into forests and grasslands, restoring
ecological balance, and comprehensively improving the national
territory. This would ultimately lead to an increase in urban
vegetation coverage.
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FIGURE 8
The change of influence factor coefficient of county carbon emissions in Zibo City from 2010 to 2020. (A) 2010-Population size, (B) 2015-
Population size, (C) 2020-Population size, (D) 2010-Urbanization rate, (E) 2015-Urbanization rate, (F) 2020-Urbanization rate, (G) 2010-Land use
efficiency, (H) 2015-Land use efficiency, (I) 2020-Land use efficiency, (J) 2010-Energy consumption per unit of GDP, (K) 2015-Energy consumption per
unit of GDP, (L) 2020-Energy consumption per unit of GDP.
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4.1.2 Transformation and upgrading of highly
polluting industries

Analyze the carbon emissions patterns caused by land use in Zibo
City to provide recommendations for reducing energy consumption
and pollution in the city’s high-polluting industries. According to
research, land use carbon emissions in Zibo City have different
agglomeration characteristics. The principal source of these
emissions is construction land, with human social activities on the
surface, particularly energy consumption, accounting for themajority of
carbon emissions from construction land. The aforementioned analysis
revealed that energy-related carbon emissions constitute about 95% of
the total carbon emissions in Zibo City. Hence, the primary emphasis
for industrial development in Zibo City should be on upgrading low-
carbon technologies, improving energy use, and enhancing the
industry’s green intelligence level, among other factors. It is crucial
to update and transform Zibo City’s traditional industries, which emit
significant levels of pollution and consume a lot of energy.

4.1.3 Differentiated low-carbon development
policy formulation

This study uses a spatio-temporal regionally weighted regression
model to examine the factors that influence Zibo City’s districts and
counties. The results of this analysis provide a solid platform for
developing carbon reduction policies suited to the specific districts
and counties in Zibo City. There is clear variation in space within the
region of Zibo City, and certain causes have distinct impacts in
different districts and counties. Hence, implementing specialized
low-carbon development strategies for various regions is crucial for
Zibo City’s low-carbon development goal.

4.2 Limitations and prospects

This study focuses on Zibo City and looks at the spatial and
temporal trends of carbon emissions from land use. It also examines
the clustering characteristics and factors that influence land use changes.
The goal is to establish a scientific foundation for designing specific
carbon emissions reduction strategies in Zibo City. Nevertheless, the
following limitations persist: (1) In terms of carbon emissions
agglomeration characteristics, this paper is based on the spatial
autocorrelation model for the agglomeration characteristics analysis
of the county unit and 1 km grid unit in Zibo City, and there is a lack of
focus on the research of carbon emissions agglomeration characteristics
on the scale of townships and the scale of refinement; (2) In terms of
carbon emissions accounting, this paper adopts the traditional carbon
emissions coefficientmethod, which is widely used and easy to calculate,
but the accuracy of the carbon emissions coefficients of different land
use types still needs to be considered, and the carbon emissions
coefficients need to be studied accurately by geographical areas,
taking into account the impact of factors such as different regions,
different altitudes, different ecological environments, the degree of
vegetation cover and socio-economic conditions on the carbon
emissions coefficients, and improving the accuracy of carbon
emissions accounting; (3) In the selection of influencing factors, land
use carbon emissions of many factors, this paper in reference to existing
research, the selection of factors is relatively limited, only the main
factors of the degree of influence of the analysis, the future can be
constructed through a more complete system of indicators of

influencing factors to determine the degree of influence of various
types of factors on the land use of carbon emissions. Additionally, this
article analyzes Zibo City as an isolated entity, ignoring the impact of
natural and social environmental elements in neighboring cities on
carbon emissions. Therefore, future research should take into account
the interplay between different cities and include neighboring regions in
the study area.

Therefore, in future research, more attention should be paid to
the development of the following contents: (1) Focusing on more
detailed carbon emission accounting methods: scholars generally
adopt the carbon emission coefficient method in carbon emission
accounting at this stage, but the carbon emission coefficients apply
to different regions to different degrees. In the future, scholars
should revise the carbon emission coefficients applicable to
different regions in terms of their socio-economic environment,
natural conditions, etc.; (2) Focus on the spatial expression of carbon
emissions at the micro-scale: in terms of spatial expression of carbon
emissions, scholars have mainly adopted methods such as the GIS
spatial analysis and the “point-line-plane”model. Whether there is a
more accurate spatial expression of carbon emissions in the future is
still a key point in the field of carbon emission research.

4.3 Recommendations

Despite its limitations, this article effectively depicts the spatial
and temporal distribution patterns of carbon emissions in Zibo
County and identifies the key drivers. Based on these findings, the
paper proposes the following recommendations:

In future urban development, Zibo should be guided by the
strategic goal of “reducing carbon intensity and increasing carbon
sink capacity”.

(1) Diminish the carbon emissions

Zibo City, as a resource-based city and a historic industrial base in
China, has a strong industrial base and infrastructure. However, the city’s
industry has suffered from the “three high” phenomena of high
pollution, high energy consumption, and high carbon emissions as a
result of years of “rough”developmentmarked by outmoded technology,
low manufacturing standards, and excessive resource consumption. To
overcome these challenges posed by industrial transformation and
increasing environmental pressure, Zibo City should focus on
transforming production and lifestyle. It should prioritize the
development of ecological and environmental protection industries as
well as high-tech industries. Additionally, efforts should be made to
enhance green, low-carbon technology and improve energy efficiency.
Take advantage of the opportunity for transformation and development
in the “double carbon” era by bringing new energy to the city. Exploit
established businesses’ potential while encouraging the development of
new materials, intelligent equipment, new medicine, and electronic
information sectors. Push the industry towards high-end, intelligent,
and environmentally friendly practices.

(2) Enhance carbon sequestration

Due to Zibo City’s rapid growth, a rise in construction land has
resulted in the loss of forest land, grassland, and other carbon sinks.
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Forestland and grassland are crucial for absorbing carbon dioxide,
and their loss lowers the city’s capacity to absorb carbon.
Consequently, the city’s carbon emissions have increased. Zibo
City must ensure a set amount of land dedicated to carbon
absorption, enhance the capacity of urban areas to absorb
carbon, improve the arrangement of ecological spaces and land
use structure in urban areas, and fully utilize underutilized land.
Enhance the efforts to restore the urban ecological system and
promote the reforestation and regrowth of grasslands. Green
plants play a crucial role in absorbing carbon dioxide in urban
settings, making them valuable carbon sinks. To enhance the
amount of green space in cities, one can optimize the
organization of public green areas and adopt three-dimensional
greening techniques, among other ways for urban greening.

5 Conclusion

This paper uses Zibo City as the research object, investigates the
land use changes in Zibo City from 2010 to 2020 based on the
attitude of land use dynamics, analyzes the spatial and temporal
evolution characteristics of Zibo county by measuring its net carbon
emissions, and then employs exploratory spatial analysis methods to
analyze the spatial correlation of Zibo county. Finally, a spatio-
temporal regionally weighted regression model was used to analyze
the various factors influencing net carbon emissions in the county.

(1) From 2010 to 2020, the rate of change in land use in Zibo City
decreased. The overall quality of land use in Zibo City
declined from 0.14% in the period of 2010–2015 to 0.09%
in the period of 2015–2020, indicating major shifts in land use
structure. Within the designated category, the area of arable
land, forest land, and grassland decreased. Conversely, there
was a rise in the area of water, construction land, and unused
land. The largest increase was observed in the area of
transferred-in construction land, which expanded by
65.168 km2. On the other hand, the largest decrease was
observed in the area of transferred-out arable land, which
contracted by 61.449 km2. Additionally, land was converted
from arable to construction land.

(2) From 2010 to 2020, Zibo City’s carbon source rapidly
expanded from 3.017 × 107t to 3.918 × 107t, with an
average annual growth rate of 9 × 105t. In contrast, the
carbon sink in Zibo City grew more slowly, from 63,636.9t
to 64,381.8t, with an average annual growth rate of 74.49t. The
study reveals that the land in Zibo City has a limited capacity
to absorb carbon and is unable to meet the demands of carbon
emissions. Net carbon emissions have quickly increased, from
3.011 × 107t to 3.911 × 107t. In terms of spatial distribution,
the southern portion of Zibo contains the majority of carbon
sinks, which are mostly forest land. Conversely, the central
part of the economically developed area serves as the main
source of carbon emissions. The spatial distribution pattern of
net carbon emissions in Zibo City has consistently followed a
trend of being “high in the east and low in the west, high in the
south and low in the north”. High-value areas are
concentrated in Linzi District, Zhangdian District, and
other locations.

(3) The spatial autocorrelation study, which was carried out using
ArcGIS10.6 software, demonstrated that the net carbon
emissions of the counties in Zibo City clustered positively.
This means that areas with high (low) values were located
next to other areas with high (low) values. Overall, the
clustering effect was weakening, as indicated by the decline
in Moran’s I from 0.219 to 0.212. This suggests that the
clustering effect of the district and county units was
diminishing. The local spatial autocorrelation analysis
revealed that the agglomeration effect of areas with high-
net carbon emissions and areas with low agglomeration
within Zibo City has been strengthened. The high-high
agglomeration area is primarily concentrated in Zhangdian
District, Linzi District, and other central areas of Zibo,
exhibiting a gradual expansion pattern. Conversely, the
low-low agglomeration area is mainly found in the
southern part of Zibo, such as Boshan District and Yiyuan
County, which also display a slow expansion trend. This
indicates an increasing concentration of carbon emissions
within the 1 km scale unit.

(4) The spatiotemporal spatially weighted regression model
(GTWR) study revealed that the same influencing factors
differed significantly amongst Zibo districts and counties due
to variances in socioeconomic and natural surroundings.
Population size has the smallest impact on Zibo counties’
net carbon emissions, whereas energy consumption per unit
of GDP has the greatest impact. The regression coefficients for
population size are all positive, indicating a growing trend;
however, the urbanization rate, land use efficiency, and unit
GDP energy consumption are all negative values, and overall
performance is initially improved and later weakened.

This study presents a detailed examination of the regional
and temporal patterns of land use carbon emissions in Zibo City,
with a focus on the influence of land use change. The findings of
this study can be used to inform future research on land use
carbon emissions at various scales. Furthermore, the results can
inform decisions regarding land use planning, energy
adjustments, and the development of a low-carbon strategy in
Zibo City, ultimately contributing to the city’s low-carbon
construction initiatives.
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