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Global climate change is an extensive phenomenon characterized by alterations
in weather patterns, temperature trends, and precipitation levels. These variations
substantially impact agrifood systems, encompassing the interconnected
components of farming, food production, and distribution. This article
analyzes 8,100 data points with 27 input features that quantify diverse aspects
of the agrifood system’s contribution to predicted Greenhouse Gas Emissions
(GHGE). The study uses two machine learning algorithms, Long-Short Term
Memory (LSTM) and Random Forest (RF), as well as a hybrid approach (LSTM-
RF). The LSTM-RF model integrates the strengths of LSTM and RF. LSTMs are
adept at capturing long-term dependencies in sequential data through memory
cells, addressing the vanishing gradient problem. Meanwhile, with its ensemble
learning approach, RF improves overall model performance and generalization by
combining multiple weak learners. Additionally, RF provides insights into the
importance of features, helping to understand the significant contributors to the
model’s predictions. The results demonstrate that the LSTM-RF algorithm
outperforms other algorithms (for the test subset, RMSE = 2.977 and R2 =
0.9990). These findings highlight the superior accuracy of the LSTM-RF
algorithm compared to the individual LSTM and RF algorithms, with the RF
algorithm being less accurate in comparison. As determined by Pearson
correlation analysis, key variables such as on-farm energy use, pesticide
manufacturing, and land use factors significantly influence GHGE outputs.
Furthermore, this study uses a heat map to visually represent the correlation
coefficient between the input variables and GHGE, enhancing our understanding
of the complex interactions within the agrifood system. Understanding the
intricate connection between climate change and agrifood systems is crucial
for developing practices addressing food security and environmental challenges.

KEYWORDS

greenhouse gas emissions (GHGE), agrifood systems, global climate change, machine
learning, LSTM-RF

Highlights

• Global climate change significantly affects agrifood systems, altering weather,
temperature, and precipitation patterns.

• The study analyzes 8,100 data points using 27 features to predict greenhouse gas
emissions in agrifood systems.
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• A hybrid LSTM-RF model captures long-term dependencies
and enhances model performance over individual algorithms.

• The LSTM-RF algorithm achieves RMSE of 2.977 and R2 of
0.9990, outperforming LSTM and RF in accuracy.

• Key variables impacting greenhouse gas emissions include on-
farm energy use, pesticide manufacturing, and land
use factors.

1 Introduction

Climate change is a pervasive global phenomenon characterized
by profound alterations in weather patterns, temperature
fluctuations, and variations in precipitation (Ghil and Lucarini,
2020; Somero, 2012). These changes have significant implications
for agrifood systems, representing the intricate web of agriculture,
food production, and supply chains (Durán-Sandoval et al., 2023;
Lamine, 2015; Thompson et al., 2007). The repercussions of climate
change on agrifood systems are multifaceted, impacting crop yields,
livestock productivity, and overall food security in developed and
developing nations (Devendra, 2012). Rising global temperatures
have prompted shifts in crop geographic distribution, leading to new
climate zones that are often less suitable for traditional farming
practices (Lobell and Gourdji, 2012). As a result, farmers are
compelled to adapt their agricultural practices by modifying
planting schedules and transitioning to crop varieties that are
more resilient to elevated temperatures and extreme weather
conditions (Raza et al., 2019).

Furthermore, research and reports from authoritative
institutions have underscored the increasing frequency and
intensity of extreme weather events—such as droughts and
floods—triggered by changing precipitation patterns, exacerbating
agrifood systems disruptions (Frame et al., 2020). The implications
of climate change extend beyond immediate agricultural concerns;
they also threaten the stability of ecosystems, potentially
jeopardizing biodiversity, soil health, and water resources critical
for sustainable food production (Fan et al., 2024; Weiskopf et al.,
2020). Given the intricate and interconnected relationships between
climatic variables and agrifood systems, deepening our
understanding of these complex dynamics is essential. Such
insights will lay the groundwork for informed decision-making
and the development of adaptive strategies that can mitigate the
adverse effects of climate change, ensuring the resilience of agrifood
systems in an increasingly unpredictable climate (Soubry, 2021). By
investigating these relationships, we can anticipate potential
challenges and identify opportunities for innovation and
sustainable practices to safeguard food security for future
generations.

The agri-food sector is a significant contributor to global
Greenhouse Gas Emission (GHGE) emissions, accounting for
nearly 25%–30% of total emissions, primarily through methane,
nitrous oxide, and carbon dioxide release (Giamouri et al., 2023;
Saha et al., 2022; Verge et al., 2007). These emissions not only
exacerbate global climate change but also threaten food security and
the sustainability of agricultural systems (Wijerathna-Yapa and
Pathirana, 2022). Predicting future GHGE within agrifood
systems has become increasingly critical for guiding climate
mitigation strategies (Costa et al., 2022). However, the inherent

complexity of these systems, coupled with the unpredictability of
climate dynamics, makes accurate emissions forecasting a
challenging task.

As the global population grows, ensuring food security while
minimizing environmental harm becomes a delicate balancing act
(Ramankutty et al., 2018). Thus, a thorough understanding of
GHGE is imperative when evaluating the sustainability of
agrifood systems (Aguilera et al., 2021). Predictive modeling of
emissions allows for developing strategies that optimize resource
utilization, reduce waste, and enhance the overall resilience of
agrifood systems (Notarnicola et al., 2017).

Traditional models for predicting GHGE in agrifood systems,
such as statistical models and process-based simulations, are often
limited by their reliance on predefined relationships and
assumptions about environmental conditions. These approaches
need help to capture the non-linear interactions between climate
variables, agricultural practices, and GHGE outputs, leading to
significant uncertainties in long-term predictions (Kalt et al.,
2021; Schewe et al., 2019). The emergence of machine learning
(ML) techniques presents a promising opportunity to address these
limitations, offering data-driven approaches that can adapt to
complex, multidimensional datasets without requiring prior
assumptions (Chen et al., 2023; Pasrija et al., 2022). Precision
agriculture techniques, which use real-time data, remote sensing,
and targeted farming tools, can optimize fertilizer and water usage,
helping to lower greenhouse gas emissions from nitrogen fertilizers
by up to 20%–30% while reducing input costs (Shafi et al., 2019). For
livestock, methane reduction strategies play a crucial role, with
dietary adjustments like fats, oils, or tannins shown to reduce
emissions by 10%–20%, alongside herd management
improvements and breeding for low-emission traits (Kumari
et al., 2020). Soil carbon sequestration efforts, such as
conservation tillage, cover cropping, and agroforestry, can
enhance carbon storage, potentially capturing up to 500 kg of
CO₂ per hectare annually (Meena et al., 2020). Implementing
effective waste management strategies—such as composting,
using agricultural waste as fertilizer, capturing methane from
manure, and converting waste to energy—can reduce waste-
related emissions by up to 50%. These approaches support a
circular economy by recycling nutrients and minimizing waste
(Koul et al., 2022). Replacing fossil fuels with renewable energy
sources like solar, wind, and bioenergy on farms also has the
potential to reduce emissions tied to machinery and heating, with
efficiency improvements in agricultural processes achieving up to
15%–20% emissions cuts (Minoofar et al., 2023).

Additionally, developing climate-resilient crop varieties that
require fewer inputs and adapt to changing conditions can
minimize the need for irrigation, further lowering emissions in
agriculture (Sarma et al., 2024). When integrated with predictive
models, these mitigation measures underscore the vital role of
sustainable practices and technology in reducing GHGE, fostering
a comprehensive approach to emissions reduction in agrifood
systems. With its capacity to recognize complex data patterns,
machine learning presents a promising alternative to traditional
methods by addressing their limitations and offering a deeper
understanding of the dynamic factors driving greenhouse gas
emissions in agrifood systems (Hamrani et al., 2020). In this
regard, a range of machine learning models has been utilized to
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estimate greenhouse gas emissions, with most efforts focusing on
predicting emission volumes using localized training data
(Cammarata et al., 2023; Nath et al., 2024; Sarfraz et al., 2023).
However, prior studies on greenhouse gas emissions within agrifood
systems have yet to develop sophisticated models capable of
uniquely assessing the parametric effects of critical indicators or
quantifying the contribution of each input factor to the generation of
emissions. This study seeks to bridge this gap by introducing novel,
high-performance machine-learning models designed to address
this complex and unique challenge. Moreover, unlike previous
works focusing on emission estimation or climate impact
assessments in isolation, this study integrates both aspects into a
unified predictive framework. This study also utilizes a
comprehensive and generalizable dataset, incorporating several
influential components, which enhances the model’s robustness
and generalizability compared to previous studies.

This research also focuses on multiple components of the
agrifood system, including livestock production, crop cultivation,
and supply chain activities. The study covers regions and crop types,
offering a holistic approach to modeling GHGE in diverse
agronomic and climatic conditions.

2 Literature review

The prevailing scientific consensus supports the escalation of
temperatures, changes in precipitation patterns, and increased
frequency and intensity of extreme meteorological occurrences
(Dhanya et al., 2022). This changing milieu carries far-reaching
ramifications for agriculture, exerting discernible impacts on crop
yields, livestock productivity, and overall food security (Raimi et al.,
2021). Recent empirical studies have integrated foundational
knowledge to introduce essential parameters influencing the
responsiveness of agri-food systems to climate change. Ahmed
et al. (2013) examined factors contributing to climate change,
exploring related adaptation and mitigation options within the
agricultural context. The investigation analyzed variables such as
elevated temperatures, heightened CO2 levels, droughts, and floods,
thereby underscoring climate-smart agriculture’s need to reduce
GHGE and enhance resilience. Using empirical, modeling, and
niche-based methodologies, the researchers devised decision
support tools, demonstrating the utility of simulation modeling
techniques, particularly the Agricultural Production System
Simulator (APSIM), for managing rainfed agricultural systems
(Ahmed et al., 2013).

Numerous researchers have delved into adaptive strategies to
identify and comprehensively understand the processes involved
while mitigating the deleterious effects of adverse climate change on
agri-food systems. Gaitán (2020) investigated efficiencies and risk
exposure in agricultural systems, emphasizing yield maximization
while controlling costs. The study identified factors influencing crop
quantity, quality, and harvest time, considering the biogeophysical
characteristics of terroir and crops. Machine Learning (ML) was
incorporated for classification, detection, and forecasting (Gaitán,
2020). Crane-Droesch (2018) developed a semiparametric variant of
a deep neural network to model yields, assessing the impacts of
climate change on corn yield using scenarios from diverse climate
models. Comparative evaluations with classical statistical methods

and fully nonparametric neural networks revealed less pessimistic
results in the warmest regions and scenarios (Crane-Droesch, 2018).
Rubanga et al. (2019) explored the impact of climate change and
heat stress on livestock farming, elucidating the mechanism of
complex probiotics about farm animals and high-quality animal
food production. The study also addressed the 2050 greenhouse gas
reduction goal, proposing mechanisms for enhancing livestock
production and animal food quality (Rubanga et al., 2019).
Santoso et al. (2021) conducted a systematic review of machine
learning applications in the agri-food supply chain, examining the
role of ML algorithms in providing real-time analytical insights to
facilitate proactive data-driven decision-making processes (Santoso
et al., 2021). In a comprehensive investigation, Wang et al. (2022)
reviewed the application of deep learning in multiscale agricultural
remote and proximal sensing, focusing on Convolutional Neural
Networks (CNNs), Transfer Learning (TL), and Few-Shot Learning
(FSL) at various scales of agricultural sensing—leaf, canopy, field,
and land. Using keywords such as “precision agriculture,” “deep
learning,” and “remote sensing,” the author aimed to engage
agricultural communities and stimulate relevant research in the
realm of deep learning for precision agriculture (Wang et al., 2022).

This study advances the field of GHGE modeling in agrifood
systems by addressing limitations found in traditional approaches.
Unlike prior studies that primarily relied on conventional statistical
methods, this research uniquely applies a combination of two
standalone machine learning (ML) algorithms, Long-Short Term
Memory (LSTM) and Random Forest (RF), alongside a hybrid ML
approach (LSTM-RF), specifically developed to improve GHGE
predictions. A hybrid ML (HML) model allows this study to
surpass traditional methodologies by integrating a robust
FAOSTAT dataset enriched with regional, socioeconomic, and
technological factors within agriculture.

Other published works often need more predictive accuracy,
mainly due to limited data synthesis and a need for comprehensive
modeling techniques. In contrast, this research bridges these critical
gaps using a large-scale dataset, generating a more resilient model
that can capture complex GHGE patterns and facilitate informed
climate action. While previous approaches constrained model
development through limited machine learning applications and
insufficient data integration, the current study’s hybrid approach
enhances prediction reliability. Doing so aims to foster a more
profound understanding of emissions and guide strategies that
contribute significantly to emissions reduction in agrifood
systems, laying the groundwork for actionable insights into
sustainable agricultural practices.

3 Methodology

3.1 Data collection

This research uses a comprehensive dataset from the
FAOSTAT domain Emissions Totals, which aggregates GHGE
from agrifood systems across several Climate Change Emissions
(CCE) domains made available by FAOSTAT. CH4, N2O, and CO2

comprise these emissions, all estimated following the Tier
1 methodology per the IPCC Guidelines (Olivier and Peters,
2005). The dataset under analysis encompasses 8,100 data
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points across 27 input features, each quantifying diverse aspects of
the agrifood system’s role in generating greenhouse gases.
Spanning from 1961 to 2020, the database diligently records
specific emission categories. It includes on-farm activities, land
use changes, and emissions from pre-production and post-
production processes in the food value chain, drawing from
authoritative sources, including the UN Statistical Division and
the International Energy Agency. Table 1, a comprehensive
statistical summary of the data, presents a spectrum of emission
sources over time. This summary offers insights through various
measures, including count, mean, standard deviation, minimum,
median, and maximum values. This summary aids in
understanding the central tendency and range of dispersion of
the data. Figure 1 schematically illustrates the involvement of key

stakeholders in shaping the evolution of GHGE within the
expansive agrifood system.

Addressing limitations in input data is crucial for reliable model
performance in the preprocessing stage of data-based models and
machine learning algorithms. Missing data, for instance, is often
managed through imputation techniques (mean, median) or, when
minimal, by data removal. Outliers, which can distort model
understanding, are typically identified using statistical measures
or visualizations and either removed or capped.

Feature scaling (normalization) is essential for models sensitive
to feature magnitudes, ensuring consistent data contributions.

Feature engineering can also play a vital role by transforming
data to capture relationships better, enhancing the model’s input
data quality. These preprocessing steps enhance data quality and

TABLE 1 Statistical analysis of a dataset comprising 8,100 data points obtained from the FAOSTAT for prediction of GHGE.

Parameters Unit Symbol Mean Std. Deviation Min Var Max

Year - β1 1990.50 17.32 1961.00 299.92 2020.00

Crop residues Kilotons β2 23.91 30.82 0.00 949.68 99.10

Manure left on pasture Kilotons β3 46.79 57.74 0.00 3333.73 154.90

Livestock manure applied to soils Kilotons β4 14.38 17.71 0.00 313.57 41.80

Synthetic fertilizers Kilotons β5 61.62 79.39 0.00 6303.50 205.70

Rice cultivation Kilotons β6 156.02 197.27 0.00 38914.22 557.70

Burning - crop residues Kilotons β7 41.95 51.89 0.00 2692.61 127.40

Enteric fermentation Kilotons β8 2705.18 3342.25 0.00 11170654.81 8615.30

Manure management Kilotons β9 560.76 690.28 0.00 476484.40 1781.10

On-farm energy use Kilotons β10 10461.91 21003.62 0.00 441152159.55 62669.10

Savanna fires Kilotons β11 10.91 14.35 0.00 205.90 49.00

Forest fires Kilotons β12 15.88 23.77 0.00 565.24 103.80

Fires in humid tropical forests Kilotons β13 0.11 0.39 0.00 0.15 2.92

Agrifood systems waste disposal Kilotons β14 1031.28 853.12 0.00 727813.21 2099.20

Pesticides manufacturing Kilotons β15 2605.94 5255.35 0.00 27618663.68 16100.30

On-farm electricity use Kilotons β16 4257.08 8658.91 0.00 74976724.77 28758.82

Food processing Kilotons β17 18383.59 37936.26 0.00 1439160116.63 120857.10

Food packaging Kilotons β18 6368.21 13271.08 0.00 176121628.59 51469.30

Food retail Kilotons B19 10957.03 22060.85 0.00 486681087.26 66713.40

Food household consumption Kilotons B20 22809.06 46105.47 0.00 2125713973.55 139634.20

Food transport Kilotons B21 10598.97 21322.26 0.00 454638714.69 61090.80

Energy Kilotons β22 1085760.03 2166992.36 0.00 4695855880396.50 6319758.70

Industrial processes and product use Kilotons β23 38579.68 78136.42 0.00 6105300895.24 243004.50

Waste Kilotons β24 2504.79 3178.08 0.00 10100223.35 8925.30

Drained organic soils (CO2) Kilotons β25 10343.79 20699.28 0.00 428460369.11 55438.70

Forestland Kilotons β26 −94046.88 190240.04 −568918.30 36,191,273,808.44 0.00

Fertilizers manufacturing Kilotons β27 3659.23 7495.37 0.00 56,180,622.60 28225.97

Greenhouse gas emissions Kilotons GHGE 3824257.27 1075742.73 2133526.00 1157222418590.57 6625697.90
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structure, providing a solid foundation for practical model training
and deployment.

3.2 Machine learning models

Machine learning algorithms represent computational models
specifically formulated for the iterative extraction of patterns and
relationships from data, facilitating predictive or decision-making
capabilities without explicit programming. These algorithms
harness statistical methodologies to enhance a pre-established
objective function by iteratively adjusting internal parameters in
response to training examples. Supervised learning algorithms,
exemplified by support vector machines or neural networks,
acquire mappings from input data to desired outputs.

Conversely, unsupervised learning algorithms, such as clustering
or dimensionality reduction methods, elucidate intrinsic structures
and patterns within data by exploring inherent relationships.

3.2.1 Random forest (RF)
The Random Forest (RF) algorithm is a committee-based

decision-making approach where each decision-maker is
represented as a tree (Hajipour et al., 2020). Unlike single-unit
reliance, RF utilizes a group, or “forest,” of decision trees for
prediction (Huynh-Cam et al., 2021). Each tree is trained on a
random subset of the data andmay consider only a random subset of
features during decision-making (Shaikhina et al., 2019). This
randomness prevents overfitting, ensuring the model generalizes
well to new and unseen data. Various sources have extensively
described the mathematical model and structure of the RF machine-
learning algorithm (Su et al., 2021). Figure 2 shows the illustration
of the RF.

3.2.2 Long-short term memory (LSTM)
In machine learning algorithms, a notable performer in time

series data analysis is the Recurrent Neural Network (RNN)
architecture (Essien and Giannetti, 2020). Distinguished by its
ability to incorporate historical information and discern patterns
for predictive modeling, the RNN, nonetheless, grapples with the
challenge of managing an extensive repository of historical data,
potentially resulting in information saturation and gradual
deterioration. To address this concern, a specialized variant of
the RNN architecture, known as Long Short-Term Memory
(LSTM), has been carefully devised (Fu, 2020). The LSTM
architecture strategically preserves pertinent information while
efficiently discarding irrelevant data, enhancing information
processing and modeling precision within the temporal context
(Kumar et al., 2023).

Given the nature of the research on predicting future climate
scenarios in agrifood systems using machine learning, a
combination of time series forecasting models and regression
models is recommended. Specifically, this research considers
models like LSTM networks, which are well-suited for handling
sequential data over time, and RF, which can capture complex
relationships within the dataset (Sahoo et al., 2019). The choice
of LSTM is logical due to the temporal aspect of the dataset spanning

FIGURE 1
Schematic representation of key stakeholder involvement in the
evolution of greenhouse gas emissions in the expansive
agrifood system.

FIGURE 2
Diagram illustrating the procedural flow of the RF algorithm.

FIGURE 3
Diagram illustration of the procedural flow of the
LSTM algorithm.
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from 1961 to 2020. LSTMs are adept at capturing temporal
dependencies and can effectively model the time series nature of
GHGE (Hamdan et al., 2023). This is important for understanding
trends and predicting in a dynamic system like agrifood.
Additionally, RF can complement the LSTM model by capturing
non-linear relationships and interactions among factors influencing
emissions. Given the multidimensional nature of agrifood systems,
RFs can handle the complexity arising from diverse variables such as
regional variations, socioeconomic factors, and technological
advancements.

The LSTM model is a well-known architecture with remarkable
performance in handling complex sequential computations
(Figure 3) (Mohan and Gaitonde, 2018). This algorithm’s
foundational structure, detection mechanisms, and the
mathematical and logical relationships governing its functionality
have been extensively documented in reputable sources like Xue
et al. (2018) (Xue et al., 2018).

3.2.3 Hybrid machine learning algorithm
architecture

We would use a stacked ensemble approach to construct an
architecture that integrates LSTM networks and RF models (Hu and
Shi, 2020). This technique entails layering models so that the
predictions from the LSTM and RF models are used as inputs
into a subsequent subsidiary model (Shen et al., 2022). This
overall structure concurrently combines predictions from the
LSTM and RF models, and a meta-model is used to synthesize
these predictions and make the final decision (Cao et al., 2023).
Hyperparameters are systematically optimized using cross-
validation techniques to find the optimal configuration for this
specific dataset (Cao et al., 2023). Careful application of
validation and regularization mechanisms during LSTM training
mitigates the risk of overfitting and enhances computational
efficiency in this complex ensemble model’s training and
inference stages.

The LSTM-RF hybrid model architecture consists of two LSTM
layers, each with 100 hidden units, designed to capture sequential
patterns in the data, with a dropout rate of 0.2 applied between layers
to prevent overfitting. The model uses the Adam optimizer for fast
convergence, with a learning rate 0.001. The Random Forest (RF)
component comprises 100 trees, and the maximum tree depth is
unrestricted to capture complex interactions, using the “sqrt” option
to determine the number of features at each split. The outputs of
both the LSTM and RF models are combined via concatenation in
the fusion layer, creating a comprehensive feature vector that
integrates both sequential and non-sequential patterns. This
combined vector is processed by a Support Vector Machine
(SVM) meta-classifier with an RBF kernel, where the
regularization parameter (C) is set to 1.0 to control overfitting,
and the gamma parameter is set to “scale” to adjust to the data.
Finally, the output layer generates the model’s prediction using a
linear activation function, which can be applied to either regression
tasks or classification, depending on the problem. Table 2 presents
the model structure architecture and hyperparameters applied in the
hybrid model structure.

Figure 4 shows the architecture of the hybrid model and the
step-by-step flowchart of the proposed machine-learning model. As
this is a complex ensemble model, careful attention should be given
to the risk of overfitting and computational efficiency during the
training and inference stages. To further prevent overfitting, it may
also be helpful to use a validation and early stopping mechanism
during the training of the LSTM.

The implemented hybrid neural network architecture integrates
LSTM and RF models through ensemble stacking, enhancing
prediction accuracy by combining temporal and non-temporal
feature extraction. The process begins with extensive data
preprocessing, including normalization and reshaping for time-
series data. In the LSTM pathway, a stacked LSTM network
captures sequential dependencies, producing an output vector
that encodes temporal features. At the same time, the RF model

TABLE 2 Hybrid model LSTM-RF architecture and hyperparameters.

Component Description Hyperparameters

Input Layer Twenty-seven feature inputs from the dataset are processed by both the LSTM
network and RF component

- Feature inputs: 27

LSTM Component A recurrent neural network designed to capture temporal dependencies in
sequential data. It consists of two LSTM layers, each with 100 hidden units

- Number of LSTM layers: 2
- Units per layer: 100
- Dropout: 0.2 (to prevent overfitting)
- Optimizer: Adam
- Learning rate: 0.001

Random Forest
Component

An ensemble of decision trees that handles non-linear relationships between
features and the target variable. There is no predefined maximum depth for trees

- Number of trees: 100
- Features considered at each split: ‘sqrt’ (square root of the
total number of features)
- Criterion: Gini Impurity

Fusion Layer Combines the outputs from the LSTM network and the RF component using a
concatenation technique to create a unified feature vector for further analysis

- Fusion technique: Concatenation

Meta Model (SVM) A Support Vector Machine (SVM) is used as the meta-classifier to process the
concatenated feature vector, extracting optimal patterns for final prediction

- Kernel: Radial Basis Function (RBF)
- Regularization parameter (C): 1.0
- Gamma: ‘scale’

Output Layer A single output unit generates the final prediction based on the SVM’s output. For
regression tasks, the linear activation function is applied

- Activation function: Linear
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processes non-temporal data, generating predictions through an
ensemble of decision trees. These outputs are fused in a dedicated
layer through a simple concatenation mechanism, creating a rich,
integrated feature set. This combined input is fed into the meta-

model, a traditional support vector machine (SVM), to generate the
final prediction for regression tasks. The data is split into training,
validation, and test sets, with the LSTM capturing temporal
dependencies using multiple LSTM cells and the RF identifying

FIGURE 4
Diagram illustration of the flow diagram for the LSTM-RF HML algorithm.

FIGURE 5
Illustration of the structure of preprocessing and the flow diagram for the LSTM-RF HML algorithm.
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non-linear relationships between features and the target variable.
The concatenated outputs from both models form a more extended
feature vector, which the SVM meta-model processes to extract
optimal patterns for the final prediction, made through a linear
activation function. When a new sample is introduced, the LSTM
and RFmodels process it, their output vectors are combined, and the
SVM meta model makes the final prediction. Figure 5 illustrates the
flow diagram for the LSTM-RF hybrid machine learning
(HML) algorithm.

3.3 Evaluation metrics

To evaluate the results of artificial intelligence in predicting
GHGE and establish a suitable measure for comparison, one can
refer to a set of standard statistical measures presented in Formulas
1–5. The relevant information linked to these formulas includes
Mean Average Deviation (MAD), Root Mean Square Error (RMSE),
Standard Deviation (SD), Correlation Coefficient (R2), and Absolute
Mean Average Deviation (AMAD). These measures play an essential
role in assessing the effectiveness and accuracy of AI models in
GHGE prediction. By using MAD, RMSE, SD, R2, and AMAD,
valuable insights into the model’s predictive abilities and
performance against benchmarks can be obtained. These
measures collectively contribute to a thorough evaluation,
providing a nuanced understanding of the AI model’s reliability
in predicting GHGE.

RMSE �
���������������������������
1
n
∑n
i�1

GHGEmeas. i − GHGEpred. i( )2√
(1)

MAD �
∑n
i�1

GHGEmeas.−GHGEpred.

GHGEmeas.
i

n
× 100 (2)

SD �

����������������������������������������∑n
i�1

GHGEmeas.−GHGEpred.

GHGEmeas.
( )

i
− GHGEmeas.−GHGEpred.

GHGEmeas.
( )

mean
( )2

n − 1

√√
(3)

R2 � 1 −
∑n
i�1

GHGEmeas. i − GHGEpred. i( )2
∑n
i�1

GHGEpred. i −
∑n
i�1

GHGEmeas.

n
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠2 (4)

AMAD �
∑n
i�1

GHGEmeas.−GHGEpred.

GHGEmeas.
× 100i

∣∣∣∣∣ ∣∣∣∣∣
n

(5)

3.4 Cross validation

The k-fold cross-validation method can be applied to validate
and fine-tune the outcomes of ML and DL algorithms. This method
utilizes the 2S rule, where “S” is the number of variables, to ensure
robust test data validation. The ML and HML models were used in
this process. The k-fold method was used, with “k” set to 6 for this
dataset. Specifically, one set out of 8 was designated for testing, while
the other seven were used for training. TheML and HML algorithms
underwent ten evaluations to choose each subset, resulting in
60 evaluations. Ultimately, the model with the lowest RMSE

value was selected to predict GHGE. The validation sequence for
this paper is illustrated in Figure 6.

4 Result and discussion

4.1 Evaluation errors and their impact

Researchers from various fields have shown a strong interest in
Hybrid Machine Learning (HML) models due to their impressive
ability to address regression problems. This article used 2 ML
algorithms (LSTM and RF) and one HML algorithm (LSTM-RF)
to predict GHGE. The GHGE prediction results for these algorithms
are thoroughly presented in Table 3. The information contained in
these tables provides a comprehensive overview of GHGE
predictions using HML compared to traditional ML algorithms
across test, training, and validation datasets. The findings detailed
in Table 3 offer an in-depth analysis of the predictive performance of
HML and simple ML algorithms, demonstrating their effectiveness
in handling GHGE prediction tasks across various datasets.

A careful look at Table 3 shows that the performance accuracy of
the LSTM-RF HML algorithm, a hybrid algorithm, exceeds that of
conventional LSTM and RF algorithms. Specifically, the LSTM-RF
HML algorithm demonstrates the following results for train data:
MAD = 0.120%, AMAD = 1.122%, SD = 2.467, RMSE = 2.432, and
R2 = 0.9993. Similarly, for test data, the algorithm produces
MAD = −0.499%, AMAD = 1.059%, SD = 2.984, RMSE = 2.977,
and R2 = 0.9990. In the validation data, the recorded values are
MAD = −0.131%, AMAD = 1.443%, SD = 3.651, RMSE = 3.024, and
R2 = 0.9992. These findings support the conclusion that the
performance accuracy of the LSTM-RF HML algorithm surpasses
both LSTM and RF algorithms. The simplicity of the presented
results reinforces the comparison.

4.2 Evaluation graphical results for
prediction of GHGE

Figure 7 presents a chart comparing each data record’s measured
and predicted GHGE. It provides information on most of the data,

FIGURE 6
Schematic illustration of the flow diagram for k-fold cross-
validation.
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TABLE 3 Performance metrics of ML and HML models in prediction of GHGE accuracy on the testing, training, and validation subdivision.

Subdivision Models MAD AMAD SD RMSE R2

Train

LSTM-RF 0.120 1.122 2.467 2.432 0.9993

LSTM 0.351 2.584 11.898 11.765 0.9989

RF −0.405 3.253 16.003 16.732 0.9986

Test

LSTM-RF −0.499 1.059 2.984 2.977 0.9990

LSTM 0.495 2.506 12.762 13.112 0.9981

RF 0.552 2.878 20.668 20.435 0.9972

Validation

LSTM-RF −0.131 1.443 3.651 3.024 0.9992

LSTM −0.269 1.964 14.378 14.543 0.9984

RF 0.409 2.036 20.045 20.934 0.9975

FIGURE 7
A comparison between measured and predicted GHGE values for the training, testing, and validation subset by the three evaluated ML and
HML models.
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including both test and validation sets. The visual analysis of
Figure 7 demonstrates that the HML LSTM-RF algorithm
exhibits superior performance accuracy compared to the
traditional RF and LSTM algorithms. This representation aids in
assessing the correlation coefficient. Examining the outcomes
presented in Table 3 and Figure 7, it becomes evident that the
hierarchy of algorithm performance for GHGE prediction is LSTM-
RF > LSTM > RF, based on their respective performance accuracies.

Figure 8 displays a histogram of errors when predicting GHGE
values using 3 ML and HML models. The figure shows that the
performance accuracy of the LSTM-RF algorithm surpasses that of

other algorithms. The error distribution in the figure is symmetrical
around the zero point, indicating a normal error distribution
without positive or negative biases. Additionally, it is noticeable
in the figure that RF and LSTM algorithms lack symmetry and
exhibit lower performance compared to the LSTM-RF
HML algorithm.

Figure 9 displays two important statistical parameters and
metrics for evaluating ML algorithms through reviews and
quantitative comparisons. The figure presents RMSE and
R2 values for predicting GHGE in the test subset. Analyzing
these figures allows us to understand how the RMSE and R2

values change about each other, providing insight into this
critical parameter. After investigating these two aspects, it
becomes evident that the performance accuracy of the algorithms
discussed in this article follows this order: LSTM-RF > LSTM > RF.
These results highlight that the accuracy of the HML algorithm
surpasses that of traditional ML algorithms. Properly utilizing these
HML algorithms can offer insights into significant changes and
consequences affecting food systems and the interconnected
network of agriculture, food production, and supply. This can
help prevent many problems through effective management of
food resource reduction.

One effective method to assess and compare algorithm
performance is Score Analysis (SA). This approach assigns a
numerical score to each statistical calculation value for every
computational and statistical method used in the algorithms. A
higher score indicates greater performance accuracy, while a
lower score signifies reduced accuracy. Subsequently, these
values are aggregated for the training, test, and validation
subsets. The algorithm with the highest total score
demonstrates superior performance accuracy compared to the
others. In this investigation, the maximum score is 9, and the

FIGURE 8
Displaying histograms of prediction errors in GHGE and theoretical normal distributions represented by red lines.

FIGURE 9
Evaluating the prediction efficacy of ML models (LSTM and RF)
andHMLmodels (LSTM- RF) on the testing subset by comparing RMSE
and R2 values in the GHGE prediction.
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minimum is 1 (Table 4). After calculating this score, it is
determined that the total scores for LSTM-RF, LSTM, and RF
algorithms are 116, 69, and 40, respectively. Upon analyzing
these scores, it is clear that the LSTM-RF algorithm exhibits
higher accuracy than the other two, while the RF algorithm shows
the lowest accuracy (Figure 10).

One factor used to understand the importance of input variables
about the output variables is Pearson’s coefficient (R). This
coefficient, ranging from −1 to +1, reveals the strength and
direction of correlations. A +1 value indicates a direct solid
correlation, while −1 signifies a robust inverse correlation. A
value close to 0 suggests no correlation for GHGE output.
Equation 6 illustrates the Pearson coefficient.

R �
∑n
i�1

θi − �θ( ) ϵi − �ϵ( )���������∑n
i�1

θi − �θ( )2√ ���������∑n
i�1

ϵi − �ϵ( )2
√ (6)

R is the Pearson correlation, and θ and ϵ are the rank of each
variable dataset. A heat map is a visual representation that helps
assess these important input variable parameters. To simplify the
heat map’s design, we have used symbolic names (β1- β27 and
GHGE) shown in Table 1 for the input variables due to the
length of their names. This approach enables a more
straightforward presentation of the heat map’s new configuration.
After analyzing the heat map, it is evident that some input variables
have a direct relationship, while others have an inverse relationship
with the GHGE output. Input variables (β2-β9, β11-β13, β24, and β26)
can be associated with negative correlations, while input variables
(β1, β10, β14-β23, β25, and β27) are linked with positive correlations
(Figure 11). These relationships can be expressed using Equations
7, 8:

GHGE∝ β1, β10, β14 − β23, β25, β27 (7)
GHGE∝

1
β2 − β9, β11 − β13, β24, β26

(8)

Notably, values of β9 (on-farm energy use), β14-β22 (pesticides
manufacturing, on-farm electricity use, food processing, food
packaging, food retail, food household consumption, food
transport, energy, and industrial processes and product use), and
β24-β26 (drained organic soils (Co2), forestland and fertilizers
manufacturing) have a highly significant impact on the GHGE
output. Comparing Pearson’s coefficient with the heat map
provides valuable insights into how the data is related and their
influence on the GHGE output.

5 Limitation

A significant limitation of the input data stems from its
dependence on aggregated national estimates, which can obscure
regional differences within countries and result in less accurate local
insights. This broad aggregation can hide crucial emission profile
variations influenced by differing agricultural practices, land use
patterns, and climatic conditions across various regions. For
example, emissions from livestock can significantly vary between
arid and temperate climates, yet national averages may need to
capture these differences, leading to potentially misguided policy

TABLE 4 Performance score analysis of ML and HML models in prediction of GHGE accuracy on the testing, training, and validation subdivision.

Models Subdivision MAD AMAD SD RMSE R2 Sum score

LSTM-RF Train 5 8 9 9 9 40

Test 9 9 8 8 7 41

Validation 6 7 7 7 8 35

LSTM Train 4 3 6 6 6 25

Test 2 4 5 5 3 19

Validation 7 6 4 4 4 25

RFTrain Train 8 1 3 3 5 20

Test 1 2 1 2 1 7

Validation 3 5 2 1 2 13

FIGURE 10
Comparative spider diagram showcasing the prediction
performance of ML (LSTM and RF) and HML (LSTM-RF) models for
GHGE prediction based on score analysis. Scores are delineated for
the summation of the training, testing, and validation subsets, as
well as the cumulative total score.
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responses. Furthermore, the dataset employs a Tier 1 methodology
for emissions estimation, relying on default emission factors that do
not account for specific agricultural practices, local environmental
contexts, or recent technological advancements. Consequently, this
approach may need to include vital details regarding resource
efficiency and the effects of innovative farming methods that
could substantially influence emissions levels. These crucial
developments need to be adequately represented in older
datasets. Furthermore, there is the risk of reporting
inconsistencies and methodological variations among countries,
leading to emissions quantification and reporting discrepancies.
This lack of standardization introduces uncertainties, particularly
when comparing emissions data across different countries
or regions.

6 Conclusion

In conclusion, comprehending the complex relationship
between climate change and agrifood systems is essential for
assessing the long-term implications on food production and
sustainability. This study underscores the necessity of accurately
forecasting greenhouse gas emissions (GHGE) from agricultural
practices to devise strategies that simultaneously address food
security and environmental concerns. By utilizing advanced

machine learning techniques—specifically, long-term term
Memory (LSTM), Random Forest (RF), and a hybrid LSTM-RF
model—, we have significantly improved our predictive abilities
concerning future climate scenarios linked to GHGE within the
agricultural sector. The analysis utilized a comprehensive dataset
comprising 8,100 data points across 27 input features, which capture
various elements of the agrifood system’s contribution to
greenhouse emissions, covering the years 1961–2020.
Remarkably, the LSTM-RF hybrid model surpassed the individual
models’ predictive accuracy, achieving a Root Mean Square Error
(RMSE) of 2.977 and an R2 value of 0.9990. This performance
demonstrates its proficiency in capturing intricate temporal
dependencies and interactions in the data. As revealed by
Pearson correlation analysis, key determinants influencing GHGE
include on-farm energy consumption, pesticide manufacturing
activities, electricity usage, and land use, such as drained organic
soils and forestland. Despite these encouraging findings, the study
acknowledges several limitations. The dataset is confined to
historical data from 1961 to 2020, suggesting that updating it
with more recent information could enhance predictive accuracy
regarding evolving agrifood systems.

Furthermore, the model’s effectiveness hinges on the quality of
input data, which may need to be corrected or corrected in historical
emissions records. The dependence on past data also restricts the
model’s capacity to anticipate unexpected occurrences, such as

FIGURE 11
A visual heat map plot illustrating the determination of the 27 input variables and GHGE.
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advancements in agricultural technology or sudden climate changes.
Although the hybrid LSTM-RF algorithm demonstrates substantial
efficacy, there is room for further refinement to enhance its
generalizability across diverse agricultural systems and climatic
regions. This indicates promising avenues for future research,
including integrating real-time data, enhancing the algorithm’s
flexibility for various agrifood systems, and broadening the scope
of the study to incorporate additional environmental factors
influencing GHGE beyond those currently considered.
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Nomenclature
AMAD Absolute Mean Average Deviation

CCE Climate Change Emissions

CH4 Methane

CNN Convolutional Neural Network

Co2 Carbon Dioxide

FSL Few-Shot Learning

GHGE Greenhouse Gas Emissions

HTML Hybrid Machine Learning

LSTM Long-Short Term Memory

MAD Mean Average Deviation

ML Machine Learning

N2O Nitrous Oxide

R2 Correlation Coefficient

RF Random Forest

RMSE Root Mean Square Error

RNN Recurrent Neural Network

SA Score Analysis

SD Standard Deviation

TL Transfer Learning
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