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This study aims to explore the impact of digital technology innovation on
energy efficiency and energy intensity, and further provide new insights for
addressing emerging challenges in energy economics. Focusing on the panel
data of 11 provinces and cities in the Yangtze River Economic Belt from 2010 to
2020, this study thoroughly investigates the process by which the digital
economy influences regional energy intensity through the mechanism of
technological spillovers, utilizing the fixed-effect model, the mediated-
effect model, and the spatial Durbin model. The systematic empirical
analysis clearly demonstrates that the vigorous development of the digital
economy significantly reduces regional energy intensity, and this effect
remains stable after tests for endogeneity and robustness. Further analysis
reveals that green technology innovation is a crucial pathway through which
the digital economy reduces regional energy intensity. Additionally, the digital
economy positively and indirectly lowers the energy intensity of neighboring
provinces through technological spillovers. However, it is noteworthy that the
rapid growth of the digital economy since 2017 has also triggered the so-called
“energy rebound effect,” which has led to an increase in energy consumption
in neighboring regions to some extent. Therefore, to achieve a sustainable
reduction in regional energy intensity and promote coordinated regional
development, it is essential to continuously strengthen the development of
a digital economy centered on digital technology to fully realize its
technological spillover effects. These findings not only provide a scientific
basis for the formulation of regional energy policies but also offer valuable
insights for China in promoting green development and achieving the goals of
carbon peaking and carbon neutrality.
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1 Introduction

Global climate issues have become a serious concern for
countries around the world, and energy intensity has a direct
impact on the trajectory of climate change. According to the
Carbon Dioxide Emissions 2023 report released by the
International Energy Agency (IEA), carbon dioxide emissions
from global energy consumption will reach a record high in
2023. General Secretary Xi Jinping, on behalf of China and the
Chinese people, has clearly stated to the world the strategic goal of
“carbon capping and carbon neutrality”. To realize these meaningful
goals, it is necessary to make innovative breakthroughs in theoretical
concepts and technical methods. The 14th Five-Year Plan clearly
proposes that by 2025, energy consumption per unit of GDP will be
13.5% lower than in 2020, and makes the digital economy a key
factor in achieving carbon neutrality. Chinese government reports
also emphasize the importance of accelerating the development of
the digital economy and promoting green and low-carbon
production technologies. With the rapid development and
application of technologies such as artificial intelligence, big data,
the Internet of Things, and cloud computing, the digital economy
has become a core pillar of the global economy and an important
driving force for the evolution of the global industrial structure to a
higher level (Liu and Shi, 2024). These technological innovations
have not only greatly enriched the connotation of the digital
economy, but also laid a solid foundation for its vigorous
development worldwide. According to the China Digital
Economy Development Report (2023) issued by the China
Academy of Information and Communications Technology, the
scale of China’s digital economy climbed to 50.2 trillion yuan in
2022, with a year-on-year growth of 10.3%, surpassing the nominal
growth rate of GDP for 11 consecutive years, and has become an
emerging mode and a powerful driving force to promote China’s
sustainable green economic growth. The digital economy has not
only opened up a new development path for the Chinese economy,
but also played a pivotal role in shaping new productivity and
promoting industrial upgrading, becoming an important strategic
fulcrum for China’s economic development. In the process of green
growth, the new digital economic growth model has both direct and
indirect impacts on energy consumption. The direct impact includes
the increase in energy consumption due to the investment,
construction, operation, maintenance and production of
supporting facilities in the development of the digital economy.
Indirect im-pacts include the ability of the digital economy to reduce
energy intensity by eliminating redundancies in production and
improving the efficiency of energy use, transmission, and
management (Lange et al., 2020). How the digital economy
contributes to energy consumption requires data analysis to
elucidate the underlying mechanisms.

As the core engine of China’s high level of economic
development, the Yangtze River Economic Belt has been
positioned as an innovation-driven zone for the development of
the digital economy, a green demonstration zone for ecological
protection and restoration, and a coordinated development zone for
the promotion of regional cooperation through innovative
institutional mechanisms. The Yangtze River Economic Belt
consists of 11 provinces and municipalities directly under the
central government, and by 2021, the digital economy of nine

provinces and municipalities directly under the central
government, namely, Jiangsu, Zhejiang, Shanghai, Hubei,
Sichuan, Hunan, Anhui, Chongqing and Jiangxi, will total more
than one trillion yuan. Zhejiang, Shanghai, Hubei, Sichuan, Hunan,
Anhui, Chongqing and Jiangxi, as the key regions of digital economy
development and high intensity of energy consumption, provide a
typical and reference case.

Existing research on the relationship between the digital
economy and energy intensity is largely limited to examining
whether there is a positive effect, identifying influencing factors,
and assessing the impact. However, it does not extensively explore
the mechanisms and efficiency of the positive impact of the digital
economy on energy intensity. This study focuses on the following
key issues: Can the digital economy effectively curb the growth of
energy intensity? And how does the digital economy affect energy
intensity? Are there spatial spillovers? This study attempts to address
these key issues by employing fixed effects, mediation effects, and
spatial effects models, thereby bridging existing research gaps. It
aims to contribute to the cultivation of new productivity and the
reduction of regional energy intensity in China.

2 Literature review

With the rapid progress and continuous innovation of digital
technology, the digital economy has become the “core driving force”
of national economic growth (Singhal et al., 2018; Chen et al., 2019).
With digital technology as the core driving force, the digital
economy is creating a new operating paradigm, promoting the
formation of new industries, while injecting new vitality into
traditional industries, and leading the digital transformation of
the world economy. Since the concept of digital economy was
put forward (Tapscott, 1996), it has passed through many
important development stages from information economy to
Internet economy to new economy with the continuous progress
of science and technology and the constant change of social needs
(Brent and Steven, 1999; Turcan and Juho, 2014; Zhang et al., 2020).
Under different historical backgrounds and time environments, the
connotation and expansion of the digital economy have their own
focus and expansion, showing rich diversity and dynamics, and has
not yet formed a unified definition of the standard. Chen et al.
provide a more comprehensive interpretation: the digital economy is
a new economic model and industry that is diversified and
characterized by the use of digital information as the cornerstone
resource, the use of the Internet platform as themain medium for in-
formation transmission, and the use of digital technological
innovation as the key driving force, as well as the development
of new economic models and industries. It is a comprehensive
economic activity that manifests itself in diversified new
economic models and business forms (Chen et al., 2022). This
definition not only covers the core elements and characteristics
of the digital economy, but also reveals its far-reaching impact on
economic development and social progress.

The development of digital economy has greatly promoted the
creation of new and diversified business forms and modes in
primary, secondary and tertiary industries, which not only
promotes the optimization and upgrading of industrial structure,
but also further accelerates the profound transformation and
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comprehensive improvement of the way of life and production
mode in modern society. At present, the discussion on the
impact of digital economy on energy intensity presents various
views, although a unified consensus has not yet been formed, but
most researchers tend to believe that the digital economy has a
positive inhibitory effect on energy intensity through in-depth
analysis and practical observation. Li Ming’s study delves into the
important role of the digital economy in promoting the global low-
carbon transition and helping more cities become green cities. He
clearly points out that with the rapid development and wide
application of digital economy related technologies, these
technologies can greatly stimulate the vitality of technological
innovation within industries, promote the green transformation
and upgrading of traditional industries, and thus significantly
reduce energy intensity, providing solid support and strong
impetus for the low-carbon sustainable development of Chinese
cities (Li and Yusuf, 2023). This attention stems from the central
position of the digital economy in the modern economic system and
its potential role in improving the efficiency of resource use and
promoting green development. To gain a deeper understanding of
this relationship, recent studies have generally adopted quantitative
analysis methods to analyze in detail the actual impact of the digital
economy on energy consumption by con-structing rigorous
mathematical models and statistical techniques. For example, in a
study on the factors influencing carbon emissions in the Yangtze
River Economic Belt, researchers used a spatial panel econometric
model, which showed that economic growth has the potential to
improve carbon emission efficiency, which is more important
relative to other factors (Cai et al., 2022; Liu and Hao, 2022; Li
et al., 2024). In addition, Li’s research reveals a non-linear
relationship between digital economic growth and carbon
emissions, a relationship that is centrally driven by the unique
network effects of the digital economy (Li et al., 2021). Through
its extensive information connectivity and efficient resource
allocation capabilities, the digital economy promotes economic
growth while potentially increasing carbon emissions. However,
with the further development of the digital economy, its network
effect gradually appears, which promotes technological innovation
and efficiency improvement, and then re-duces carbon emissions
per unit of output. Cai, A. et al. used a spatial panel econometric
model based on the STIRPAT equation to analyze panel data from
30 provinces in China. They found that the spatial spillover effect of
inter-provincial carbon dioxide emissions is significant. The green
technological progress in surrounding provinces has a negative
impact on carbon emissions in the province (Cai et al., 2021).

In addition, the spatial impact of the digital economy has
become a focus of aca-demic attention. The cross-border sharing
and interconnectivity characteristics of the digital economy can
overcome the inherent limitations of geographic distance and in-
crease the breadth and depth of connections between cities (Fan
et al., 2023). Digital elements, as critical factors of production in the
digital economy, are non-competitive, have near-zero marginal
costs, and are shareable. Using the spatial Durbin model and the
spatial DID model, Xu et al. found that the development of the
digital economy significantly reduces carbon emissions in both the
region and the surrounding areas. However, due to changes in
geographical boundaries, the spatial spillover effects of carbon
reduction from the digital economy vary significantly across

different economic circles (Xu et al., 2022). The strong spatial
connectivity and deep integration of the digital economy provide
new opportunities for regionally coordinated development and help
advance the carbon reduction process. The cross-regional role of the
digital economy can also help build a cooperative model for carbon
reduction and achieve sustainable development (Liu and Chen,
2023; Mohsin et al., 2024).

Although early academic research has provided a theoretical
foundation for stud-ying the influence of the growth of the digital
economy on regional energy intensity, existing studies have
limitations. Firstly, the majority of research concentrates on the
correlation between the digital economy and carbon emissions, with
fewer investigations delving into its connection with energy
intensity. Secondly, most studies adopt national, provincial, or
city-level viewpoints, with limited attention given to mesoscopic
perspective from the regional coordinated development strategy.
Thirdly, there is a scarcity of studies analyzing the intensity of energy
consumption through the lenses of technological and spatial effects.
Instead, most research relies on conventional econometric models to
examine what digital economy play a role in the energy costs.

There are the prospective innovations and significance of this
research. First, the study integrates the mechanisms through one
another by which the digital economy and green technological
innovation shape energy intensity, and investigates the spatial
spillover effects of the digital economy on energy intensity,
paying special attention to spatial and temporal variations.
Second, this study shifts from a macro to a micro perspective by
selecting a representative region for analysis. This approach aims to
pro-vide a clearer examination of the relationship between the
digital economy and energy intensity in the context of regional
coordinated development. Third, the empirical analysis conducted
in this study can provide theoretical support and policy insights for
China to achieve a low-carbon and green world environment and
human welfare.

3 Theoretical analysis and research
hypotheses

3.1 The direct and indirect effects of the
digital economy

According to existing research, the digital economy’s influence
through both direct and indirect pathways. Firstly, the digital
economy can directly play an important role. National policies
that support digital economy industries also facilitate coordinated
development across industries, strengthen inter-industry linkages,
and improve energy use efficiency (Zuo et al., 2020; Dzwigol et al.,
2024). Wu and Gao by exploring the relationship between the digital
economy and low-carbon industries, used energy intensity as a
substitute variable and conducted robustness tests, finding that
the digital economy negatively impacts energy intensity (Wu and
Gao, 2020). Zhang and Wei argue that information and
communication technology (ICT) complements other pro-
duction factors, driving technological progress in enterprises
(Zhang and Wei, 2019).

However, many scholars believe that technological innovation in
the age of digital economy is the key factor in reducing energy
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intensity. Data resources that inherently possess green attributes
exhibit the characteristics of “Metcalfe’s Law”, where marginal
benefits far exceed marginal costs in terms of environmental
performance (Zhang et al., 2024). Research based on technology
diffusion theory finds that innovation caused by technology
diffusion can promote the optimal allocation of resource
elements, improve production efficiency, and innovate
organizational models, exhibiting the “Davidow effect” that forces
the elimination of obsolete manufacturing capacity and promotes
transformation and upgrading (Wang et al., 2021a; Hanelt et al.,
2020). Some scholars also argue that the development of the digital
economy can cause the expansion of economic scale, which
increases the demand and consumption of resources (Li et al.,
2010). Overall, the impact of the digital economy on the intensity
of energy consumption changes during its development stages. This
means that the knowledge spillover effect from the advancement of
digital technology plays a vital role in improving pro-duction and
power efficiency and reducing energy consumption (Wang and
Yu, 2024).

Based on these mechanisms, this study puts forward the
following hypotheses.

H1. The digital economy has a suppressive effect on
energy intensity.

H2. The digital economy reduces energy intensity via
technological progress.

3.2 Digital Economy’s spillover effects

Geographically, the distribution characteristics of regions
determine a certain degree of interconnection, with closer ties in
neighboring regions. As Bai and Chen found in their research, the
development of digital technology is not constrained by space and
can broadly and quickly impact the economic and cultural
development of surrounding areas through the free dissemination
of information (Bai and Chen, 2022). According to Raúl Prebisch’s
“center-periphery” theory, regions form a unified dynamic system
where advanced regions spread advanced technologies and
experiences to other regions. Digital media facilitate the increase
in diffusion speed and expansion of diffusion scope, enhancing the
spillover effect. In their research on the impact and mechanism of
the development of the digital economy on environmental pollution
in Chinese cities, Deng and Zhang found that the digital economy
can affect environmental pollution in surrounding regions through
spatial spillover effects (Deng and Zhang, 2022). From the
perspective of the dynamic diffusion or spillover effects of the
digital economy, this technology spillover effect first occurs
within the information technology production sector (Cecconelli
et al., 2012), then spreads to the information technology usage
sector, improving energy efficiency in enterprises and even across
the entire industry. For regions with high total energy consumption,
technology diffusion can bring significant “demonstration effects”
on energy. From a regional development perspective, this can
significantly reduce energy intensity.

Therefore, the study proposes hypothesis H3.

H3. The digital economy can decrease the energy intensity of
neighboring regions via technology spillover.

4 Model methodology and variable
explanation

4.1 Model methodology

To examine hypothesis H1, we formulate the econometric
model below to investigate the influence of the digital economy:

ln EIit � γ0 + γ1 lnDigeit + γcControlit + βi + μt + εit (1)

In Equation 1, i is the province and t indicates the year; EImeans
the energy intensity; Dige stands for the level of integrated
development of the digital economy; Control represents the
control variables that influence the energy intensity; γ0, γ1,and γc
are the coefficients to be estimated, with γ1 representing the direct
effect of the digital economy on energy intensity, and γc representing
the direct impact of control variables on energy intensity; βi
represents the province fixed effects, which control for province-
specific characteristics; μ means the year fixed effects; ε is the
random error term.

This study also examines whether green technological
innovation acts as a mediation variable for the effect of the
digital economy on energy intensity, thereby testing hypothesis
H2. The specific model for this analysis is as follows:

ln EIit � α0 + α1lnDigeit + αcControlit + βi + μt + εit (2)
lnGTIit � γ0 + γ1lnDigeit+γcControlit + βi + μt + εit (3)

In Equations 2, 3, GTI denotes the green technology innovation;
α0 and γ0 are selected to be constant terms. In addition to these,
α1, αc, γ1, γc are selected to be coefficients to be estimated.

Subsequently, in order to test hypothesis H3, this paper uses a
spatial Durbin model for testing, which is shown in the
following equation.

ln EIit � γ0 + ρW lnEIit + φaWGTIit + γ1GTIit + φbWControlit

+ γcControlit + βi + μt + εit
(4)

In Equation 4, ρ and W represent the spatial autoregressive
coefficient and spatial weight matrix, respectively. φa and φb

represent the spatial interaction term elasticity coefficients of the
explanatory and control variables, respectively. This spatial Durbin
model takes into account the spatial dependence and spatial
spillover effects of energy intensity across provinces by
introducing a spatial lag term.

4.2 Variable explanation

4.2.1 Core explanatory variable: digital economy
As an emerging sector, the academic research community has

not reached a consensus on how to measure the digital economy.
Nevertheless, there is a substantial body of digital economy research
at the Chinese provincial level. This study summarizes existing
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research experiences and draws on the methods of Wang M. et al.
(2021) and Yue and Zhang, 2023; Wang J. et al., 2021; Yue and
Zhang, 2023). Industrial digitalization and digital industrialization
are two ways of understanding the digital economy. Ten secondary
indicators are selected: employment, mail turnover, express
turnover, telecommunications turnover, total distance of fiber
optic cable, total number of domain names, total number of web
pages, mobile phone users at the end of the year, mobile phone
penetration rate, and broadband Internet subscribers. These
indicators form the rating level of the digital economy at the
provincial (municipal) stage in the Yangtze River Economic Belt,
as shown in Table 1.

Based on the above metrics, the initial data is standardized, and
the entropy technique is utilized for dimensionality reduction to
form the comprehensive level of digital economy development index
Dige, which serves as the major explanatory variable in this paper.
The logarithm of this indicator is then taken for further analysis.

4.2.2 Dependent variable: Energy intensity
As provided below, energy intensity in this paper is defined as

the ratio of energy consumption to emissions.

Energy Intensity EI( )
� Total Energy Consumption 10kt of standard coal( )

Gross Regional Product ten thousand yuan( )

4.2.3 Mediating variable: green technological
innovation

This study selects green technological innovation (GTI) as the
mediating variable. Green technological innovation refers to the
concept of green sustainable development, the pursuit of
commercial value brought by technological innovation, while
paying attention to the social value of environmental protection
and resource utilization. In the study of the impact of digital
economy on energy consumption intensity, green technological
innovation, as a mediating variable, mainly plays a bridging and
transferring role. Specifically, the digital economy provides a strong
technical support and power source for green technological
innovation by promoting the development and application of

advanced technologies such as information technology, big data
and artificial intelligence. These advanced technologies can promote
the optimization and upgrading of all aspects of energy production,
transmission and consumption, thereby reducing the intensity of
energy consumption. Most scholars currently use the number of
patents granted as a measure of green technological innovation.
Therefore, following the approach of Deng and Bai (Deng ang
Zhang, 2022; Bai and Jiang, 2011), this study uses the logarithm
of the number of green invention patents granted per 10,000 people
as the measure of green technological innovation.

4.2.4 Control variables
What’s more, this study selects five control variables to account

for factors influencing changes in the intensity of energy. The
following are the specific definitions of each variable:

The Direct Investment of Foreign (lnFDI): Represented by the
logarithm of the ratio between the real cost of investment from
foreign and the GDP for each province (municipality) annually.
Foreign direct investment (FDI) contributes to reducing energy
intensity and improving energy use efficiency through technology
transfer, industrial upgrading and efficiency improvement.
However, if FDI focuses mainly on energy-intensive industries or
industries with lower environmental standards, it may lead to
increased energy consumption and higher energy intensity.
Therefore, the impact of FDI on energy intensity is a complex
and multidimensional topic, and its effects may vary depending on
factors such as region, industry, technology level and policy
environment.

The Trade Level of Foreign (lnFTL): Represented by the
logarithm of the ratio of the total import and export trade
amount to GDP for each province (municipality) in a given year.
The development of foreign trade will change the structure of
domestic energy demand. On the one hand, export-oriented
industries may increase the demand for energy, especially energy-
intensive industries; on the other hand, with the deepening of
international trade, there may be greater domestic introduction
of cleaner energy technologies and products, thus optimizing the
structure of energy consumption and reducing dependence on
fossil energy.

The Structure of Industrial (IS): Represented by the ratio of the
added value of the tertiary industry to GDP for each province
(municipality) in a given year. With the upgrading and
transformation of the industrial structure, the amount and type
of energy demanded by different industries will change. Generally
speaking, primary industries have a relatively low demand for
energy, while high-energy-consuming industries such as heavy
industries have a higher demand for energy. Therefore, when the
proportion of heavy industry in the industrial structure increases,
energy intensity tends to rise; while when the proportion of low-
energy-consuming industries, such as services and high-tech
industries, increases, energy intensity decreases.

The Expenditure of Scientific (SE): Represented by the ratio of
scientific expenditure to GDP for each province (municipality) in a
given year. Science expenditure helps to promote scientific and
technological innovation and technological progress, promotes the
optimization and upgrading of the industrial structure, facilitates the
transformation of the economy from high-energy-consuming and
high-polluting traditional industries to low-energy-consuming and

TABLE 1 Metrics for assessing the digital economy level.

Core metric Secondary metrics Weight

Industrial
Digitalization

Employment in information services 0.070

Total postal business 0.181

Total express business 0.198

Total telecom business 0.124

Digital
Industrialization

Total distance of fiber optic cable 0.067

Total number of domain names 0.084

Total number of web pages 0.143

Number of mobile phone users at year-end 0.043

Mobile phone user penetration rate 0.296

Number of broadband internet access users 0.061
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low-polluting high-tech industries, and reduces the waste of
resources, thereby lowering the overall energy consumption.

Highway Passenger Volume (lnHPV): Represented by the
logarithm of the total passenger volume for each province
(municipality) in a given year. In general, the development of the
transportation sector is the main driver of increased energy
consumption and carbon emissions. Increased road passenger
traffic means more vehicles on the road, which will result in
more fuel consumption, which usually leads to a rise in energy
consumption, which in turn leads to a rise in energy intensity, i.e., an
increase in the amount of energy consumed per unit of economic
activity or output.

4.3 Data sources and statistical analysis

The data utilized to research and data analysis come from the
“China Statistical Yearbook” and the CNRDS database. This study
selected data spanning 2010–2020 from 11 provinces
(municipalities) within the Yangtze River Economic Belt, creating
a panel dataset consisting of 121 observations over 11 years for these
provinces. To enhance data stability and minimize fluctuations, the
dependent variable and certain control variables underwent
logarithmic transformation.

Descriptive statistics for the variables in this study are
outlined in Table 2. The highest recorded value of lnEI
is −8.617, while the lowest is −10.46, with a standard deviation
of 0.355. For lnDIGE, the maximum value is −0.130, the minimum
value is −4.090, and the standard deviation is 0.915. These statistics
reveal considerable variations in the development of the digital
economy among the provinces and municipalities of the target
region of research.

4.4 Data processing and model selection

4.4.1 Multicollinearity test
Multicollinearity occurs when there are high or exact

linear correlations among the explanatory variables in a
linear regression model, potentially skewing the estimates
or complicating accurate estimation. Conducting a
multicollinearity test helps assess the correlation levels among

the independent variables, allowing for necessary adjustments to
the model or more informed interpretation of the regression
outcomes, thus improving the model’s explanatory capacity.

In this research, the Variance Inflation Factor (VIF) is the
primary method used to assess multicollinearity. The VIF
quantifies the extent of multicollinearity for each independent
variable. A VIF value below 10 suggests a low correlation among
the independent variables, indicating minimal negative impact on
the accuracy of the regression model. As the outcome of Table 3, it
presents the results of the multicollinearity test, showing that all
variables have VIF values below 10. This confirms that there is no
significant multicollinearity among the independent variables in
the analysis.

4.4.2 Model selection
In selecting the baseline regression model, this study

initially tested for individual fixed effects, yielding a P-value of
0.000, which is significant at the 1% level, indicating the presence
of individual fixed effects. Next, time fixed effects were tested,
also resulting in a P-value of 0.000 from the F-test, confirming
the existence of time fixed effects. These findings suggest that
the fixed effects model is preferable to the mixed effects model.
Lastly, the Hausman test produced a P-value of 0.001, passing the
1% significance threshold, indicating that the fixed effects model
is more appropriate than the random effects model.
Consequently, this study opted for the two-way fixed effects
model for the regression analysis, incorporating both two type
fixed effects.

TABLE 2 Descriptive statistics of variables.

Variable Observation Mean S.D. Minimum Maximum

lnEI 121 −9.837 0.355 −10.460 −8.617

lnDIGE 121 −2.163 0.915 −4.090 −0.130

lnFDI 121 −3.696 0.701 −6.329 −2.585

lnFTL 121 −1.610 0.959 −3.563 0.501

IS 121 0.094 0.124 −0.014 0.509

SE 121 0.005 0.003 0.002 0.013

lnHPV 121 11.04 1.096 7.194 12.53

lnGTI 121 7.718 1.116 4.977 10.45

TABLE 3 Multicollinearity test results.

Variable VIF 1/VIF

lnDIGE 2.33 0.43

lnFDI 2.18 0.46

lnFTL 2.30 0.43

lnHPV 3.07 0.33

IS 1.95 0.51

SE 4.55 0.22

Mean VIF 2.73
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5 Regression analysis of the impact
of the digital economy on
energy intensity

5.1 Baseline regression analysis

This paper establishes a examine based on model (1), to
determine the connection between objectives of our study.
Table 3 presents the baseline regression consequence of this
study. So as to ascertain the connection between objectives of our
study, the author has conducted a test based on model (1), and
Table 3 presents the examine consequence of this study. In Table 4,
column (1) demonstrates that the regression coefficients of the
digital economy on the intensity of energy are negative when the
regression analysis is putting into effect without fixing the province
and time. This result passes the highest level of significance test.
Concurrently, adjusted for both time and provincial factors, the
findings of the study reveal that the core explanatory variable
powerfully reduces energy intensity at the 10% significance level.
Finally, the study, in part (4), applies a model of two-way fixed-
effects with fixed time and provinces simultaneously. This analysis
indicates that the coefficient of the core explanatory variable shows a
negative value at the 0.01 significance level. This implies that for
every 10% growth of the core explanatory variable in the target area
of research, the intensity of energy consumption will be reduced by
1.26%. This result provides compelling evidence of the significant
function of the digital economy in reducing energy consumption,
which is supported by the earlier studies (Guo et al., 2023; Huang
et al., 2023; Zeng et al., 2023). The profound interpenetration of the
core explanatory variable with the real economy has compelled
traditional industries in the Yangtze River Economic Belt to undergo
digitalization, networking, and intelligent innovation. In this

process, new models relying on the digital economy have
emerged, which have significantly reduced energy consumption
in the production and consumption chain. This is due to their
ability to efficiently disseminate and share information. The
efficiency of the process of energy industry, from production to
consumption, has been markedly enhanced, thereby demonstrating
the remarkable efficacy of using digital technology in promoting low
carbonization of production. Therefore, hypothesis H1 is validated.

5.2 Endogeneity test

There is a powerful correlation between the objectives of our
study. Firstly, energy, as a fundamental input to digital
infrastructure, is a vital resource for its advancement (Huang
et al., 2023). Changes in regional energy consumption are
directly related to the mode and efficiency of economic
operation, which in turn have a profound influence on the
development and progress of the digital economy (Xue et al.,
2022). Concurrently, the digital economy exerts a direct or
indirect influence on partial energy costs (Schulte et al., 2016;
Guo et al., 2022) Given the potential bidirectional causality
between the objectives of our study, it is imperative to conduct
endogeneity testing to ensure the research findings possessing the
accuracy and reliability.

In this paper, we refer to the research methods of the earlier
researches (Yue and Zhang, 2023; Huang et al., 2019; Tao et al.,
2022), and select the historical postal and each partial
telecommunications data as an instrumental variable to measure
the level of development of the core explanatory variable. This
choice is based on two main reasons: First, historical postal and
telecommunication data are closely linked to the evolution of the

TABLE 4 Benchmark regression results.

Variables (1) (2) (3) (4)

lnDIGE −0.363***
(-15.58)

−0.418***
(-16.50)

−0.084*
(-1.78)

−0.126**
(-2.00)

lnFDI −0.163***
(-5.21)

−0.104***
(-3.97)

−0.090***
(-3.26)

−0.068***
(-2.76)

lnFTL 0.104***
(3.70)

0.131***
(3.09)

−0.066*
(-1.79)

0.099**
(2.14)

lnHPV 0.114***
(4.53)

0.021
(0.70)

0.007
(0.24)

−0.017
(-0.49)

IS 0.548**
(2.54)

−0.857**
(-2.03)

0.716***
(3.76)

−0.684*
(-1.68)

SE 29.439***
(2.58)

20.917**
(2.11)

14.45
(1.47)

17.907**
(2.06)

Effects of Time Fixed NO NO YES YES

Effects of Province Fixed NO YES NO YES

Constant term −12.5219***
(-32.37)

−11.172***
(-31.65)

−10.309***
(-21.55)

−9.686***
(-19.22)

R2 0.876 0.911 0.911 0.942

Observations 121 121 121 121

Note: *, **, *** indicate significance at the 10%, 5%, and 1% probability levels, respectively. The numbers in parentheses indicate t-statistics; the same convention applies to the subsequent tables.
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digital economy. The modern digital economy can be regarded as a
natural continuation of the development of postal and
telecommunication business in history. Therefore, the total
historical postal and telecommunication business can be used as
a historical indicator to reflect the initial state and the level of
provincial development in terms of digital communication
infrastructure. Secondly, as a historical indicator, the total
historical postal and telecommunication business is unlikely to be
directly affected by the influence of the digital economy on energy
intensity in the Yangtze River Economic Belt during the study
period. Furthermore, it has a low correlation with other factors
that may affect the intensity of energy, thus fulfilling the situation of
exogeneity.

Considering the data’s accessibility and convenience, the total
volume of postal and telegraphic business of target province in
1996 was selected as an instrumental variable in this paper.
However, this data is cross-sectional, therefore model regression
analysis cannot be performed directly on it. To address this
limitation, we employ the approach of Nunn and Qian (Nunn
and Qian, 2014) and introduce a time-varying variable, namely,
the number of Internet broadband subscribers in each year. This
variable is multiplied by the total amount of postal and
telecommunications business in each province in 1996 to
construct an interaction term. So as to mitigate the influence of
data fluctuations on the findings, this interaction term was logged,
and it served as the last instrumental variable (IV). Next, the validity
of this instrumental variable was tested using the two-stage least
squares (2SLS) approach. The results of the test are detailed in
Table 5. The results of the test show that the Kleibergen-Paap Wald
rk F statistic of 38.46 significantly exceeds the critical value of
16.38 at the 10% significance level for the Stock-Yogo weak

identification test. In addition, the Wald F statistic for the Cragg-
Donald weak instrumental variable test is 43.773, which is much
larger than the Stock-Yogo weak identification test has a critical
value of 16.38 at the 10% significance level, thus also supporting the
conclusion that there is no weak instrumental variable problem. This
figure conclusively confirms that the instrumental variable used in
this study is robust, thereby enhancing the credibility of the model’s
analysis and the dependability of its findings. The two-stage
regression analysis concerning the digital economy and energy
intensity demonstrates a distinct negative coefficient for the
digital economy, which is statistically significant at the 1% level.
This further supports the substantial impact of the digital economy
in diminishing energy intensity, consistent with prior regression
results. Moreover, this analysis underscores the transformative
potential of digital technologies in promoting energy efficiency
across various sectors, aligning with global sustainability goals.

5.3 Robustness test

5.3.1 Lagged dependent variable
To more accurately capture the potential time lag in how inputs

from the digital economy influence energy consumption, we have
employed lagged explanatory variables. The results, as detailed in
columns (1) and (2) of Table 6, display the regression outcomes for
variables lagged by one and two periods, respectively. These findings
reveal that the impact of the digital economy on energy intensity
remains negative and statistically significant at the 10% level, which
reinforces the robustness of our earlier results. This analysis of
lagged variables indicates that the effects are not merely immediate
but persist over the long term. As the digital economy progresses,

TABLE 5 Endogeneity test results.

First phase Second phase

Variable lnDIGE lnEI

IV 0.512***
(6.20)

lnDIGE −0.361***
(-2.92)

Control Variables YES YES

Effects of Time Fixed YES YES

Effects of Province Fixed YES YES

Constant term −9.552 ***
(-10.15)

−11.24***
(-17.81)

adj-R2 0.989 0.965

Observations 121 121

Kleibergen-Paap rk LM statistic 24.221*** [0.000]

Cragg-Donald Wald F statistic 43.773

Kleibergen-Paap Wald rk F statistic 38.459
{16.38}

Note: ***, **, and * denote severally significance at the 0.01, 0.05, and 0.1 levels. The number in parentheses is selected to be z-values. The number in square brackets is selected to be p-values.

Moreover, the number in curly braces is selected to be essential numbers at the 10% level of test.
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digital technologies are not only transforming energy consumption
but also reshaping the supply and demand dynamics of energy,
leading to a profound and enduring influence on energy utilization
patterns. This ongoing transformation suggests a sustainable shift
towards more efficient energy use facilitated by digital advancements
(Xue et al., 2022).

5.3.2 Adding control variables
To account for the possibility of omitted variables influencing

energy intensity, this study adds population size as a control variable
for further robustness testing. If the province possesses higher
population density, it may have higher levels of energy costs, and
conversely, lower levels (Deng et al., 2022). To reduce data volatility,
the demographic variable is measured by the logarithm of the year-
end resident population of each province. Table 6 column (3)
provide further evidence for the influence after adding
population size as a control variable, indicating that the effect
remains significantly negative.

5.3.3 Two-Way Shrinkage treatment of variables
In response to the possible occurrence of extreme values among

the control variables, this study adopts the method proposed by
Chen et al. by implementing a 1% Two-Way Shrinkage treatment to
these variables (Chen et al., 2020). This approach aims to reduce the
impact of outliers on the analysis results. As indicated in column (4)
of Table 6, the influence of the digital economy on energy intensity
continues to be negative and achieves statistical significance at the
5% level. This outcome aligns with several previously discussed
findings within this research, demonstrating consistency in the
negative correlation between the digital economy and energy
intensity across different analytical approaches.

5.4 Mechanism analysis

Drawing from the comprehensive analysis and tests conducted,
the hypothesis that “the digital economy suppresses energy

intensity” has been substantiated. Nonetheless, further
investigation is required to understand the specific mechanisms
underlying this effect. To this end, this study employs the mediation
effect test method outlined by Wen and Ye (2014), incorporating
modifications recommended by Ting Jiang (2022). The primary aim
of this mediation effect test is to explore whether the digital economy
facilitates green technological innovation. The digital economy, with
its powerful data processing and analysis capabilities, provides
strong technical support for the research and development of
green technologies. Through the application of technologies such
as big data, cloud computing and artificial intelligence, enterprises
are able to identify market demand more accurately, optimize the
research and development process and accelerate the innovation
process of green technologies. Green technology innovation
effectively reduces energy consumption through the introduction
of new energy utilization methods and production modes. While the
innovation of green technology promotes intelligent manufacturing,
circular economy and other modes, enterprises are able to realize the
recycling and efficient use of energy in the production process, thus
significantly reducing the intensity of energy consumption.
Therefore, the digital economy has introduced new energy
utilization methods and production modes through green
technology innovation, effectively reducing energy consumption.

Detailed results of the mediation effect test are presented in
Table 7. To ensure the robustness of the regression outcomes, this
paper adopts a strategy of multiple transformations of fixed effects to
analyze the influence of the digital economy on green technological
innovation. The findings indicate that, irrespective of adjustments
for provincial or temporal factors, the digital economy exerts a
significant positive impact on green technological innovation,
validated at the 1% significance level. These results underscore
the crucial role of the burgeoning digital economy as a catalyst
for green technological innovation.

In accordance with the preceding hypothesis, H1, which was
validated to show that the digital economy significantly reduces
energy intensity, our analysis extends to propose a second
hypothesis. We hypothesize that there exists a transmission

TABLE 6 Robustness test results.

(1) (2) (3) (4)

Lagged One-Period
explanatory variables

Lagged two-period
explanatory variables

Added Population
Control

shrinkage
treatment

lnDIGE −0.128*
(-1.89)

−0.163**
(-2.19)

−0.117 *
(-1.87)

−0.129**
(-2.07)

Constant term −10.043***
(-18.72)

−10.096***
(-18.04)

−15.584***
(-3.95)

−9.631***
(-19.94)

Control Variables YES YES YES YES

Effects of Time
Fixed

YES YES YES YES

Effects of Province
Fixed

YES YES YES YES

Observations 121 121 121 121

adj-R2 0.935 0.927 0.943 0.942

Note: *, **, *** indicate significance severally at the 10%, 5%, and 1% probability levels. The numbers in parentheses indicate t-statistics; the same convention applies to the subsequent tables.
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mechanism linking the digital economy, green technological
innovation, and energy intensity reduction. Supporting this
hypothesis, recent research by scholars like Luo et al. (2022) and
Sun and Zhou, 2022 suggests that the digital economy can lower
energy intensity through avenues of technological progress and
innovation. This indicates that advancements in technology,
driven by digital economic activities, may serve as key mediators
in enhancing energy efficiency and thus, contributing to a decrease
in energy intensity (Luo et al., 2022; Sun and Zhou, 2022).

Given the supportive evidence, it is indeed reasonable to propose
Hypothesis H2. This conclusion not only substantiates the findings
of our study but also introduces a new perspective on managing
future energy strategies and fostering green technological
innovations. By understanding and harnessing the interplay
between the digital economy and technological advancements,
policymakers and businesses can develop more effective
approaches to reduce energy intensity and promote sustainable
energy use. This insight opens avenues for further research and

practical applications in the realm of energy efficiency and digital
transformation.

6 Spatial analysis of the impact of the
digital economy on energy intensity

6.1 Spatial correlation test

Before analyzing spatial effects, this study rigorously tests the
spatial relevance of green technological innovation. To ensure the
robustness of these test results, we utilize three distinct spatial
weighting matrices: the inverse distance weighting matrix (W1),
the economic distance weighting matrix (W2), and the neighboring
distance weighting matrix (W3). Subsequently, the global Moran’s
index for green technological innovation is calculated.

The results, as shown in Table 8, reveal that the Moran’s index
for green technological innovation is statistically significant at the

TABLE 7 Mediation effect test results.

(1)
lnGTI

(2)
lnGTI

(3)
lnGTI

(4)
lnGTI

lnDIGE 0.398***
(3.49)

0.937***
(15.33)

0.600***
(5.31)

0.334***
(2.81)

Constant term 7.735***
(22.11)

10.163***
(11.94)

6.637***
(6.88)

5.829***
(6.15)

Control Variables NO YES YES YES

Effects of Province Fixed Effects YES YES NO YES

Effects of Time Fixed YES NO YES YES

Observations 121 121 121 121

adj-R2 0.963 0.928 0.967 0.971

Note: *, **, *** indicate significance severally at the 0.1, 0.05, and 0.01 probability levels. The numbers in parentheses indicate t-statistics; the same convention applies to the subsequent tables.

TABLE 8 Global Moran’s I of green technological innovation.

Year W1 W2 W3

Moran’s I p Moran’s I p Moran’s I p

2010 0.017 0.103 0.174 0.064* 0.308 0.041**

2011 0.025 0.078* 0.165 0.071* 0.338 0.027**

2012 0.027 0.072* 0.177 0.058* 0.357 0.020**

2013 0.014 0.108 0.134 0.110 0.301 0.042**

2014 0.024 0.079* 0.144 0.095* 0.331 0.028**

2015 0.022 0.082* 0.156 0.078* 0.334 0.026**

2016 0.029 0.063* 0.146 0.087* 0.351 0.019**

2017 0.031 0.059* 0.148 0.086* 0.348 0.020**

2018 0.038 0.046** 0.137 0.097* 0.361 0.017**

2019 0.053 0.026** 0.143 0.087* 0.399 0.009***

2020 0.052 0.027** 0.142 0.089* 0.400 0.009***

Note: *, **, *** indicate significance severally at the 0.1, 0.05, and 0.01 probability levels. The numbers in parentheses indicate t-statistics; the same convention applies to the subsequent tables.
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10% level in most years, across all weighting matrices employed.
This evidence strongly suggests that green technological innovation,
driven by the digital economy, has a significant positive spatial
dependence. Therefore, in assessing the impact of the digital
economy on energy intensity, it is crucial to fully account for the
technology spillover effect. This comprehensive approach ensures
that the broader implications of technological advancements are
considered in the analysis of how the digital economy influences
energy intensity.

6.2 Spatial effect analysis

To determine the most suitable spatial model for analyzing
spatial effects, this study adopts methodologies inspired by Elhorst
(Elhorst, 2014). The selection process began with the Lagrange
Multiplier (LM) test. The results indicated that the Robust
Lagrange multiplier statistic for the spatial error model (SEM)
was 4.033, which passed the significance threshold at the 5%
level. Similarly, the Robust Lagrange multiplier statistic for the
spatial lag model (SAR) was 3.795, achieving significance at the
10% level, thereby validating the selection of both SEM and SAR
models. Following the LM test, the Likelihood Ratio (LR) test was
conducted. The results from both the LR-SEM and LR-SAR
demonstrated significance at the 1% level, indicating a strong
statistical justification for their use. These findings suggested that
the spatial Durbin model (SDM), which integrates elements of both
SAR and SEM, could not be simplified into either the spatial lag
model or the spatial error model alone; hence, the combined SDM
was chosen as the optimal model for this analysis. Furthermore, the
model selection process incorporated the Hausman test to
differentiate between the fixed effects and random effects models.
The results clearly favored the fixed effects model over the random
effects model, which was particularly relevant given the significant
variations observed both temporally and individually among the
study variables. Ultimately, the spatial Durbin model was selected as
the analytical tool, providing a comprehensive framework for
evaluating the spatial dependencies and effects in the context of
green technological innovation influenced by the digital economy.

Tables 9–11 present the outcomes from the spatial model
analysis utilizing different spatial weight matrices. These findings
reveal that the Log-likelihood values for the spatial Durbin model
(SDM) are consistently higher than those for the spatial error model
(SEM) and the spatial autoregressive model (SAR) across all
matrices, suggesting a superior fit of the SDM for this analysis.
Particularly, the Log-likelihood value is highest with the W1 spatial
weight matrix, prompting a detailed examination of the results
presented in Table 9. The analysis in Table 9 shows that the
spatial autoregressive coefficient for green technological
innovation is significantly negative at the 1% level. This result
implies that within the provinces of the Yangtze River Economic
Belt, green technological innovation spurred by the digital economy
exhibits a significant negative spatial dependence. Specifically,
advancements in technology in one province tend to decrease
energy intensity in neighboring provinces (Li et al., 2024). This
diffusion effect is indicative of how digital technology enables
surrounding areas to benefit from technology spillovers, thereby
enhancing energy efficiency and reducing energy intensity. The

significant negative spatial lag term for green technological
innovation further suggests that technological advancements in
neighboring regions can substantially diminish energy
consumption. This underscores the critical role of technology
spillover effects. Hence, fostering the comprehensive development
of the digital economy is crucial for optimizing resource allocation
and realizing the environmental benefits it facilitates, especially in
terms of reduced energy consumption and enhanced efficiency
across the Yangtze River Economic Belt (Gao and He, 2024).

In order to thoroughly assess the impact of core explanatory
variables within the spatial model, merely examining the regression
coefficients is insufficient, as these do not provide a clear indication
of the marginal impacts. Instead, the spatial effects are explored by
decomposing them into direct, indirect, and total effects. This
decomposition is conducted using the partial differentiation
method as proposed by LeSage and Pace, 2009. Table 9’s
decomposition of spatial effects into direct and indirect
components provides key insights into the role of the digital
economy in influencing energy intensity. The direct effect of
green technological innovation, promoted by the digital economy,
on regional energy intensity is negative. Although this effect is not
statistically significant, it suggests a potential for digital technology
to reduce energy consumption. The lack of significant impact might
be attributed to the current stage of digital technology application
within the energy sector not yet achieving a critical level of influence
on energy efficiency. Additionally, the influence of digital
technology on energy intensity may exhibit a delayed response,
not immediately observable within the short-term data analysis.
This scenario underscores the need to further develop the digital
economy. Enhancing its value creation capacity can lead to more
rapid innovation and development in traditional industries, driven
by digital technologies. Such advancements could eventually lead to
significant reductions in regional energy consumption and promote
green development. Moreover, the indirect effect of green
technological innovation is significantly negative (−0.719) at the
1% level, indicating a substantial negative spillover effect on the
energy intensity of neighboring provinces. This finding highlights
the importance of technological spillovers facilitated by the digital
economy, which effectively reduce energy intensity in adjacent
regions. This aligns with existing research, confirming that the
spread of green technological innovations can have beneficial
regional impacts beyond their origin points, enhancing overall
energy efficiency across broader geographic areas. Such insights
are crucial for policymakers aiming to leverage digital technology for
sustainable development and regional energy planning (Chen et al.,
2023). The negative and significant total effect of digital technology
on energy intensity, as demonstrated at the 1% level, underscores its
profound impact across both spatial and temporal dimensions. This
effect is largely driven by the utilization and sharing of frontier
digital technologies such as big data, cloud computing, and the
Internet of Things. These technologies are pivotal in enhancing
regional energy efficiency by facilitating improvements on both the
supply and demand sides of energy use. On the supply side, digital
technologies integrate into production processes, optimizing energy
use and reducing waste. This not only increases energy efficiency but
also contributes to the sustainability of production activities by
minimizing the environmental footprint. On the demand side, these
technologies empower consumers to respond more dynamically to
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TABLE 9 Results of spatial modeling analysis under the inverse distance weight matrix.

SAR SEM SDM

ρ (rho) 0.146
(1.02)

−0.818***
(-3.40)

Λ 0.267
(1.49)

lnGTI −0.066
(-0.53)

−0.052
(-0.44)

−0.174**
(-1.98)

W × lnGTI −1.285***
(-2.71)

Log-likelihood 163.5 163.9 208.6

Direct effect −0.062
(-0.48)

−0.085
(-1.12)

Indirect effect −0.223
(-0.46)

−0.719***
(-2.68)

Total effect −0.085
(-0.51)

−0.805***
(-2.64)

Control Variables YES YES YES

Fixed effect YES YES YES

Observations 121 121 121

R2 0.211 0.095 0.857

Variance 0.004***
(4.28)

0.004***
(4.52)

0.002***
(6.46)

Note: *, **, *** indicate significance severally at the 0.1, 0.05, and 0.01 probability levels. The numbers in parentheses indicate t-statistics; the same convention applies to the subsequent tables.

TABLE 10 Results of spatial modeling analysis under the economic distance weight matrix.

SAR SEM SDM

ρ (rho) −0.772***
(-4.39)

−0.723***
(-4.70)

Λ −1.050***
(-8.44)

lnGTI 0.114
(-1.05)

−0.148***
(-1.75)

−0.133*
(-1.89)

W × lnGTI −0.335**
(-2.41)

Log-likelihood 173.8 182.0 203.1

Direct effect −0.124
(-0.99)

−0.096
(-1.10)

Indirect effect 0.059
(0.95)

−0.180
(-1.50)

Total effect −0.064
(-0.98)

−0.276**
(-2.52)

Control Variables YES YES YES

Fixed effect YES YES YES

Observations 121 121 121

R2 0.359 0.481 0.774

Variance 0.003***
(3.38)

0.002***
(3.53)

0.002***
(5.04)

Note: *, **, *** indicate significance severally at the 0.1, 0.05, and 0.01 probability levels. The numbers in parentheses indicate t-statistics; the same convention applies to the subsequent tables.
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fluctuations in energy demand. Smart energy management systems,
for instance, can adjust consumption based on real-time data,
preventing unnecessary energy use and contributing to overall
energy conservation. The broad and impactful suppression of
energy intensity by digital technologies indicates their crucial role
in shaping a more energy-efficient future. This aligns with global
efforts towards achieving sustainable development goals,
particularly in reducing energy consumption and mitigating
environmental impact. Policymakers and industry leaders should,
therefore, prioritize the integration of these technologies into
regional and national energy strategies to harness their full
potential in driving down energy intensity and fostering
sustainable economic growth.

6.3 Spatiotemporal heterogeneity analysis

The significant role of the digital economy in shaping energy
consumption patterns is highlighted by its evolution and emphasis
in policy frameworks. The formal acknowledgment of the “digital
economy” in China’s Government Work Report in 2017, and its
consistent highlight in subsequent years through 2022, have marked
critical milestones that catalyzed the rapid growth and dynamic
development of the digital economy. This policy-driven acceleration
has been instrumental in fostering the integration of digital
technologies across various sectors. In response to this pivotal
shift, a detailed analysis was conducted to understand the
dynamic characteristics of the digital economy with a particular
focus on the period before and after 2016, which serves as a temporal

boundary for assessing changes in impacts. The empirical results
presented in Table 12 from this analysis indicate that between
2010 and 2016, green technological innovation driven by the
digital economy had a statistically significant indirect effect on
reducing energy intensity, recorded at −0.844 at the 1%
significance level. This effect signifies that provinces in the
Yangtze River Economic Belt have benefited from technological
spillovers prompted by the digital economy’s growth. The diffusion
of digital technologies, such as automation and intelligent systems,
has been pivotal. These technologies have been extensively adopted
and have substantially improved production efficiency by
optimizing operational workflows and reducing waste, thereby
decreasing energy consumption per unit of output. This
transformation has not only led to direct reductions in energy
usage but also contributed to broader regional impacts through
spillover effects, where technological advancements in one province
have beneficial implications for neighboring provinces. Such
findings underscore the transformative potential of the digital
economy in promoting sustainable development by enhancing
energy efficiency and reducing the environmental impacts of
industrial activities. These insights are crucial for policymakers
and industry stakeholders aiming to leverage digital innovations
for economic growth and sustainability in the Yangtze River
Economic Belt and beyond.

However, the observed shift in the impact of the digital economy
on energy intensity from 2017 to 2020 presents a compelling case of
the “energy rebound effect. “The empirical results indicating an
indirect effect of 0.287, significant at the 5% level, suggest that
instead of reducing energy intensity, the green technological

TABLE 11 Results of spatial model analysis under the neighbor distance weight matrix.

SAR SEM SDM

ρ (rho) 0.305**
(2.46)

−0.039
(-0.27)

Λ 0.138***
(2.61)

lnGTI −0.041
(-0.36)

−0.026
(-0.25)

−0.091*
(-1.85)

W × lnGTI −0.202
(-1.38)

Log-likelihood 167.3 170.7 208.3

Direct effect −0.039
(-0.31)

−0.086
(-1.52)

Indirect effect −0.022
(-0.32)

−0.197
(-1.44)

Total effect −0.061
(-0.33)

−0.283**
(-2.48)

Control Variables YES YES YES

Fixed effect YES YES YES

Observations 121 121 121

R2 0.084 0.234 0.098

Variance 0.004***
(4.59)

0.003***
(4.76)

0.002***
(4.64)

Note: *, **, *** indicate significance severally at the 0.1, 0.05, and 0.01 probability levels. The numbers in parentheses indicate t-statistics; the same convention applies to the subsequent tables.
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innovations driven by the digital economy during this period
actually increased it in the provinces of the Yangtze River
Economic Belt and their neighboring regions. (Meshulam et al.,
2023; Lange et al., 2020). The inclusion of the digital economy in the
Government Work Report and its subsequent emphasis likely
accelerated investment and expansion in digital technologies.
While this expansion intended to optimize efficiency and
productivity, it also appears to have driven up overall energy
demand, illustrating the complex interactions between
technological advancement and energy consumption. This
phenomenon underscores the necessity for a nuanced approach
to digital economy policies. Policymakers must consider not only the
direct impacts of digital technology on efficiency but also the
broader effects on consumption patterns and energy demand.
Integrating strategies to mitigate the rebound effect, could be
crucial in achieving the ultimate goal of reducing overall energy
intensity. On the one hand, the deep development of the digital
economy requires substantial energy consumption for support,
leading to increased economic activities and, consequently,
increased energy demand and consumption. On the other hand,
the development of the digital economy has also fostered new high-
energy-consumption industries or consumption patterns. While the
digital economy is developing rapidly, the transformation of the
energy structure lags behind, causing high-energy-consumption
fossil fuels to remain dominant. Therefore, it is important to
recognize the energy rebound brought about by the large-scale
infrastructure of the digital economy (Lei et al., 2023) and
include the rebound effect in the assessment of the digital
economy’s shared environment (Meshulam et al., 2023). This
brings important insights to our research. We should not only
focus on the role that the development of digital technology
plays in reducing energy use, but also consider the changes in

the economy, society, ecology, and other aspects brought about
by the innovation and application of green and digital technology.
Additionally, we should propose countermeasures to address the
rebound effect in energy use and provide differentiated strategies
based on different regions.

7 Conclusions and implications

7.1 Conclusions

This paper empirically analyzes the impact of digital economy
on regional energy efficiency and energy consumption intensity
from the perspectives of energy economy and technology spillovers,
based on the panel data of 2010–2020 of the 11 target provinces in
our study, and puts forward policy recommendations about how
digital technology can cope with energy economy risks, energy
rebound effects, as well as improve energy efficiency and reduce
energy intensity. The conclusions are as follows: First of all, the
digital economy has a significant inhibitory influence on regional
energy intensity, and the results still satisfy after the many
examinations. Second, the pathway of the digital economy to
influence energy intensity is mainly realized through green
technological innovation, and the digital economy sharply cut
down the intensity of energy by innovating digital technological.
Third, using the spatial Durbin model analysis, it is suggested that
for the provinces in the Yangtze River Economic Belt, the digital
economy effectively suppresses the adjacent regions consumption of
energy through technology spillover effects in the initial stages. This
is mainly due to the application and optimization of emerging
technologies that can enhance energy efficiency. However, over
time, the sustainability and stability of this suppressive effect

TABLE 12 Empirical analysis results of spatiotemporal heterogeneity.

2010–2016 2017–2020

ρ (rho) −0.961***
(-4.73)

−1.940***
(-9.56)

lnGTI −0.196**
(-2.08)

0.098*
(1.79)

W × lnGTI −1.640***
(-3.69)

0.740**
(2.26)

Direct effect −0.071
(-0.97)

0.004
(0.07)

Indirect effect −0.844***
(-4.48)

0.287**
(1.99)

Total effect −0.915***
(-3.92)

0.291**
(2.20)

Control Variables YES YES

Fixed effect YES YES

Observations 121 121

R2 0.879 0.649

Variance 0.001***
(5.61)

0.000***
(3.07)

Note: *, **, *** indicate significance severally at the 0.1, 0.05, and 0.01 probability levels. The numbers in parentheses indicate t-statistics; the same convention applies to the subsequent tables.
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become more complex, especially since 2017 when the green
economy and digital economy was officially included in the
Government Work Report and received national-level attention
and promotion. The accelerated expansion of the digital economy
has occasionally deviated from its projected path. Additionally, this
rapid growth has precipitated a substantial surge in energy
consumption within sectors like data centers, big data processing,
and artificial intelligence. As the adoption of digital services and
products intensifies, the increasing dependence of both consumers
and businesses on these technologies indirectly escalates energy
demand. This situation gives rise to the “energy rebound effect,”
where energy savings achieved through technological advancements
are offset by increased consumption due to the broader application
and deeper integration of these technologies, resulting in a net rise in
overall energy costs.

7.2 Policy implications

This study also makes the following recommendations
and insights:

First and foremost, empower economic development through
the digital economy. Although many provinces have digital
economies exceeding one trillion yuan, there are still issues of
uneven development. Efforts should be made to promote the
construction of digital infrastructure, achieve higher quality
interconnectivity, and accelerate the construction of new
productive forces. This will provide a solid foundation for the
digital industry to promote environment be better and address
issues of unbalanced and inadequate digital economy development.

Secondly, encourage the integration and innovation of digital
and green technologies. As the principal method for digital
technological development, continued investment in such
innovations is crucial. Simultaneously, it is important to
strengthen the connections between developed provinces and
their neighboring regions, enhancing the breadth and depth of
these relationships. Additionally, it is essential to actively leverage
the scale economies of industrial division and the technology
spillover effect to achieve coordinated development and avoid the
rebound effect on both the energy supply and demand sides.
Adequate and stable financial support for digital projects is also
necessary to mitigate the impact of economic conditions, stabilize
the digital economy market, and fully harness its key role in
controlling energy intensity.

Thirdly, in the construction of digital infrastructure such as data
centers and communication networks, it is advisable to encourage
regions to adopt energy-saving technologies and implement smart
energy management systems to optimize energy use and reduce
waste. Additionally, strong support should be provided for the
development of energy-efficient software to ensure minimal
energy consumption during operation.

Fourthly, creating a favorable environment for green digital
technology innovation is equally crucial. This involves multiple
domains, including policy frameworks, legal regulations, public
acceptance, and the dissemination of digital culture. The
effectiveness of green technology innovations should be assessed
over time and through practical application, with active efforts to
promote the application of scientific research outcomes in daily life

and production. Additionally, it is important to value and encourage
feedback from citizens, who serve as user representatives, based on
their experiences and evaluations. Such feedback should serve as
critical standards for assessment and improvement, thereby
cultivating fertile ground for the multidimensional development
of green technological innovation and the digital economy.

Finally, efforts should be focused on promoting unified regional
coordinated development. It is crucial to acknowledge the reality of
uneven regional development. Therefore, the development of new
productive forces should be tailored to local conditions, recognizing
the differences in digital economy development across regions.
Scientific and reasonable development plans should be
formulated, guided by policy, to break down technical and
industrial barriers between regions. This will ensure that the
digital economy benefits the economic and social development of
all regions while maintaining the principle of coordinated regional
development.

In addition to these measures, this study suggests that attention
should not only be focused on governments and businesses but also
on societal actors. It is important to intensify efforts to educate the
public about the importance of energy conservation and to widely
disseminate the role of the digital economy in reducing energy
consumption. Strengthening the development and application of
digital technologies from a societal perspective can enhance their
beneficial effects on the social environment, as well as their ability to
restore and improve the ecological environment.

7.3 Limitations and future prospects

Furthermore, this study has certain limitations. Firstly, the
research is confined to provincial units within the Yangtze River
Economic Belt and does not include cities or towns, which affects the
comprehensiveness and reliability of the data. Future research could
expand to include city and town levels to obtain more detailed and
specific data, thus providing a more comprehensive understanding
of the impact of the digital economy on energy intensity. Secondly,
while the Yangtze River Economic Belt serves as a typical
demonstration area and the findings of this study are valuable
for reference, the unique characteristics of the Yangtze River
Economic Belt may limit the applicability of the results to other
regions. Therefore, future research should consider including other
regions for comparison to assess the generalizability of the findings.
Additionally, in the process of selecting and designing spatial
econometric models, there may be biases or insufficient
consideration of influencing factors such as economic structure,
educational level, cultural concepts, and urban-rural differences.
Future research could benefit from employing more comprehensive
models, such as system dynamics models or deep learning models, to
enhance the credibility of the research conclusions. Therefore, future
research should aim to broaden the scope of research subjects,
carefully consider the selection of influencing factors, establish a
more comprehensive indicator system, obtain more detailed data,
and use multiple models for verification. This will ensure a thorough
understanding of the impact pathways of the digital economy on
energy intensity, enhance the credibility and referential value of
empirical analysis, and provide valuable development insights for a
wider range of regions and industries.
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