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The urban functional zone, serving as a bridge to understanding the complex
interactions between human spatial activities and surface thermal environmental
changes, explores the driving force information of its internal temperature
changes, which is crucial for improving the urban thermal environment.
However, the impacts of the current urban functional zones on the thermal
environment, based on the delineation of human activities, have yet to be
sufficiently investigated. To address the issue, we constructed a two-factor
weighted dominant function vector model of “population heat—land use
scale” to identify urban functional zones. This model is based on multisource
data and considers the perspective of urban functional supply and demand
matching. We then analyzed the spatial differentiation and driving factors of
the relationship between urban functional zones and the surface thermal
environment using the random forest algorithm, bivariate spatial
autocorrelation, geographical detectors, and geographically weighted
regression models. The results showed that there are significant differences in
the Land Surface Temperature among different urban functional zones in the
central urban area of Lanzhou. Among these, the life service zone has the greatest
impact on the surface thermal environment, followed by the industrial zone and
catering service zone, while the green space zone has the least impact. The
surface thermal environment exhibits high-high clusters in localized spatial
clustering patterns with life service, industrial, catering service, and residential
zones. In contrast, it tends to exhibit low-high clusters with green spaces.
Significant spatial clustering and dependence exist between various functional
zones and the surface thermal environment. The land cover types characterized
by the Normalized Difference Bare Land and Building Index, the vegetation
coverage represented by the Fraction of Vegetation Cover, and the density of
industrial activities indicated by the Industrial POI Kernel Density Index are the
main drivers of the surface thermal environment in the various functional zones of
the central urban area of Lanzhou, and all exhibit significant spatial heterogeneity.
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1 Introduction

The rapid urbanization has reshaped human settlements and
transformed production modes (Bertinelli and Black, 2004). With
the increase in human activities such as residential life, industrial
production, and urban transportation, the continuous expansion of
construction land has led to changes in the physical properties of the
urban subsurface and an increase in the concentration of
anthropogenic heat emissions, which in turn generates the urban
heat island (UHI) effect (Liu et al., 2021; Xiong and Zhang, 2021; Yu
et al., 2022). Due to the enhanced UHI effect, the deterioration of the
urban thermal environment has recently garnered significant
attention (Manoli et al., 2019). This phenomenon threatens the
quality of urban living environments and represents one of the
crucial factors affecting the health of urban ecosystems (Yang et al.,
2021; Meng et al., 2023).

In recent years, scholars have conducted numerous studies on
the driving mechanisms and influencing factors of urban thermal
environments (Peng et al., 2020). These studies mainly used Land
Surface Temperature (LST) as a quantitative indicator of the thermal
environment (Wu and Ren, 2019; Huo et al., 2021), and they
predominantly focused on the impacts of land use/surface cover
changes, landscape patterns, city scale, and urban functions, among
others, on the urban thermal environment. Currently, studies of the
urban thermal environment involve a variety of analysis scales,
including grid scales (Chen G et al., 2023), block units (Zhang L.
et al., 2023), and local climate zones (Xu et al., 2023). Among them,
grid scales offer the advantages of a simple structure, easy
comparison, and flexibility in spatial scaling in analyzing urban
thermal environments; however, they fail to adequately capture the
structural and functional boundaries and internal heterogeneity of
cities. Block units are primarily bounded by city roads or canals,
compensating for the limitations of grid scales, but they are
somewhat inadequate in revealing the distribution of human
socio-economic activities. Local climate zones have been widely
used by scholars as an effective tool to quantify the UHI effect.
However, the scales of local climate zones often focus predominantly
on climate-related factors and do not sufficiently represent the
impacts of human activities in the industry, science and
education, healthcare, and catering (Huang and Wang, 2019). In
contrast, urban functional zones exhibit functional boundaries
within the city, which reflect the heterogeneity of the city. Urban
functional zones experience human interference from intensive
socio-economic activities, which induces and strengthens the
UHI effect. Concurrently, different functional zones exhibit
marked variations in surface thermal environmental effects due
to disparities in human activities, development intensity, and uses
(Wang A. et al., 2022). Therefore, studies conducted at the scale of
urban functional zones can elucidate the complex interactions
between human activities and the surface thermal environment.

Scholars had already utilized urban functional zones as entry
points to elucidate the effects of the urban thermal environment. For
instance, Li et al. (2021) utilized IKONOS remote sensing image data
to classify urban functional zones and investigated the seasonal
variations in LST across different functional zones. Chen et al.
(2022) utilized POI data to classify urban functional zones into
six categories and investigated the contributions of different
functional zones to urban LST in Shenyang. Min et al. (2019)

used the central district of Nanjing as an empirical case,
classified urban functional zones into six categories based on POI
data, and investigated the correlations and driving factors between
different urban functions and LST. Existing studies have
demonstrated significant differences in the surface thermal
environments of various functional zones, with industrial,
commercial, and residential zones exhibiting higher surface
temperatures. These variations are primarily influenced by factors
such as vegetation cover and building density (Li G. et al., 2020; Huo
et al., 2023; Wen et al., 2023; Du et al., 2024). Although previous
studies have explored the correlations and influencing factors
between urban functional zones and thermal environments, their
results are limited by the delineation of urban functional zones solely
based on POI or remote sensing image data. Although POI data are
widely used, readily accessible, and reflect the spatial distribution of
industries and organizations, the functional zoning based on POI
data overlooks the impact of human activities on the surface thermal
environment. On the other hand, remote sensing imagery primarily
captures the natural characteristics of features and lacks the socio-
economic information included in POI data. Additionally, the
current delineation of functional zones primarily relies on the
first-level classification of urban construction land. It lacks a
comprehensive exploration of the second-level subcategories of
functions, which are closely related to residents’ daily lives. It is
noteworthy that the single-factor analysis method employed in the
current study is insufficient to fully capture the interaction of
different influencing factors and the geospatial differentiation of
the thermal environment in urban functional zones (Xiong and
Zhang, 2021). Meanwhile, most current studies have conducted
statistical analyses from the perspective of the contributions of
different functional zones to the thermal environment, with fewer
comprehensive analyses addressing their spatial heterogeneity.

Urban functional zones, serving as the spatial carriers for the
division of labor among different functional types in the city, are the
basic units for urban planning, management, and resource
allocation (Du et al., 2020; Xie et al., 2024). In the traditional
data context, urban functional zone identification methods
primarily rely on remote sensing imagery (Zhang et al., 2018).
With the increasing capacity for data collection, a growing
number of large-scale data sources based on human behavior
have emerged. These sources feature high spatial and temporal
resolution, timeliness, and sensitivity to social functional
attributes, including mobile signaling data (Pei et al., 2014),
social media data (Chen et al., 2017), and GPS data (Li and Liu,
2022). These developments offer new perspectives for the functional
zone identification method. For example, Liu et al. (2020) analyzed
hourly traffic trips on both weekdays and weekends using taxi
trajectory data and classified the functional zones within the
Chengdu Ring Road into six categories. Zhi et al. (2016)
classified Shanghai’s urban functional zones into four categories
using social media check-in data at different times of the day with
the consideration of the activity patterns of the interviewed
residents. Compared to fragmented activity data that reflects
minority groups, such as those from social media and
transportation, mobile signaling data, with its continuous
dynamic records and high holding rates, offers more significant
advantages in studying urban functional zones from the perspective
of population distribution and activity trajectories. Mobile signaling
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data can capture high-frequency human activity information;
however, it is limited by the number of participants and the
positioning accuracy of their locations, leading to the loss of
certain urban functional attributes. POI data can compensate for
the lack of geographic elements and urban functional attributes in
mobile signaling data (Huang H. et al., 2024). Therefore, integrating
mobile signaling data with POI data can more comprehensively
depict urban functions and capture the temperature variations
within the city due to human activities. Meanwhile, secondary
subcategories such as healthcare, scientific, educational, and
cultural functions, and catering services are closely linked to
residents’ lives (Yan et al., 2023). Including these categories in
the classification of urban functions allows for a more detailed
reflection of the impacts of various human activities on the
urban thermal environment.

Furthermore, in identifying driving factors, the single-factor
quantitative analysis methods currently employed by scholars,
such as regression analysis, only explain the influence strength of
factors and do not adequately capture the interaction and spatial
heterogeneity of the influencing factors. Conversely, the
Geographical Detector (GeoDetector) (Wang et al., 2021), in
conjunction with the Geographically Weighted Regression model
(GWR) (Wang et al., 2019), can analyze the interaction of different
factors and their spatial distribution. For instance, Chen W. et al.
(2023), using GeoDetector, investigated the factors influencing the
spatial distribution characteristics of traditional villages in the
Yangtze River Basin, as well as the interactions among multiple
factors. Li J. et al. (2024), using the GWRmodels, revealed the spatial
heterogeneity of the main driving factors for landscape ecological
risk in the Irtysh River Basin. Combining bivariate spatial
autocorrelation analysis methods to explore the spatial
differentiation in the relationship between urban functional zones
and the surface thermal environment assists in formulating more
precise spatial planning strategies. To some extent, this approach
bridges the gap between urban climate research and urban planning
applications (Stone et al., 2012; Georgescu et al., 2014; Zhao
et al., 2018).

As a typical river-valley industrial city in China, Lanzhou, like
other industrial cities worldwide, experiences severe air pollution
due to the long-term accumulation of pollutants from the
petrochemical heavy industry. This issue is compounded by
limited air mobility due to the topographical constraints of the
river valleys, which impede the diffusion of pollutants (Li T. et al.,
2020). Consequently, the UHI effect is intensified. Xue et al. (2023),
based on observational data from ground meteorological stations
and environmental monitoring stations, found that the urban heat
island effect in Lanzhou showed an overall increasing trend from
2013 to 2018. Chai et al. (2023) found that the average temperature
difference between Lanzhou city and its non-construction land from
2001 to 2021 ranged from 10.00°C to 20.00°C. The heat island
phenomenon spread in a “pie” style.

In light of the above research, this study comprehensively
analyzes the spatial differentiation in the relationship between
urban functional zones and the surface thermal environment and
its driving factors, using multisource data from the perspective of
spatial-temporal matching of urban function supply and
demand. Specifically, the research objectives include: (1)
Construct a two-factor weighted dominant function vector

model of “population heat—land use scale” to address the
neglect of human activity influences and the reliance on a
single data source in classifying urban functional zones. (2)
Refine the classification of urban functional zones by
introducing secondary subcategories of functions related to
residential lives to address the insufficient categorization in
the current urban functional zones study. (3) Utilize
GeoDetector to investigate the driving factors and their
interactions, and due to the presence of spatial heterogeneity,
the GWR models is employed to better reveal the spatial
relationships between urban thermal environment and various
features. (4) Reveal the correlation and spatial differentiation
patterns of surface thermal environments through random forest
models and bivariate spatial autocorrelation methods. This study
presents a comprehensive analysis framework based on
multisource data, using Lanzhou City—a typical river-valley
industrial city in China with prominent thermal environment
problems—as a study case to provide references for improving
the urban thermal environment, enhancing the urban
management mechanism, and promoting the sustainable
development of the city.

2 Materials and methods

2.1 Study area

Lanzhou is situated along the central axis of the “One Belt,
One Road” initiative. It is the capital of Gansu Province and a
significant industrial base in Northwest China. It has the strategic
advantage of being a hub connecting six major regions and
radiating influence throughout Northwest China. Lanzhou
experiences a temperate continental climate characterized by
low and concentrated rainfall, with an average annual
precipitation of 324.8 mm and an average annual temperature
of 9.3°C. The city comprises five districts and three counties,
covering a total area of 13,100 square kilometers. As of the end of
2023, it has a resident population of 4.425 million and an
urbanization rate of 84.07%.

Lanzhou, a typical river valley city, has its central urban area
within the river valley basin. This area encompasses the
Chengguan, Qilihe, Anning, and Xigu districts, which
collectively administer 50 streets, including a high-tech
development zone management committee, as depicted in
Figure 1. Lanzhou’s typical belt-shaped group structure leads
to dispersed and complex urban functions, which exhibit greater
typicality and representativeness and can comprehensively reflect
the differences in the surface thermal environment of urban
functional zones to a certain extent.

2.2 Data source and process

The multisource data utilized in this study include POI data,
Landsat 8 imagery, OSM road network data, Mobile Signaling
Data, building outline data, nighttime lighting data, and DEM
data. The detailed parameters of these data sources are shown in
Table 1. Specifically, a total of 91,787 POI records for Lanzhou
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City as of August 2023 were obtained through the open API
provided by Goldmap. Due to issues such as redundant types,
cross-repetition, and inconsistent coordinates in the original POI
data, this study integrates the POI categories with the Urban
Land Use Classification and Planning and Construction Land
Use Standards (GB50137-2011) to subdivide urban functions in

detail. The POI data were classified into 21 types and summarized
level-wise according to the main urban functional characteristics,
ultimately identifying 10 types of urban functional zones. The
detailed results are provided in Table 2. The Landsat 8 imagery
was acquired on 13 August 2023, with a resolution of 30 m and a
cloud cover of 0.01%. In this study, the imagery was preprocessed

FIGURE 1
Overview of the study area.

TABLE 1 Description of the study data.

Data
description

Data sources Date Usage

POI data Goldmap Open Platform 2023 A detailed breakdown of urban functions was performed in conjunction with the types of
land used for urban construction, identifying urban function types and calculating the
density of industrial activities

Landsat 8 Imagery United States Geological Survey (USGS) 2023 Used for LST inversion and surface information retrieval calculations

OSM Data OpenStreetMap Open Platform 2023 Used for the division of study units in the article

Mobile Signaling Data Lanzhou China Mobile 2023 Used to calculate population density

Building Outline Data Baidu Map Open Platform 2023 Used to calculate building density index and average building height index

Nighttime Light Data China Agricultural University 2022 Used to calculate the nighttime light index, representing the human activity intensity

DEM Data National Aeronautics and Space
Administration (NASA)

2019 Used to calculate DEM values for different study units

Baidu Map Baidu Map Open Platform 2023 Used for validating the results of functional zone identification
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using geometric correction, atmospheric correction, and study
area cropping.

OSM road network data are derived from the OpenStreetMap
geodata platform. The Mobile Signaling Data were obtained from
gridded datasets collected by China Mobile in Lanzhou City on
23 August 2023 (a weekday), with a spatial resolution of 200 m by
200 m. The building contour data were obtained through the open
API provided by Baidu Map, which contains building contour
lines and height information. A total of 41,911 building contour
records were obtained in August 2023 within the study area after
data cleaning and clipping. The nighttime light data were obtained
from China Agricultural University, which integrated nighttime
light observations from DMSP and VIIRS to generate a
comprehensive and consistent NTL dataset on a global scale.
The resolution is 1 km. The DEM data were obtained from the
National Aeronautics and Space Administration (NASA) at a
resolution of 12.5 m.

2.3 Research methodology

The research technology roadmap constructed in this study is
shown in Figure 2. Firstly, this paper proposed a two-factor weighted
dominant function vector model of “population heat—land use
scale” that couples mobile signaling data and POI data to
determine the urban function type of each minimum plot unit
based on the OSM road network. Secondly, Landsat 8 imagery was
selected to invert and analyze the LST of the central urban area of
Lanzhou. Thirdly, A Random Forest algorithm was used to assess
the contribution of each type of urban functional zone to the surface
thermal environment, and a bivariate spatial autocorrelation
method was employed to explore the spatial differentiation of the
surface thermal environment in each type of urban functional zone.
Finally, GeoDetector and GWR models were selected to analyze the
spatial heterogeneity of the drivers of the urban thermal
environment and their influence effects. Finally, GeoDetector and

TABLE 2 Classification of urban functional zone categories.

Functional zone
classification

Classification of POI
primitives

Urban land use subcategory General urban land use
categories

Transportation zone Transportation Facilities Services Transportation hub site (S3) Street and transportation land use

Road ancillary facilities Transportation yard site (S4)

Access Facilities Urban road land (S1)

Residential zone Business Residential Related Residential land use class II (R2) Residential land use

Residential areas Class I, II, III
Residential land use (R1, R2, R3)

Industrial zone Business office Class I industrial land (M1)/Business facilities
Land (B2)

Industrial land use

Company Class I industrial land (M1)/Business facilities
Land (B2)

Industrial park Class I industrial land (M1)

Green space zone Scenic spots Parkland (G1) Green space and city square

Public square Plaza (G3)

Science, education, and Cultural-
Sports zone

Science education culture Educational and scientific research land (A3)/Land for
cultural facilities (A2)

Administrative and public service
land use

Sports and Leisure sports ground (A4)

Healthcare zone Healthcare services Healthcare land (A5)

Government Agency Service zone Government agencies and social
organizations

Administrative office space (A1)

Life Service zone Shopping Services Commercial facilities land (B1) Commercial and business land use

Automotive Services Commercial facilities land (B1)/Other Service Facilities
Land (B9)

Motorcycle services Commercial facilities land (B1)/Other Service Facilities
Land (B9)

Life Services Business facilities Land (B2)/Recreation and Leisure
Facilities Site (B3)

Accommodation services Commercial Facilities Land (B1)

Catering Service zone Catering Services Commercial Facilities Land (B1)

Financial Service zone Financial and insurance services Business facilities Land (B2)
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GWR models were selected to analyze the spatial heterogeneity of
the driver factors of the urban thermal environment and
their influences.

2.3.1 Land surface temperature inversion
2.3.1.1 Mono-window algorithm

The mono-window algorithm, derived by Qin et al. (Qin et al.,
2001) from the surface radiation conduction equation, utilizes data
from Landsat TM band 6 to invert surface temperatures. This
algorithm is applicable to deriving surface temperatures from
single thermal band remote sensing data. Additionally, it is
suitable for use with Landsat 8 data. In this study, we use the
algorithm to invert the surface temperature of the downtown area of
Lanzhou City, as shown in Equations 1–3 (Chen et al., 2022):

TS � a 1 − C −D( ) + b 1 − C −D( ) + C +D[ ]Tsensor −DTa{ }/C
(1)

C � ετ (2)
D � 1 − τ( ) 1 + 1 − ε( )τ[ ] (3)

where, a and b are reference coefficients; Tsensor is the radiative
brightness temperature; Ta is the average atmospheric temperature,
obtained through the atmospheric average temperature estimation

model; ε is the surface emissivity, determined from mixed pixel
decomposition; τ is the atmospheric transmittance.

2.3.1.2 Classification of urban thermal field intensity
The intensity of the urban thermal field can reflect the spatial

distribution characteristics of relatively high and low-
temperature regions in the city. To avoid the influence of
temperature differences on the research results, this study
normalizes the temperature and uses the mean - standard
deviation method to normalize the LST inversion results
hierarchically, as shown in Equation 4:

FIGURE 2
Technical route.

TABLE 3 Classification standards for LST difference images.

LST level LST range Meaning

Class I TS ≤ a-std Low-Temperature Zone

Class II a-std < TS ≤ a-0.5std Sub-Low Temperature Zone

Class III a-0.5std < TS ≤ a + 0.5std Moderate Temperature Zone

Class IV a + 0.5std < TS ≤ a + std Sub-High Temperature Zone

Class V TS > a + std High-Temperature Zone
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TS � a ± n × std (4)
where, TS is the normalized temperature value; a is the average LST
value; std is the standard deviation of the LST; n is the coefficient,
taking values of ± 0.5, ± 1. The specific classification levels are shown
in Table 3 (Shi et al., 2015).

2.3.2 Identification of urban functional zones
2.3.2.1 Division of study units

In this study, the OSM road network is preprocessed by
selecting highways, railroads, primary roads in towns, primary
urban roads, and secondary roads to address the interrupted
paths. For isolated roads, if the distance between the ends of the
road and the nearest neighboring road is less than 10 m, they are
extended and connected; the remaining segments are deleted.
Based on GF-2 imagery, road information such as highways,
railroads, primary roads in townships, and primary and
secondary roads in urban areas were integrated and
appropriately deleted. Subsequently, the central urban area of
Lanzhou City was divided into 1,160 block units.

2.3.2.2 Construction of a two-factor weighted dominant
function vector model

Since POI data does not contain land use scale information,
this study constructs general land use scale weights for
assignment. Meanwhile, from the perspective of the supply
and demand relationship in urban functions, POI data only
provides geospatial supply information and fails to capture
residents’ demand. Therefore, this study combines POI data
with mobile signaling data that reflects population dynamics
to capture the diverse socio-economic elements and residents’
travel information and depict urban functions comprehensively.
Accordingly, this study divides urban functional categories by
constructing a standardized dominant function vector model
based on the two factors of “population heat—land use scale”.
Among them, the general land scale is assigned and scored based
on “China’s Current Business Classification Standards” (GB/
T18106-2010) and “Urban Public Service Facilities Planning
Standards” (GB50442), as detailed in Table 4. The study
calculated the population density per POI unit for different
functional types within each area, that is, population heat
weights, which reflect the demand and usage intensity of
residents for each type of functional area. As shown in
Equation 5, for specific calculations.

Pij � pi

Ni
(5)

where, pi represents the number of people active in region i during a
day. Ni represents the number of POIs in region i. pij denotes
population heat.

To this end, the kernel density of POIs within the smallest research
unit is first calculated, as shown in Equation 6 (Yu et al., 2015):

F x( ) � 1
nh

∑n
i�1
K

x − xi

h
( ) (6)

where, F(x) denotes the kernel density estimate of the study subject;
n denotes the number of study subjects. h denotes the bandwidth;
The K-function denotes the spatial weighting function; x − xi

denotes the estimated distance between two study subjects. Then,
the kernel density of POIs within the study area is multiplied by the
corresponding general land scale weightAij and the population heat
weight Pij, The data are then standardized using the Z-score
method, as shown in Equation 7.

xij �
AijPijF x( ) − μj

sj
(7)

where, Aij denotes the general land scale weight and Pij denotes the
population heat weight. F(x) denotes the kernel density of POIs per
unit area; μj and sj represents the mean and variance of AijPijF(x),
respectively; xij represents the kernel density of POIs per unit area,
normalized after being weighted by general land scale and population
heat. All types of POIs within the smallest research unit are denoted as
xij, comprising the dominant functional vector θi of the smallest
research unit. The urban functional type is determined based on the
maximum value of the dominant functional vector.

2.3.3 Methodology for analyzing surface thermal
environment differentiation in urban
functional zones

To analyze the surface thermal environment differentiation in
urban functional zones, firstly, we employ the One-way analysis of
variance (ANOVA) to preliminarily test if there are significant
differences in the surface thermal environments across different
urban functional zones. Secondly, the Random Forest algorithm is
used to further explore the contribution levels of different urban
functional zones to the surface thermal environment. Lastly, the
Bivariate spatial autocorrelation method is applied to analyze the
spatial distribution relationships and dependencies between urban
functional zones and the surface thermal environment. Additionally,
these three methods have been successfully applied in the field of
urban studies (Adeola Fashae et al., 2019; Ma et al., 2023; Ai
et al., 2024).

2.3.3.1 One-way analysis of variance (ANOVA)
The basic principle of ANOVA is to decompose the overall

variance into within-group variance and between-group variance,
and to determine whether there is a significant difference between
group means by comparing these two variances (Chen et al., 2022).
Based on its simplicity and effectiveness, we employ the ANOVA to

TABLE 4 General land scale scoring table.

Area/m2 1–500 500–1,000 1,000–3,000 3,000–5,000 5,000–10000 > 10,000

Subcategories A4, B2, B3 B1, B9,
S1, S3, S4

R1, R2,
R3

A2 A1 A3, A5,
M1, G1, G3

Score 5 10 30 50 80 100
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test whether there are significant differences in the surface thermal
environments across different urban functional zones.

2.3.3.2 Random forest algorithm
The Random Forest algorithm was used to assess the differences

in surface thermal environments in different urban functional zones.
It is a classical machine learning algorithm that is widely used in
regression and classification analysis (Breiman, 2001). The
algorithm has the advantage of high accuracy without overfitting
(Gao et al., 2020). Therefore, based on the ANOVA, we introduce
the Random Forest algorithm to further analyze the contributions of
various urban functional zones to the surface thermal environment.

2.3.3.3 Bivariate spatial autocorrelation
Spatial autocorrelation analysis is a measure used to study the

degree of aggregation in spatial unit observations. Bivariate local spatial
autocorrelation is mainly used to measure the spatial distribution
association and dependence characteristics between two variables.
The larger the value of bivariate local Moran’s I, the higher the
degree of spatial autocorrelation. The specific calculation method is
detailed in the literature (Zhang Z. et al., 2023). Based on the foundation
of the ANOVA and the Random Forest algorithm, we introduce the
Bivariate local spatial autocorrelation method to further investigate the
surface thermal environment differentiation in urban functional zones
from a spatial relationship perspective.

2.3.4 Driving factors of surface thermal
environment differentiation in urban
functional zones

To analyze the driving factors behind the differentiation of the
surface thermal environment in urban functional zones, we select
the GeoDetector to measure the influence strength and interactions
of various driving factors. The GWR models are employed to better

reveal the spatial relationships between the urban thermal
environment and various driving factors.

2.3.4.1 GeoDetector and indicator selection
GeoDetector is a statistical method for detecting spatial

dissimilarity and revealing driving forces. It measures the
explanatory power of each independent variable on the
dependent variable by comparing the consistency of their spatial
distributions. In this paper, with factor detection and interaction
detection modules, we screen the critical factors affecting the
variability of surface thermal environments in different urban
functional zones. The specific calculation methods used are
described in the literature (Wang et al., 2021). The selection and
calculation methods of the indicators in the study are shown
in Table 5.

2.3.4.2 Geographically weighted regression model
GWR models incorporate the spatial characteristics of the data,

enabling the examination of spatial differences and variability in
local parameters. This approach reflects the spatial non-stationarity
of variable relationships. In this study, GWR models are used to
illustrate the spatial heterogeneity of driving factors across different
research units. The specific calculation methods are detailed in the
literature (Wang et al., 2019).

3 Results and analysis

3.1 Spatial distribution characteristics of the
surface thermal environment

August is the period with the highest mean surface temperatures
and relatively minor surface temperature fluctuations in Lanzhou.

TABLE 5 Indicators and description of characterization indices.

Primary indicator Secondary indicator Characterization index Formula

Urban Activities and Development Human activity intensity (X1) Nighttime Light Index (NLI) NLI � ∑(LIi × Ai)
TA

Population Distribution (X2) Mobile Phone Signaling Index (MPSI) MPSI � ∑(Pi × Wi)
TW

Industrial Activity Density (X3) Industrial POI Kernel Density Index (POI-KDI) Refer to Equation (6)

Land Use and Building
Characteristics

Building Density (X4) Building Density Index (BDI) BDI � TBA
TAR

Building Height (X5) Average Building Height Index (ABHI) ABHI � TBH
NB

Land Cover Types (X6) Normalized Difference Bare Land and Building Index
(NDBBI)

NDBBI � 1.5SWIR2−(NIR+Green)/2
1.5SWIR2+(NIR+Green)/2

Natural Environmental Conditions Vegetation Coverage (X7) Fraction of Vegetation Cover (FVC)
FVC � NDVI −NDVImin

NDVImax −NDVImin
[ ]2

NDVI � NIR − Red
NIR + Red

Water Bodies (X8) Modified Normalized Difference Water Index (MNDWI) MNDWI � Green−SWIR1
Green+SWIR1

Topography and
Landforms (X9)

Digital Elevation Model (DEM) —

Note: In the above equation, LIi represents the light intensity of each pixel. Ai represents the area of each pixel, TA represents the total area of all pixels; Pi represents the population in the i-th

grid,Wi represents the area of the grid. TW represents the total area of all grids; TBA represents the total building area, TAR represents the total area; TBH represents the total building height,

NB represents the number of buildings; Green, Red, NIR, SWIR1, SWIR2 correspond to the 3, 4, 5, 6, and 7 bands of Landsat 8 OLI/TIRS, respectively.
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Therefore, this paper inverts the LST in the central urban area of
Lanzhou on 13 August 2023, based on the single-channel algorithm.
The mean - standard deviation method is utilized to normalize and
classify the inverted LST results, dividing the study area’s LST into
five levels: Low-Temperature Zone, Sub-Low Temperature Zone,
Moderate Temperature Zone, Sub-High Temperature Zone, and
High-Temperature Zone. The calculation results are shown in
Figure 3. The overall analysis indicates that the temperature is
lower in the central city near the Yellow River and relatively
higher in the urban fringe areas. High-temperature zones are
primarily located in Chengguan District, the city’s economic,
political, and demographic center; Xigu District, which bears the

burden of heavy petrochemical industry; northwestern Anning
District; and eastern Qilihe District. These areas overlap highly
with major industrial zones and large-scale business districts.

The accuracy of the LST inversion results was verified using
air temperatures obtained from 11 meteorological stations
within the study area, including 10 automatic meteorological
stations and 1 national basic meteorological station. Details of
the meteorological stations are provided in Table 6. The Landsat
8 image of Lanzhou city was acquired at 11:37 a.m. Beijing Time,
which is the LST inversion time. Therefore, the weighted
average of the meteorological station data obtained at 11:
00 a.m. and 12:00 p.m. Beijing Time was used as the

FIGURE 3
Grading of LST in the central urban area of Lanzhou.

TABLE 6 Basic information of selected meteorological stations.

Serial number Meteorological station Latitude Longitude Altitude (m) Type of meteorological station

1 W3368 36.0633 103.8394 1,518 Automatic Station

2 52,889 36.0439 103.8778 1,517.2 National Station

3 W3423 36.05 103.7836 1,594 Automatic Station

4 W3461 36.0836 103.8261 1,611 Automatic Station

5 W3382 36.1171 103.7052 1,545.9 Automatic Station

6 W3384 36.0992 103.7372 1,543 Automatic Station

7 W3345 36.0692 103.6611 1,622 Automatic Station

8 W3424 36.0594 103.7547 1,697 Automatic Station

9 W3460 36.075 103.8975 1,557 Automatic Station

10 W3463 36.0308 103.8581 1,555 Automatic Station

11 W3383 36.09 103.6969 1,534 Automatic Station
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validation data and compared with the average inverted LST of
the 3 × 3 pixel area closest to the weather station. The results are
shown in Figure 4. The mean LST at the meteorological stations
was approximately 5.7°C higher than the mean air temperature
because the meteorological stations monitor air temperature at
2 m above ground level, which is usually lower than the LST.
Nevertheless, the inverted temperature trend closely matches
the measured temperature trend, confirming that the proposed

algorithm used for temperature inversion has high stability. We
used the Pearson correlation analysis method (Huang R. et al.,
2024) to explore the correlation between measured data and
inverted data, obtaining a correlation coefficient of 0.7125 with
a p-value of 0.0139. Since the p-value is less than 0.05, the
results indicate a significant positive correlation between the
two. This outcome suggests that the reliability of our LST
inversion results is high.

FIGURE 4
Comparative analysis of meteorological station and inverted temperature results.

FIGURE 5
Identification results of functional zones in the central urban area of Lanzhou city.
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TABLE 7 Confusion Matrix for urban functional zone classification.

Functional
zone

Number of identified zone categories Total
number

of
parcels

Mapping/
Production
accuracyIndustrial

zone
Healthcare

zone
Residential

zone
Government

agency
service zone

Green
space
zone

Life
service
zone

Science,
education,

and
cultural-
sports
zone

Transportation
zone

Financial
service
zone

Catering
service
zone

Industrial zone 9 0 1 0 0 1 1 0 0 0 12 0.75

Healthcare zone 0 10 0 0 0 1 0 0 0 1 12 0.83

Residential zone 1 0 10 0 0 0 1 0 0 0 12 0.83

Government
Agency Service

zone

0 0 0 10 0 0 0 1 0 1 12 0.83

Green space zone 0 0 0 0 11 0 0 1 0 0 12 0.92

Life Service zone 0 0 0 0 0 11 1 0 0 0 12 0.92

Science,
education, and
Cultural-Sports

zone

0 0 0 1 0 0 11 0 0 0 12 0.92

Transportation
zone

0 0 0 0 1 0 0 11 0 0 12 0.92

Financial Service
zone

0 1 0 0 0 1 0 0 10 0 12 0.83

Catering Service
zone

0 0 1 0 0 0 0 0 1 10 12 0.83

Total Number of
Parcels

10 11 12 11 12 14 14 13 11 12 120 —

User Accuracy 0.9 0.91 0.83 0.91 0.92 0.79 0.79 0.85 0.91 0.83 — —

Note: The overall accuracy is 84.30%; the Kappa coefficient is 0.826.
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3.2 Spatial distribution characteristics of
urban functional zones

The identification results (Figure 5) are obtained by
calculating the dominant functional vector for each POI
category within each block unit using a two-factor weighted
model of “population heat—land use scale,” and determining
the type of dominant functional zone based on its maximum
value. The results show that the industrial zone has the largest
percentage of the area, while the financial service zone has the
smallest. From the perspective of spatial distribution, industrial
zones are clustered in large contiguous areas in Xigu District, the
core industrial zone of Lanzhou. Residential zones exhibit an
overall spatial pattern characterized by higher density in the east
and lower density in the west, as well as higher density in the
south and lower density in the north. The science, education, and
cultural-sports zones are primarily concentrated in Chengguan
District and Anning District, which have rich education
resources and high population densities. Zones characterized

by green spaces, healthcare, government agency service,
residential, catering service, transportation, and financial
service functions exhibit a spatial distribution pattern of
overall dispersion with local concentrations.

To evaluate the accuracy of urban functional zone
recognition, this study utilizes the confusion matrix to assess
image classification accuracy and perform the validation (Xu
et al., 2021). Specific accuracy assessment metrics include: user
accuracy, producer/mapping accuracy, overall accuracy, and the
kappa coefficient. The true value selection of urban functional
zones is mainly based on the Detailed Regulatory Planning for
Lanzhou City Center and Baidu map, obtained through manual
visual interpretation. From each functional type, 12 sample plots
were randomly and uniformly selected, resulting in 120 sample
plots for the precision evaluation of urban functional zone
identification. The detailed results are listed in Table 7,
showing an overall precision of 84.3% and a Kappa coefficient
of 0.826. Overall, the high level of accuracy demonstrates the
method’s effectiveness.

TABLE 8 LST distribution across different types of urban functional zones.

Types of functional zones n �x± s F P

Catering Service zone 101 38.63 ± 2.21 9.759 < 0.05

Government Agency Service zone 64 37.44 ± 7.01

Industrial zone 299 38.73 ± 3.53

Residential zone 375 38.47 ± 1.99

Life Service zone 105 38.76 ± 1.72

Green space zone 18 31.86 ± 9.41

healthcare zone 21 38.17 ± 2.22

Financial Service zone 12 38.49 ± 1.88

Science, Education, and Cultural-Sports Zone 103 38.73 ± 2.12

Transportation zone 62 37.66 ± 2.72

Note: n represents the number of units for each functional zone, x represents the mean LST, and s represents the standard deviation of LST.

FIGURE 6
Violin plot of land surface temperature distribution in urban functional zones.
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3.3 Surface thermal environment
differentiation in urban functional zones

3.3.1 Relevance between urban functional zones
and surface thermal environment

To investigate the different surface thermal environments in
various urban functional zones, this study conducted an
ANOVA between urban functional zones and LST. The
results show a P-value of < 0.05, suggesting significant
differences in LST across different urban zones. The specific
analysis outcomes are detailed in Table 8. Meanwhile, the LST
distributions of different functional zones were counted, and the
results are shown in Figure 6. The analysis of the results indicates
that the LST is relatively high in the life service, industrial,
science, education, and cultural-sports, catering service, and
transportation zones.

To further assess the impact of different urban functional
zones on the surface thermal environment, this study estimates
the contribution of each zone to the surface thermal environment
using the Random Forest algorithm. This study improves the
overall predictive performance and computational efficiency of
the model by constructing 100 decision trees (n_estimators = 100)
and synthesizing their prediction results. The performance of the
model is evaluated by calculating the Mean Squared Error (MSE)
and R-squared values. The final calculation results are listed in
Table 9. Among the various types of urban functional zones, the
life service zone has the most significant impact on the surface
thermal environment due to its dense human flow and high energy
consumption. Closely following is the industrial zone, whereas the
green space zone has the least impact. The impact of various urban
functional zones on the surface thermal environment ranked from
greatest to least is as follows: life service zone > industrial zone >
catering service zone > residential zone > science, education, and
cultural-sports zone > transportation zone > healthcare zone >
government agency service zone > financial service zone >
green space zone.

3.3.2 Surface thermal environment spatial
differentiation in urban functional zones

This study calculates the local spatial autocorrelation indices
between various types of functional zones and the surface thermal
environment to investigate the spatial correlation between urban
functional zones and the surface thermal environment. The results
show that the Moran’s I index for different urban functional zones is
significant at the 1% confidence level, which indicates significant
spatial agglomeration and dependence between urban functional
zones and the surface thermal environment in Lanzhou city center.
The study creates the bivariate local spatial autocorrelation (LISA)
cluster map, the results are shown in Figure 7. Overall, except for the
green space zone, the spatial correlation between the surface thermal
environment and other urban functional zones is predominantly
characterized by high-high clusters. However, high-low clusters are
not significant and are mostly scattered. Low-high clusters are
mainly concentrated along the Yellow River.

Detailed analysis reveals that the high-high clusters of the
surface thermal environment and industrial zones are distributed
in Xigu District, the core industrial zone of Lanzhou. Low-low
clusters are concentrated in the peripheral areas of the central city.
High-high clusters of the surface thermal environment and life
service zone are concentrated in the densely populated urban
district. Low-low clusters are located at the edge of the central
city. High-high clusters of the surface thermal environment and
catering service zone are distributed along Zhangye Road Street in
Chengguan District and Xihu Street in Qilihe District, among others.
Low-low clusters are located on the periphery of the central city.
High-high clusters of the surface thermal environment and
residential zone are primarily located in the densely populated
Chengguan District. Low-low clusters are frequently found in
areas with good green coverage in Xigu and Anning Districts.
High-high clusters of the surface thermal environment and
science, education, and cultural-sports zone are concentrated in
Chengguan District. Low-high clusters are mainly found in the
Anning District, which has abundant high-education resources and
good green coverage. Low-low clusters are sporadically distributed.
High-high clusters of the surface thermal environment and
transportation zone are concentrated around major transport
hubs and the city outskirts. Low-low clusters are sporadically
distributed. Low-high clusters of the surface thermal environment
and green space zone are primarily concentrated along the banks of
the Yellow River and at tourist attractions and other recreational
areas. High-high clusters of the surface thermal environment and
the financial service zone, government agency service zone, and
healthcare zone are mostly concentrated in Chengguan District.
Other types of clusters are sporadically distributed.

3.4 Analysis of surface thermal environment
driving factors

Surface Thermal Environment Differentiation in Urban
Functional Zones is influenced by various factors, including the
natural environment, human activities, land use, and building
characteristics (Yuan and Bauer, 2007). This study synthesizes
earlier research findings and selects nine influencing factors
across three dimensions—urban activities and development, land

TABLE 9 Contributions of different urban functional zones to the urban
thermal environment.

Types of functional
zones

Contribution to the urban
thermal environment (%)

Life Service zone 13.87

Industrial zone 11.76

Catering Service zone 11.64

Residential zone 11.51

Science, education, and
Cultural-Sports Zone

11.26

Transportation zone 9.41

healthcare zone 8.24

Government Agency Service
zone

7.69

Financial Service zone 7.56

Green space zone 7.06
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use and building characteristics, and natural environmental
conditions. Using different functional blocks as a basis, it
investigates how these factors influence the spatial patterns of the
surface thermal environment within urban functional zones.

3.4.1 Single factor detection
In this study, continuous independent variables were discretized

using Jenks’ natural break analysis to transform them into type
variables for factor detection and to obtain the explanatory power of
single factors, referred to as the q-value; results are shown in
Figure 8. The p-values for each factor were below 0.001, and all
passed the significance test. Among them, the q-values for NDBBI,
FVC, and POI-KDI are all greater than 0.4, indicating that the
thermal environment of urban functional zones is significantly
influenced by land cover types, vegetation coverage, and
industrial activity density.

The strong capacity of Bare Land and Building to absorb and
reflect solar radiation, coupled with a high proportion of building-
covered areas in central Lanzhou City, results in the most substantial
impact on LST. Furthermore, the transpiration effect of vegetation
helps to reduce LST. With well-established green infrastructure in
the central urban area of Lanzhou, vegetation coverage plays a

FIGURE 7
Bivariate local spatial autocorrelation (LISA) cluster map of LST with various kinds of urban functional zones. (A) Industrial zone. (B)Healthcare zone.
(C) Residential zone. (D)Government Agency Service zone. (E)Green Space zone. (F) Life Service zone. (G) Science, Education, and Cultural-Sports Zone.
(H) Transportation zone. (I) Financial Service zone. (J) Catering Service zone.

FIGURE 8
Explanatory power statistics for impact factors. NDBBI,
Normalized Difference Bare Land and Building Index; FVC, Fraction of
Vegetation Cover; POI-KDI, Industrial POI Kernel Density Index; ABHI,
Average Building Height Index; MNDWI, Modified Normalized
Difference Water Index; BDI, Building Density Index; DEM, Digital
Elevation Model; MPSI, Mobile Phone Signaling Index; NLI, Nighttime
Light Index.
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crucial role in regulating the urban thermal environment.
Additionally, areas with dense industrial activity are also regions
of high energy consumption and heat emissions. As an industrial
city, Lanzhou has a relatively high proportion of secondary industry,
with large contiguous clusters in Xigu District, the core industrial
zone of Lanzhou. Therefore, it is also a key factor contributing to the
UHI effect.

3.4.2 Interaction detection of factors
The study utilized the Interaction Detection module of

GeoDetector, and the results are shown in Figure 9. The results
show that the interaction between various driving factors exhibits
nonlinear enhancement, indicating that the interaction of any two
factors has a stronger explanatory power compared to single factors.

NDBBI, FVC, and MNDWI generally have high interactions
with other factors, with q-values greater than 0.7. The interactions
between these four factors are also very significant, with q-values
greater than 0.8, further indicating their essential roles in mutual
influence. The underlying reason is that the above factors have direct
physical or ecological links with the surface thermal environment of
urban functional zones while also playing complementary or
mutually reinforcing roles with other factors in regulating the
urban thermal environment. For example, areas with high bare
land and building coverage often have dense commercial activities.
The interactions between these areas and industrial activity density,
building density, and human activity intensity enhance the UHI
effect in various urban functional zones.

The MPSI and NLI have lower explanatory power when acting
alone, but their explanatory power improves to ranges of
0.63–0.92 and 0.57–0.94, respectively, when interacting with
other factors. This result indicates that population distribution
and human activity intensity do not directly affect the surface
thermal environment in urban functional zones but instead
influence its spatial differentiation indirectly through coupling
with other factors.

3.4.3 Analysis of spatial heterogeneity of
driving factors

The three critical driving factors identified by the GeoDetector
were incorporated into the GWR models to investigate the spatial
heterogeneity of their impact on the surface thermal environment in
urban functional zones further. The calculation results are shown
in Figure 10.

In the dimension of land use and building characteristics, the
overall regression coefficient for NDBBI ranges from 0.028 to 0.409,
indicating a positive directional impact on the surface thermal
environment in urban functional zones. The trend generally
exhibits a decrease from the central Chengguan District outward.
The high-value zone is concentrated on Yanchang Road and
Caochang Street in Chengguan District. The low-value zone is
located in Pengjiaping town, in the southern part of Qilihe
District. In the dimension of natural environmental conditions,
the regression coefficient for FVC ranges from −0.099 to −0.006,
indicating that vegetation coverage has a negative directional impact
on the surface thermal environment in urban functional zones.
Areas with high absolute values are primarily located on Donggang
Street in Chengguan District, Pengjiaping Town in Qilihe District,
and Anningbao Street in Anning District. Areas with low absolute
values are concentrated in Chengguan District. In the dimension of
urban activities and development, the regression coefficient for POI-
KDI ranges from 0.016 to 0.324, indicating a positive directional
impact on the surface thermal environment in urban functional
zones. High-value zones are primarily located on Chenping Street in
the Xigu District and Liujiabao Street in the Anning District. The
low-value zone is located on the eastern side of Chengguan District.

4 Discussion

As the UHI effect intensifies, quantitative research on the spatial
differentiation and influencing factors of the surface thermal
environment within urban functional zones, at the scale of
functional zones that characterize the physical interior of the city,
can effectively demonstrate the impact of various human activities
on the formation of UHI. However, most current studies employ
either POI or remote sensing images as the sole data source to
identify urban functional zones (Min et al., 2019; Li et al., 2021; Chen
et al., 2022; Wang H. et al., 2022), and the impacts of urban
functional zones delineated based on human activities on the
thermal environment have not been fully considered. Meanwhile,
current studies primarily rely on urban construction land
classification, which divides urban functional zones into six
categories: residential zone, government agency service zone,
commercial zone, industrial zone, green space zone, and
transportation zone (Min et al., 2019; Chen et al., 2022).

FIGURE 9
Interactions of different driving factors. NDBBI, Normalized
Difference Bare Land and Building Index; FVC, Fraction of Vegetation
Cover; POI-KDI, Industrial POI Kernel Density Index; ABHI, Average
Building Height Index; MNDWI, Modified Normalized Difference
Water Index; BDI, Building Density Index; DEM, Digital Elevation
Model; MPSI, Mobile Phone Signaling Index; NLI, Nighttime
Light Index.
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However, these studies lack in-depth discussions on the secondary
subcategories of functional zones closely related to residents’ daily
lives, such as life service zone, catering service zone, healthcare zone,
and science, education, and cultural-sports zone. Therefore, this

study integrates mobile signaling data, including information on
residents’ behavioral demands, with POI data that reflects the supply
of spatial entity elements to classify urban functional zones into ten
categories, effectively reflecting the impact of human activities on

FIGURE 10
Spatial differentiation of regression coefficients for driving factors in the GWR. (A) Land use and building characteristics NDBBI. (B) Natural
environmental conditions FVC. (C) Urban activities and development POI-KDI.
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UHI formation from the perspective of multiple urban
functional zoning.

In this study, it was found that the life service zone, industrial
zone, catering service zone, and residential zone exhibited higher
surface temperatures, which is largely consistent with the findings of
Huo et al. (2023) and Li T. et al. (2020). The differences in the
surface thermal environment across various urban functional zones
are primarily influenced by the NDBBI, FVC, and POI-KDI.
Therefore, urban planning should focus on the layout of
buildings, green space and water bodies. In residential zones,
natural surface patches such as green spaces and water bodies
can be interspersed, and building density can be controlled.
Additionally, local ventilation and heat dissipation can be
enhanced through the combination of buildings of varying
heights. In the life service, catering service, and financial service
zones, building density should be reasonably restricted, with
attention to variations in building height and volume, to enhance
the convection heat exchange of air. In the science, education, and
cultural-sports zone, healthcare zone, and government agency
service zone, ecological retrofit measures such as rooftop
greening and wall greening can be integrated with the functions
of the buildings to enhance the evaporative cooling effects within the
area. Green spaces and water bodies of a certain scale should be
established at the edges or inside industrial zones to minimize their
warming effect on the surrounding urban functional zones. The
planting of deciduous broad-leaved trees, such as willows, should be
increased in the green space zone to reduce the extent of impervious
surfaces. For instance, the use of non-essential impervious surfaces,
such as paved concrete, should be minimized in park construction.
In the transportation zone, the layout should incorporate as many
natural surfaces as possible, such as protective green space, parkland,
and street greening. The government should develop and enforce a
stringent policy for the protection of urban non-built land, while
promoting the implementation of green roofs, vertical gardens, and
other eco-building measures in both new and existing buildings.

Principal component analysis (PCA), GeoDetector, and GWR
models are employed to analyze the extent to which various
influences affect the target variable. PCA, based on linear algebra,
utilizes dimensionality reduction to transform multiple indicators
into a few composite indicators, known as principal components
(Xue et al., 2023). For instance, Xiong and Zhang (2021) employed
the PCA method to analyze the factors influencing the thermal
environment in human residential areas, finding that urban
construction intensity and topography are the main influencing
factors. However, PCA can only determine the influence strength of
different factors and does not reflect the interactions and spatial
heterogeneity of these factors. GeoDetector is based on statistical
principles and explores the influences behind geographic
phenomena through stratified analysis and interaction detection
(Wang et al., 2021). For instance, Li M. et al. (2024) utilized the
interaction detection module of the GeoDetector to explore the
interactions among factors influencing snow cover changes in the
headwaters of the Yangtze and Yellow Rivers, finding that the
interaction between relative humidity and temperature had the
strongest explanatory power. Meanwhile, GWR models are used
to analyze local relationships in spatial data, taking into account the
effects of changes in geographic locations on the regression
relationships (Wee et al., 2024). For example, Wang et al. (2019)

utilized the GWR models to explore the spatial variation in the
determinants of urban carbon emissions in China. Therefore, the
GeoDetector and GWR models employed in this study are more
effective in exploring the interaction and spatial heterogeneity of the
drivers of the surface thermal environment in urban functional
zones, compared to the PCA used by current scholars.

The local climate zone (LCZ) system effectively highlights the
impact of surface geometry and cover characteristics on the local
climate (Liu et al., 2017). For example, Zheng et al. (2024)
investigated the effects of nine LCZs in Beijing on UHI and
urban dry islands (UDI) using LCZ data at 120 m resolution,
along with hourly temperature and humidity data from
automatic weather stations. The study found that open LCZs
were the main contributors to UHI and UDI. Chen Y. et al.
(2023) analyzed the UHI effect in six LCZs in Guangzhou using
temperature data collected from stationary measurements over
405 days. The study revealed that heat island intensity was
significantly higher in high-density built-up areas compared to
open LCZs. The LCZ system is an effective approach for
investigating the UHI effect; however, the LCZ system primarily
emphasizes the relationship between the physical characteristics of
the urban landscape and UHI. Compared to the LCZ system, the
urban functional zone scale focuses more on capturing the impacts
of human activities on UHI. From an urban management
perspective, the urban functional zone scale better facilitates the
understanding and analysis of human activities’ impact on urban
temperatures, enabling more effective formulation of urban thermal
environment management measures at the fundamental unit of
urban planning (Yu et al., 2021). Therefore, the urban functional
zone can be used as another effective tool to quantify the UHI effect.

However, this study still has some shortcomings. For example,
the Landsat 8 imagery only provides LST observations during the
daytime, which hinders the effective monitoring of the surface
thermal environment in urban functional zones at night. In
addition, the inherent limitations of POI data characteristics and
classification labels impede further refinement of urban functional
divisions. Moreover, the recognition capability of POI data is
relatively weak in areas with low building densities and on the
urban outskirts. Due to the influence of the spatial distribution
characteristics of data, this study focuses solely on the central urban
area characterized by a dense transportation network and high
population density and does not discuss the characteristics of
functional zones across the entire Lanzhou City. Future studies
will utilize multi-temporal data to incorporate the temporal
characteristics of the spatial differentiation of the urban thermal
environment based on functional zoning.

5 Conclusion

This study uses Lanzhou City, a central city in Northwest China,
as a study area to propose a quantitative method for identifying
urban functional zones based on the two-factor weighted dominant
function vector model of “population heat—land use scale” and
categorizes urban functions accordingly. Furthermore, using
Landsat 8 imagery for LST inversion, the study explored the
spatial heterogeneity and driving factors of the surface thermal
environment in urban functional zones. The results indicate:
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(1) LST is lower near the Yellow River area in the central urban
district of Lanzhou City, while LST in the urban fringe areas is
relatively higher. High-temperature zones highly overlap with
major industrial zones and large-scale business districts. Based
on observational data from meteorological stations for
validation, the analysis results indicate high LST inversion
accuracy. Ten functional zones were identified in the study
area, with the most widespread industrial zones and the least
distributed financial service zones. Industrial, residential, science,
education, and cultural-sports zones exhibit relatively
concentrated distribution characteristics, while the spatial
layout of other functional zones is relatively dispersed. The
overall accuracy of the identification results obtained using
the confusion matrix method is 84.30%, demonstrating the
effectiveness of the proposed method.

(2) ANOVA was conducted on urban functional zones and LST.
The results show a P-value of < 0.05, suggesting significant
differences in LST across different urban functional zones.
Using the Random Forest algorithm to estimate the
contribution of various urban functional zones to the
surface thermal environment, the order from greatest to
least is as follows: life service zone > industrial zone >
catering service zone > residential zone > science,
education, and cultural-sports zone > transportation
zone > healthcare zone > government agency service
zone > financial service zone > green space zone. Urban
functional zones and the surface thermal environment exhibit
significant spatial agglomeration and interdependence. The
spatial correlation between the surface thermal environment
and life service, industrial, catering service, and residential
zones is predominantly characterized by high-high clusters in
local spatial clustering patterns, while it is mostly
characterized by low-high clusters in green space zones.

(3) Land cover types, vegetation coverage, and industrial activity
density are the main driving factors of the surface thermal
environment in various urban functional zones in the central
urban area of Lanzhou City, and their spatial heterogeneity is very
significant. Specifically, FVC has a negative directional impact on
the surface thermal environment, while all other driving factors
have a positive directional impact. Meanwhile, the interaction of
NDBBI, water bodies, and FVC with other factors has a stronger
explanatory power compared to single factors.
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