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Artificial Intelligence (AI) tools based on Machine learning (ML) have
demonstrated their potential in modeling climate-related phenomena.
However, their application to quantifying greenhouse gas emissions in cities
remains under-researched. Here, we introduce a ML-based bottom-up
framework to predict hourly CO2 emissions from vehicular traffic at fine
spatial resolution (30 × 30 m). Using data-driven algorithms, traffic counts,
spatio-temporal features, and meteorological data, our model predicted
hourly traffic flow, average speed, and CO2 emissions for passenger cars (PC)
and heavy-duty trucks (HDT) at the street scale in Berlin. Even with limited traffic
information, themodel effectively generalized to new road segments. For PC, the
Relative MeanDifference (RMD) was +16% on average. For HDT, RMDwas 19% for
traffic flow and 2.6% for average speed. We modeled seven years of hourly CO2

emissions from 2015 to 2022 and identified major highways as hotspots for PC
emissions, with peak values reaching 1.639 kgCO2 m

−2 d−1. We also analyzed the
impact of COVID-19 lockdown and individual policy stringency on traffic CO2

emissions. During the lockdown period (March 15 to 1 June 2020), weekend
emissions dropped substantially by 25% (−18.3 tCO2 day−1), with stay-at-home
requirements, workplace closures, and school closures contributing significantly
to this reduction. The continuation of these measures resulted in sustained
reductions in traffic flow and CO2 emissions throughout 2020 and 2022.
These results highlight the effectiveness of ML models in quantifying vehicle
traffic CO2 emissions at a high spatial resolution. Our ML-based bottom-up
approach offers a useful tool for urban climate research, especially in areas
lacking detailed CO2 emissions data.
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1 Introduction

The transportation sector is one of the major contributors to global carbon dioxide
(CO2) emissions from fossil fuels, with road vehicles alone accounting for three-quarters of
the emissions in this sector (EEA, 2017; IEA, 2019). This contribution is particularly
pronounced in urban areas, where high concentration of vehicles and increased travel
distances result in large CO2 emission levels, making road transportation an important
component of city carbon accounting (Gately et al., 2015; Gurney et al., 2012; Huo et al.,
2022; Nangini et al., 2019). However, with a few exceptions, cities still face challenges in

OPEN ACCESS

EDITED BY

Bushra Khalid,
Chinese Academy of Sciences (CAS), China

REVIEWED BY

Waishan Qiu,
The University of Hong Kong, Hong Kong, SAR
China
Kevin Gurney,
Northern Arizona University, United States

*CORRESPONDENCE

Max Anjos,
maxanjos@campus.ul.pt

RECEIVED 08 July 2024
ACCEPTED 18 December 2024
PUBLISHED 07 January 2025

CITATION

Anjos M andMeier F (2025) Zooming into Berlin:
tracking street-scale CO2 emissions based on
high-resolution traffic modeling using
machine learning.
Front. Environ. Sci. 12:1461656.
doi: 10.3389/fenvs.2024.1461656

COPYRIGHT

© 2025 Anjos and Meier. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 07 January 2025
DOI 10.3389/fenvs.2024.1461656

https://www.frontiersin.org/articles/10.3389/fenvs.2024.1461656/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1461656/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1461656/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1461656/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1461656/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2024.1461656&domain=pdf&date_stamp=2025-01-07
mailto:maxanjos@campus.ul.pt
mailto:maxanjos@campus.ul.pt
https://doi.org/10.3389/fenvs.2024.1461656
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2024.1461656


accurately quantifying traffic CO2 emissions at a high spatio-
temporal resolution, such as rush hours, daily-seasonal circles,
holidays, and shifts in mobility routines at street scale.

At the city scale, understanding where, when, and how much
emissions happen is crucial for informed climate actions, detailed
greenhouse gas monitoring and inventories (Duren and Miller,
2012; Jungmann et al., 2022; Ku et al., 2022; Roest et al., 2020; Seto
et al., 2021; Turnbull et al., 2022). The Hestia project (Gurney et al.,
2019) exemplifies this endeavor by focusing on the creation of
high-resolution CO2 emission datasets through street-level
modeling in cities across the United States. However, such
initiatives are still exceptions, as many cities worldwide struggle
to provide high spatiotemporal estimates of traffic CO2 emissions
for their entire road networks due to limited monitoring stations.
While many cities have traffic monitoring systems in road
segments with significant traffic volumes, these systems often
do not cover all roads in the network. This incomplete data
coverage makes it difficult for cities to accurately quantify high
spatiotemporal CO2 emissions and assess their carbon footprint,
leading to often under-reported urban emission inventories
(Gurney et al., 2021).

Recent advancements in Artificial Intelligence (AI) have
demonstrated significant potential for improving traffic
prediction accuracy (Shaygan et al., 2022). Machine Learning
(ML) models, a subset of AI capable of identifying patterns in
large, complex datasets (Aurélien Géron, 2022; Chollet, 2018;
Kuhn and Johnson, 2013), have effectively captured spatial and
temporal correlations in big data (Lv et al., 2014), leading to accurate
and timely predictions of traffic indicators such flow, speed, and
accident risk (Liu et al., 2018). While ML models show promise in
applications related to urban road traffic, the quantification of
greenhouse gas emissions at high spatial-temporal resolution
remains relatively under-researched.

Here, the core idea of our study is to estimate vehicle traffic
information, specifically focusing on extrapolating traffic flow and
speed predictions from road segments with available data to those
without, considering similarities in both location and time. These
variables are essential for calculating CO2 emissions in urban
environments. By utilizing ML algorithms and bottom-up
approach, we can predict hourly traffic flow, average speed, and
CO2 emissions at the street scale for the entire road network. Built
upon Geographic Information System, road infrastructure data,
meteorological conditions, and local traffic measurements, our
ML-based bottom-up model identifies truly predictive traffic CO2

patterns with a grid of 30 m in horizontal resolution and captures
temporal changes from hourly to yearly scales.

A key aspect of the proposed ML-based bottom-up is that it can
be used particularly in areas where data on traffic CO2 emissions is
scarce, offering new possibilities for city-scale carbon accounting. It
also aligns with the existing practices of environment researchers
and authorities who consider hourly and zoomed-in emission maps
useful to construct detailed and gridded vehicular emission
inventories (Huo et al., 2009; Wang et al., 2010). Hence, the
primary goal of this paper is to demonstrate the ML-based
bottom-up application in estimating the spatiotemporal
variability of road traffic CO2 emissions from passenger cars and
heavy-duty- trucks in Berlin, Germany. Specifically, our aims are
as follows.

1. Introducing a ML-based bottom-up to estimate hourly traffic
flow and average speed at the street scale across an entire city,
along with evaluating modeled estimates using local traffic
measurements. We also identified key spatial and temporal
features that influence the final ML predictions;

2. Mapping spatio-temporal variability of CO2 emissions by
vehicle type at the street scale with an hourly 30-m grid
resolution from 2015 to 2022. We compared these estimates
with data from the Carbon Monitor Cities dataset, which
provides CO2 emission from the road transportation sector
(Huo et al., 2022).

3. Exploring the impact of COVID-19 lockdown and various
response measures, such as school closures, travel restrictions,
workplace closures, and stay-at-home requirements, on traffic
CO2 emission behavior. We will merge our emissions data with
the Oxford pandemic policies database (Hale et al., 2021) to
analyze the effectiveness of different governmental measures in
reducing emissions in cities.

2 Data and methods

2.1 Target city

Berlin, Germany’s capital, boasts a population exceeding
3.7 million inhabitants and spans an area of approximately
892 km2 (Statistical Office of Berlin-Brandenburg, 2019). As one
of the European Union’s largest cities, Berlin showcases diverse
transportation modes, including roads, rails, and aviation. These
various networks contribute to substantial CO2 emissions levels,
with transportation sector ranking as the second-largest emitter
(after buildings), responsible for 20% of the city’s total CO2

emissions and road traffic counting 70% of this share (Senuvk
(Senate Department for the Environment, U. M., Consumer
Protection and Climate Action), 2019; Hirschl and Harnisch,
2016). In 2019, the city had 330 cars per 1.000 residents,
distributed across the road network (SenStadtWohn, 2019).

Aligned with global trends, Berlin is committed to achieving
climate neutrality by 2050. To achieve this goal, the city has
instituted the Berlin Energy and Climate Protection Program,
encompassing numerous strategies for reducing emissions across
sectors, including road transportation (Hirschl and Harnisch, 2016).
In our study, we employ the proposed ML model to estimate the
direct CO2 emissions from road transportation that physically
occurs within the city’s boundary, corresponding to scope 1 for
emissions accounting and reporting (refer to Chen et al. (2019) for
details on scopes 1, 2 and 3).

2.2 Dataset description

The proposed ML-based bottom-up model (ML model) integrates
three primary datasets: local traffic measurements, spatial information,
and meteorological conditions. Local traffic data were sourced from
the Digital Platform City Traffic Berlin/Traffic Detection Berlin
(https://api.viz.berlin.de/daten/verkehrsdetektion) and Bundesanstalt
für Straßenwesen (BAST) (https://www.bast.de/DE/Verkehrstechnik/
Fachthemen/v2-verkehrszaehlung/zaehl_node.html). The Digital
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platform provides hourly vehicle volume and average speed data from
583 lane-specific detectors at counting stations, for passenger cars (PC)
and heavy-duty trucks (HDT). The BAST dataset includes hourly
vehicle volumes for different vehicle types, including PC and HDT,
from 17 counting stations on motorways and non-urban federal roads
in Berlin. In this study, the data covers from January 2015 to
December 2022.

Spatial information was gathered from OpenStreetMap (OSM)
and Berlin Digital Environmental Atlas (Berlin Atlas). OSM, a global
collaborative project, provides crowdsourced Geographic
Information Voluntary (OpenStreetMap contributors, 2017).
OSM features such as road types (motorway, trunk, primary,
secondary, and tertiary), leisure, land use, amenity, building
types, and more were utilized (https://wiki.openstreetmap.org/
wiki/Map_features). Berlin Atlas contributed GIS features,
including land use, population density, and daily mean traffic
volumes in 2019 (SenUVK, 2021). The shapefile of Berlin’s road
network, containing road length, speed limit, and road classification
based on Functional Road Class (FRC), was obtained from
TomTom’s Historical Traffic Stats (https://www.tomtom.com/
products/traffic-stats/). FRC reflects the road importance based
on traffic volume, speed and connectivity, enhancing the model’s
reproducibility under TomTom’s non-commercial usage
permission.

To complete theMLmodel’s variables set, hourly meteorological
data (air temperature, relative humidity, sunshine, rainfall, wind
direction, and wind speed) were acquired from the weather station
Berlin-Dahlem (latitude 52.4537, longitude 13.3017) managed by
the German Weather Service Climate Data Center (DWD, 2020).

2.3 Data preparation

The ML model was built with the open-source R statistical
computing platform (R Core Team, 2018). In the R environment,
the data preparation step ensures the dataset is properly formatted,
cleaned, and prepared for analysis. A key task involves defining the
dependent variables and independent variables (predictors). In this
study, we defined the mean traffic flow per hour and average speed
in km per hour from all counting stations at a road segment
represented by a line (link) in shapefile format, as
dependent variables.

We geographically linked traffic count points with road network
segments, aggregating traffic flow and average speed and
independent variables, such as OSM features, population density
and daily mean traffic volumes using the st_join and st_nearest_
feature functions from R sf package (Pebesma, 2018). We then
separated all road segments into two categories: “sampled,” referring
to those covered by traffic count points, and “non-sampled,”
indicating those without such coverage (see Supplementary
Figure S1 in the Supplementary Information). Subsequently, we
applied a set of data pre-processing techniques, called feature
engineering (Kuhn and Johnson, 2019) to build good predictors.
It involves handling missing data in both numeric and categorical
variables, as well as performing data transformations to extract
useful information (new predictors) and select potential ones. For
example, temporal predictors such as time of day, weekdays,
weekends, and indicators for holidays were derived from the

date-time column (e.g., 2021-01-01 01:00:00) using the step_
timeseries_signature function from recipes and timetk R packages
(Kuhn and Wickham, 2023; Dancho and Vaughan, 2023).

The ML model consisted of 35 spatio-temporal predictors that
can represent the traffic flow and average speed estimates at the
street scale. See Supplementary Table S1 for more details on
dependent variables and each predictor. Thus, the idea behind
the ML model is that the algorithm learns from the independent
variables of sampled roads (measured) to predict the dependent
variables for non-sampled (unmeasured) roads.

2.4 Model development

To ensure the robustness and generalisability of the ML model
(Chollet, 2018; Kuhn and Johnson, 2013), we divided our dataset
into three sets: training, validation, and test. Initially, we randomly
attributed 80% (440) of our traffic count stations and respective
sampled road segments to the training set, 10% (148) to the
validation, and 10% (147) to the test set. We made sure this
fraction split across different road types to ensure a
representative sample, as shown in Supplementary Figure S2. To
assess the model’s performance across seasons, days of the week, and
rush hours, we chronologically split the traffic data for 4 months
(February, July, and November) in 2018 so that earliest 80% of each
month data was assigned to training, the next 10% for validation and
the latest 10% for testing.

We used the Random Forest (RF), a popular ensemble learning
algorithm known for its ability to combine a large number of
decision trees for classification or regression tasks (Breiman,
2001). RF has been widely used in the fields of traffic demand
and air-pollutant research (Liu andWu, 2017; Wen et al., 2022). The
RF algorithm was implemented as a supervised regression task using
the R ranger package (Wright and Ziegler, 2017).

We trained the RF iteratively on the testing set, making adjustments
to hyperparameters as needed (Kuhn and Johnson, 2019). Once
validated, the model was tested on the unseen test set in order to
evaluate its performance in real-world situations. Default settings of the
RF used to predict traffic flow and average speed at the street scale are
shown in Supplementary Table S2. To simplify the synthesis of our
model’s performance, we applied the following metrics: r (correlation
coefficient - Pearson), root mean square error (RMSE), mean absolute
error (MAE), and relative mean difference (RMD).

To measure how much each feature contributes to the traffic
flow and average speed predictions, we employed the permutation
method (Wright and Ziegler, 2017). This technique involves
randomly shuffling the values of a specific feature and measuring
the resulting change in model performance. The permutation
method is particularly useful for understanding the importance
of features in black-box models, such RF, which can be difficult
to interpret directly. However, it may be computationally expensive,
especially for large datasets and complex models, such as RF.

2.5 Deploy model

After training the ML model for each PC and HDT categories
individually, we deployed it to predict hourly traffic flow and average
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speed for each road segment. Using these predictions, we calculated
the corresponding hourly CO2 emissions (Ehi) in g km−2 h−1 for the
PC and HDT, following Equation 1 (Stagakis et al., 2023):

Ei.l.h � ∑
n

i�1

qi.l.h * Ll*EFv.i

As
(1)

where qi.l.h is the modeled traffic flow of vehicle category i on road
link l at hour in h, L is the link-road length in km−1, As is the area of
the road segment in m−2, and EFv.i is the emission factor for of
vehicle category i at average speed v in g km−1 (see Supplementary
Table S3 for more details on EF functions). The speed-dependence
EF for PC and HDT were derived from the European Road
Transport Emission Inventory Model - COPERT, which offers EF
that are expressed as functions of the mean traveling speed over a
complete driving cycle, taking into account specific vehicle types,
vehicle fleet layers differentiated by size, technology, and emission
standards (Ntziachristos et al., 2009). This approach enables
accurate estimation of emissions under various real driving
emissions. We chose the COPERT model due to its methodology
aligning with both the EMEP/EEA air pollutant emission inventory
guidebook 2023 for road emission calculations in the European
context (EEA, 2023), as well as the guidelines provided by the
Intergovernmental Panel on Climate Change (IPCC), which
utilizes CO2 EF related to fuel consumption factors and distance
traveled to estimate fuel usage (IPCC, 2000).

To obtain a detailed ETi map, we aggregated the estimated
emissions to 30 × 30 m grid cells, a scale that is useful for
informed climate actions in urban areas (Christen, 2014). To do
this, we resampled the data to a 30-meter resolution land cover
raster. We then intersected the road segment links (line sources)
with the grid. CO2 emissions within each grid cell were calculated by
multiplying the fraction of intersected line values by the original
length, ensuring accurate estimates without underestimation.

To gain a preliminary understanding of the of performance of
our CO2 emission estimates, we compared them with data from the
Carbon Monitor Cities (CM-Cities) dataset, which provides near-
real-time daily CO2 emissions estimates by various sectors across
cities globally (https://cities.carbonmonitor.org/; Huo et al., 2022).
For the ground transportation sector, the CM-Cities uses TomTom
daily transport congestion and Emissions Database for Global
Atmospheric Research (EDGAR) data as inputs, and provides
daily CO2 emission estimates covering the city-scale. Hence, daily
CO2 emissions from Berlin’s ground transport sector in 2019 were
matched with our ML model’s daily CO2 emissions for the same
period. Both estimates were aligned as total city-scale emissions in
the unit of thousands of metric tons per day for the entire
Berlin area.

2.6 COVID-19 data and analysis

To assess the magnitude and timing of COVID-19 lockdown
effects on traffic-related CO2 emissions, we analyzed changes in 7-
day running mean and weekday mean values during two distinct
periods: the lockdown and a baseline period. The lockdown period
was identified based on significant reductions in the mobility
patterns of Berlin residents, as reported by Schatke et al. (2022).

For this analysis, we focused on the spring lockdown, spanning from
March 15 to 1 June 2020. The baseline period, serving as a pre-
pandemic reference, consisted of the corresponding calendar days in
2019, which were unaffected by COVID-19 restrictions.

To further assess the relationship between COVID-19 lockdown
and various response measures on traffic CO2 emissions in Berlin,
we used data from the Oxford COVID-19 Government Response
Tracker (OxCGRT) dataset (Hale et al., 2021). The OxCGRT dataset
includes 21 indicators for target policies, categorized into five
groups: containment and closure, economic, health system,
vaccination, and miscellaneous. Given their direct influence on
mobility patterns, this study particularly focused on the impact
of containment and closure policies: school closures, workplace
closures, restrictions on gatherings, stay-at-home requirements,
internal movement restrictions, and international travel controls.
Each policy index ordinarily ranges from 0 to 4, with higher values
reflecting more stringent measures.

To analyze the statistical association between OxCGRT
containment and closure policies on daily CO2 emissions during
the lockdown period (March 15 to 1 June 2020), we employed a
combination of Spearman correlation and Partial Least Squares
(PLS) regression model. Spearman correlation was used to assess
the strength and direction of the relationship between individual
policy measures and CO2 emissions. In this study, PLS identified the
most influential policy measures driving changes in daily CO2

emissions. PLS combines features of principal component
analysis and multiple regression, making it particularly suitable
for datasets with multicollinearity among predictors (e.g.,
government policies), as it simultaneously reduces dimensionality
and explains variance in the dependent variable (e.g., CO2

emissions) (Geladi and Kowalski, 1986). The use of PLS was
supported by multicollinearity diagnostics, which revealed
moderate (>5) and high (>10) Variance Inflation Factor (VIF)
values among the response measures (see Supplementary Table S4).

3 Results

3.1 Assessing the ML model predictions

To evaluate our ML model’s performance, we deployed the
trained RF algorithm to an independent dataset. The model
demonstrated satisfactory results in predicting road traffic
volumes and average speed for the main OSM road types in
Berlin. For PC, the modeled hourly traffic flow values (N =
29.300) exhibit consistency with observed values (r = 0.73), with
an RMSE of 155 veh h−1 and an MAE of 111 veh h−1. The RMD,
calculated as [(modeled_value - observed-value)/mean (modeled_
value, observed_value)], was +16% on average, indicating an
overestimation. For average speed, the model performed
similarly, with RMSE of 10 km h−1, MAE of 6.8 km h−1, and
RMD of −3.6%. For HDT, the model’s performance was
comparable to that for PC, with similar RMD values for traffic
flow (19%) and average speed (2.6%). Please refer to Supplementary
Table S5 for a detailed breakdown of all metrics.

Figure 1 illustrates the model’s performance in representing
temporal traffic flow patterns, including mean diurnal cycles, rush
hours, day of the week, and monthly variations, across different road
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types for PC (see Supplementary Figure S3 for HDT). The model
exhibits some biases, such as underestimating traffic flow during
afternoon hours on tertiary roads and overestimating traffic flow
duringmorning hours onmotorway and secondary roads (Figure 1B).
These biases persist on certain days of the week (Figures 1A, D). These
errors may be attributed to the limited sample size of road segments
used for training (see Supplementary Figure S2), which hinders the
model’s ability to capture traffic variability, particularly during peak
hours (includingWednesdays), as well as unmodeled external factors.
Regardingmonthly variations (Figure 1C), the models performed well
in estimating the average seasonality of traffic flow across different
road types.

Figure 2 shows the key predictors that impact traffic flow and
average speed predictions at the street scale. Temporal factors played an
important role in the traffic flow predictions. Date_hour (hour of the
day) the most influential feature (14.6%), highlighting the temporal
aspect in shaping traffic flow estimates. Other relevant temporal features
include date_am.pm (daytime/nighttime) with 8.6%, and date_hour12
(12 h of day period) with 6.4%. Dtmv (daily mean traffic volume) also
influenced traffic flow prediction with 7.9%. Other spatial features also
contribute to traffic flow predictions, although with less impact than
temporal features. These include road types (fclassOSMand FRC), road
length, and population density (resident/hac), each
contributing around 5.0%.

For average speed predictions (Figure 2B), road length is the
most important factor (13.2%). Dtmv and landuse OSM are also
influential, along with population density (all around 10%). These
results align with prior research (Medina-Salgado et al., 2022) that
highlights the effectiveness of ML models that incorporate both
spatial and temporal features in accurately predicting
traffic estimates.

3.2 Spatiotemporal CO2 emission patterns

The most significant outcome of the ML model is its ability to
provide detailed, high-spatial data on vehicle traffic CO2 emissions,
as mapped in Figure 3. The model was executed for a specific winter
workday, estimating CO2 emissions on each street segment in the
city, totalling 27 thousand modeled links. As anticipated, the model
estimated large emissions for PC along major highways across the
city, reaching a peak value of 1.639 kgCO2 m−2 d−1 on motorway
roads. Panels B and C on the map present the time series of daily
CO2 emissions for PC from 2015 to 2022 for two specific streets:
AVUS and Straße des 17. Juni. They highlight the different emission
patterns observed on these streets over the years. AVUS, a major
motorway-highway, shows higher emissions than Straße des 17.
Juni, a primary road located in a central urban area.

FIGURE 1
Comparison of hourly normalized traffic flow of passenger cars (PC) on different road OSM types (motorway, primary, secondary, tertiary) between
observed data andmodeled values in Berlin for February, July, and November 2018. The panels are as follows: (A) hourly mean values by day of the week,
(B) mean diurnal cycle, (C) monthly mean values, and (D) mean weekdays variation. The normalized traffic flow values were calculated by dividing each
individual value by the overall mean of the traffic flow data. The line represents themean values, and shading indicates the extent of the 5th and 95th
percentiles. The plot was generated using the R openair package (Carslaw and Hopkins, 2012).
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3.3 Temporal CO2 emission variation

Figure 4 illustrates the temporal variability of road traffic CO2

emissions from PC and HDT for the entire city-level. The total
emissions were calculated by summing up the emissions from all
modeled road segments within Berlin’s administrative boundaries
(covering an area of 892 km2) in 2019. The upper plot (Figure 4A)
depicts the diurnal patterns of hourly mean emissions for all days of
the week. Significant peaks occur during rush hours, averaging
around 140 tCO2 h−1 for PC and 70 tCO2 h−1 for HDT at 12:
00 and 18:00, accompanied by a reduction in emissions on
weekends. The lower-right plot (Figure 4D) shows a contrast
between weekdays and weekends, with a reduction of 20 tCO2

week−1 for both PC and HDT on Saturdays and Sundays.
Furthermore, important variations in the monthly mean
emissions are evident in the bottom-center plot (Figure 4C),
particularly for HDT. March and November, registered a
40 tCO2 increase compared to other months.

Collectively, these plots clearly demonstrate the pronounced
temporal fluctuations in traffic CO2 emission behavior, primarily
influenced by changes in traffic flow. These findings agree with
numerous studies that have shown similar temporal variation in

both modeled and measured traffic CO2 emissions in urban settings
(Buckley et al., 2016; Gurney et al., 2012; Mitchell et al., 2018; Park
et al., 2022; Ueyama and Ando, 2016).

Figure 5 presents the daily total CO2 emissions, including PC
and HDT, in Berlin between 2015 and 2022. Emissions were
calculated by averaging daily CO2 estimates from 23,000 modeled
road links across the city. On average, daily emissions were 73 tCO2

d−1, ranging from a minimum of 19 tCO2 d−1 to a maximum of
120 tCO2 d

−1. Note that, in March 2020, emissions dropped sharply
to approximately 60 tCO2 d

−1 due to COVID-19 restrictions and the
associated decline in traffic.

The reduction in CO2 emissions persisted into 2021 and 2022,
reflecting an decrease of 18% in traffic flow by 2021, as shown in
Figure 6A. The continuation of COVID-19 measures, indicated by
the daily Stringency Index (SI) in Figure 6B, highlights factors such
as remote work and shifts in travel behavior that contributed to
sustained reductions in traffic and CO2 emissions. Section 3.5
provides a detailed analysis of these impacts.

Furthermore, the reductions in road traffic emissions align with
annual CO2 flux observations from in situ tower measurements at
two Berlin neighborhood sites, TUCC and ROTH (Nicolini et al.,
2022; Fenner et al., 2024). Further details on TUCC and ROTH are

FIGURE 2
Relative cumulative contribution for top 20 features used by theMLmodel to predict (A) the traffic flow and (B) the average speed for passenger cars
(PC) at the street scale in Berlin.
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provided in Supplementary Figure S4. Between 2019 and 2021, CO2

fluxes at TUCC, primarily originating from road traffic, decreased by
25%, from 11.21 to 8.40 kgCO2 m

−2 y−1. Similarly, ROTH showed an
18% reduction, from 10.21 to 8.37 kgCO2 m−2 y−1 by 2022
(Figure 6C). These decreases in CO2 fluxes reflect changes in
local anthropogenic activities (such as building energy
consumption), vegetation dynamics, and weather conditions,
beyond the impact of traffic flow.

3.4 Comparison with CM-cities daily
CO2 emissions

Figure 7 compares the daily CO2 emissions predicted by our
ML model with those estimated by CM-cities in Berlin for 2019.

Both models exhibit similar daily patterns of CO2 emissions
variation, as evidenced by the high Pearson correlation
coefficient (R2 = 0.76) (Supplementary Figure S5). The relative
mean difference (RMD), calculated as [(ML-model - CM-cities)/
mean (ML_model, CM-cities)], between the two models is 14%,
indicating that our ML model exceeded the CO2 emissions of CM-
cities by an average of 814.7 tons per day. This RMD is within a
reasonable range, as suggested by the interquartile range of
7%–22.4%.

The difference between these estimates can be attributed to the
data sources and methods used for CO2 emission calculations. For
example, CM-Cities relies on TomTom’s traffic data as a proxy for
trace CO2 emissions from traffic, which includes millions of
anonymous consumer-driven GPS-based measurements
representing the traffic flow and average speed across road

FIGURE 3
Estimates of Berlin traffic CO2 emissions for passenger cars (PC) aggregate to 30 × 30 m resolution in kg m−2 d−1 on 2 February 2022 (A). For
visualization purposes, the daily CO2 emission values for each modeled link represent the aggregated emissions from all corresponding street segment
names. Since a single street may be divided into multiple links in our dataset, the link emissions are summed to obtain the total emissions for each street.
The colorbar scale of the legendmap, divided into ten classes, was generated using the k-means clusteringmethod. Panels 1 and 2 on themap show
the respective time series of daily CO2 emissions (kg km d−1) from 2015 to 2022 for two street links (B) AVUS (OSM code = 106310123) and (C) Straße des
17. Juni (OSM code = 320896581).
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segments. It is important to note that some studies have shown that
when novel mobility data like TomTom’s data are compared to
local traffic data, significant discrepancies can arise, with some
studies reporting errors in emission estimates exceeding 60%
(Gensheimer et al., 2020; Gensheimer et al., 2021). The authors
reported that these errors are often due to different baselines, the
omission of seasonal variations, and, primarily, the individual
representations of the datasets, which may partially explain the
differences found in CM-Cities’ estimates relative to our
ML model.

3.5 Assessment of impact of COVID-19 on
traffic emissions

3.5.1 Overall impact of the lockdown on
traffic emissions

During the COVID-19 lockdown, Berlin’s daily CO2 emissions
from road traffic in 2022 decreased by an estimated
14.2 tCO2 day−1 compared to 2019, representing a relative
reduction of 16.6% (Figure 8A). Across all weekdays, average
CO2 emissions fell by 17.3% (95% CI: 12.1%–22.5%),
corresponding to a reduction of approximately 12.6 tCO2 day−1

(CI: 9.0–16.4 tCO2) from the 2019 baseline of 73 tCO2 day−1

(Figure 8B). Weekday emissions dropped by 12% (CI: 8.5%–

15.2%), equivalent to an average decrease of 8.8 tCO2 day
−1 (CI:

6.5–11.1 tCO2), while weekends recoded the largest reductions,
declining by 25% (CI: 20.3%–30.1%), which corresponds to a
decrease of 18.3 tCO2 day−1 (CI: 14.8–21.8 tCO2). The
pronounced reductions on weekends are partially explained by
shifts in public behavior and restricted leisure and labor activities
during the lockdown.

Our findings align with results observed across both global and
local scales. Liu et al. (2022) reported a significant 17% reduction in
global CO2 emissions during the peak weekly decline of the COVID-
19 lockdown in 2020 compared to the same period in 2019. At the
city scale, Schatke et al. (2022) found similar results, noting an
average NO2 concentration reduction of −21.9% across various sites
(air pollution stations) in Berlin, during the lockdown period
(March 15 to 1 June 2020).

3.5.2 Effects of specific policies on traffic emissions
To assess the impact of specific containment and closure policies

on traffic CO2 emissions during the defined lockdown, we analyzed
correlations and performed PLS regression between daily CO2

emissions and six individual OxCGRT policy measures

FIGURE 4
Temporal variation of Berlin traffic emissions in tCO2 for passenger cars (PC) and heavy-duty trucks (HDT) in 2019. The panels are as follows: (A)
hourly mean values by day of the week, (B)mean diurnal cycle, (C)monthly mean values, and (D)mean weekdays variation. The line represents the mean
values, and shading indicates the extent of the 5th and 95th percentiles. The plot was generated using the R openair package (Carslaw andHopkins, 2012).
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(Supplementary Figure S6). The correlation analysis revealed
moderate negative correlations for stay-at-home requirements
(r = −0.39), workplace closing (r = −0.31) and school closing
(r = −0.34), indicating their immediate effect in reducing
mobility and associated CO2 emissions. This suggests that
limiting the movement of people by enforcing “shelter-in-place”
orders substantially reduced vehicle traffic emissions at street scale
during the pandemic. In contrast, international travel controls
(r = −0.28) and restrictions on gatherings (r = −0.21) showed
weaker correlations with CO2 emissions, indicating that these
measures alone had less direct influence on traffic emission
reductions.

In a multivariate analysis, the PLS regression further
highlighted workplace closures as having the most substantial
negative impact on emissions (coefficient = −24.39) (Figure 9).
This indicates that each unit increase in the workplace closure
index (e.g., from no restrictions to partial or severe restrictions)
was associated with a reduction of 24.39 tCO₂ day−1, largely due to
the decrease in commuting as remote work policies were
implemented. Stay-at-home requirements (−14.37 tCO₂ day−1)
and restrictions on gatherings (−12.33 tCO₂ day−1) also
contributed to emission reduction, due to the decline in leisure
and social travel. School closures had a moderate negative impact
(−7.21 tCO₂ day−1), dropping traffic flow linked to educational
activities.

It is worth mentioning that restrictions on internal
movement showed a positive coefficient (12.45 tCO₂ day−1),
suggesting potential compensatory traffic patterns, such as
localized travel within restricted areas (Figure 9). International
travel controls had the smallest impact (−3.05 tCO₂ day−1), likely
due to the lower contribution of international trips to
urban traffic.

4 Discussion

Our ML model provides accurate hourly street-scale CO2

emissions, overcoming the difficulties posed by limited
observational data. This particularly addresses the issue of
unavailable traffic flow and average speed data in various
roadways, so that the proposed ML-model can enable cities to
compute their CO2 emissions at a manageable scale. Our findings
underscore the significance of accounting for the high spatio-
temporal variability of vehicle traffic CO2 emissions when
formulating and implementing carbon management strategies in
urban areas. As outlined in the 3.2 and 3.3 sections, our results can
be useful for assessment of policies targeting CO2 emission
reduction, particularly in high-emitting roads during peak
emission periods.

To facilitate reproducibility and effective communication of our
ML model’s outcomes, we have developed an Emission Geographic
Information Platform accessible at https://bymaxanjos.github.io/
CO2-traffic-emissions/. This platform offers an interactive
interface for visualizing traffic emissions through zoomable CO2

maps categorized by district (Figure 10). It also provides summary
statistics for a comprehensive understanding of the data, covering a
diverse audience, including users, stakeholders, the research
community, and the general public.

Furthermore, our ML model has the potential to enhance the
generation of comprehensive and detailed greenhouse gas (GHG)
inventories for urban areas. Traditional GHG inventories, often
based on annual averages, oversimplify the spatio-temporal
variability of emissions, leading to discrepancies when
compared to high-resolution modeling results (Chen et al.,
2020; Gurney et al., 2021). Our ML model offers a promising
way for improving urban GHG inventories by providing detailed

FIGURE 5
Daily total CO2 emissions from road traffic, including passenger cars (PC) and heavy-duty trucks (HDT), in Berlin from 2015 to 2022. The emissions
were calculated by first determining the average daily CO2 emissions for each of the 23,000 modeled road links across the city. The total daily emissions
were then obtained by summing these averages from all links within the study area. The black dashed line marks the start of the COVID-19 lockdown
period in German (March 15 to 1 June 2020).
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FIGURE 6
(A) Annual normalized variation in traffic flow in Berlin from 2015 to 2022, based on monthly totals from 583 counting stations. Traffic flow is
normalized to a 2015 baseline (100), with values below 100 indicating a relative decrease (B)Germany’s daily Stringency Index (SI) values from the Oxford
COVID-19 Government Response Tracker (OxCGRT) for 2020–2022, where SI ranges from 0 (no measures) to 100 (maximum stringency) (C) Annual
CO2 fluxes (kg m−2 y−1) measured at two Berlin tower sites: TU Campus Charlottenburg (TUCC, 52.45723°N, 13.31583°E) and Steglitz
Rothenburgstrasse (ROTH, 52.51228°N, 13.32786°E). No data available for TUCC in 2022 due to technical problems.

FIGURE 7
Time series of daily traffic emissions including passenger cars (PC) and heavy-duty trucks (HDT) in tCO2 (x1,000) for ML model and CM-Cities in
Berlin from January 2019 to December 2019.
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and accurate estimates of traffic CO2 emissions, capturing hourly
fluctuations at the street scale. This level of detail is crucial for
identifying and mitigating traffic emissions hotspots within the
city, aiding in the analysis and monitoring of traffic flow, velocity,
and emissions patterns.

While our study primarily focuses on CO2, the ML-based
bottom-up model can also be easily adapted to estimate other
GHG species and traffic-related pollutants in urban areas. The
integration of high spatio-temporal resolution in emissions

modeling can help to identify areas vulnerable to air pollution,
contributing to the development of localized health policies and
interventions. In addition, the flexibility and CO2 emission
disaggregation can support the recognition and monitoring of
potential geographical zones in the city suitable for traffic
regulation initiatives, such as Low Emissions Zones
(Chukwunonye Ezeah et al., 2015).

This study provides a general quantification of urban traffic CO2

emissions only differentiating traffic flow and average speed by PC and

FIGURE 8
Berlin’s daily CO2 traffic emissions, including heavy-duty trucks (HDT) and passenger cars (PC), presented as (A) a 7-day running mean and (B)
weekday averages tCO2 day

−1). The lockdown period, spanning March 15 to 1 June 2020, is shaded gray, while the baseline period represents emissions
during March 15 to 1 June 2019, unaffected by COVID-19 restrictions. In (A), the blue and orange shaded areas indicate uncertainty ranges and 95%
confidence intervals for the 2019 and 2020 estimates, respectively. In (B), error bars represent the 95% confidence intervals.
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HDT (including only trucks). Future studies can evaluate the distinct
impacts of other vehicle engine types on local emissions, considering the
growing prevalence of electric vehicles globally (IEA, 2019). Applying
the spatio-temporal modeling approach would be useful for assessing
the influence of electric vehicles on reducing emissions.

Our evaluation metrics, with an RMSE of 155 veh h−1 for traffic
flow and 10 km h−1 for average speed, are comparable to, and in
some cases surpass, those of other state-of-the-art models reported
in the literature. For instance, a review by Medina-Salgado et al.

(2022), which analyzed computational techniques from 61 studies
on urban traffic flow prediction, reported a maximum RMSE of
240.98 veh h−1. This highlights the robustness of our ML model in
predicting traffic flow, as it effectively estimates data from measured
road segments to unmeasured ones in Berlin, maintaining a
reasonable error margin within the bounds established by
prior studies.

It is important to acknowledge that the use of data from
583 traffic count stations for ML model development may lead to

FIGURE 9
PLS regression between daily traffic CO2 emissions (tCO2 day−1), including passenger cars (PC) and heavy-duty trucks (HDT), and the OxCGRT
containment and closure policy responses to COVID-19 in Berlin during the lockdown (March 15 to 1 June 2020). Negative coefficients indicate stricter
policies are associated with reduction in CO2 emissions, while positive coefficients suggest increases.

FIGURE 10
Emission Geographic Information platform is designed to communicate the outcomes of the proposed ML-based bottom-up model.
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under (over)estimation of results in specific streets. This because
certain road types, such as residential, were excluded from the
analysis due to measurement data unavailability. To further
enhance the model’s predictive power and provide more
understanding of traffic patterns and associated emissions,
feature research could include additional variables such as road
network structure, proximity to Central Business District, and public
transit accessibility.

To assess the performance of our CO2 emission estimates, we
compared them with the Carbon Monitor Cities dataset, which
provides confidence in our findings. However, further validation
using in situ CO2 measurement data is recommended. One effective
approach for validation is the Eddy Covariance (EC) method, a well-
established technique for measuring greenhouse gas, water, and
energy fluxes in urban areas (Valesco and Roth, 2010). By
combining our traffic CO2 emissions estimates with EC fluxes
and footprint analysis, an advanced assessment of the model
performance can be carried out.

We found that the stay-at-home was the strictest measure,
associated with an approximate reduction of 45% in traffic CO2

emissions on weekdays during the lockdown period. This result
highlights the important influence that “shelter-in-place” orders
can have on reducing traffic emissions at street scale during
COVID-19 pandemic events. Traffic emissions at street scale
during COVID-19 pandemic events. This is consistent with
other studies (Bekbulat et al., 2021; Le Quéré et al., 2020; Liu
et al., 2021; Liu et al., 2020; Turner et al., 2020) that have also
emphasized the effectiveness of “shelter-in-place” orders in
reducing traffic emissions at global and urban scales. It is
important to consider, however, that while staying at home
during lockdowns reduces traffic emissions, it may lead to an
increased building CO2 emissions related to domestic heating and
cooking, as noted by Nicolini et al. (2022) in European areas.

5 Conclusions

This study highlights the potential of AI tools, such as ML
models, in quantifying CO2 emissions in urban environments. By
incorporating ML techniques into the bottom-up approach, we
accurately estimated CO2 emissions from vehicular traffic in
Berlin at a high spatio-temporal resolution, with hourly
emissions on a 30-meter grid at the street scale. Our approach,
leveraging traffic counts, spatial features, and meteorological data,
provides detailed CO2 emissions patterns over a 7-year
period (2015–2022).

The comparison shows that the ML model and CM-Cities are
able to capture daily variations in traffic emissions. Nevertheless, our
model has the advantage of estimating CO2 emissions on a single
road segment and hourly basis, which may be relevant for informed
climatic action within a city, although it requires more
computational effort and diverse inputs compared to CM-Cities.
User objectives, research questions, and available datasets determine
the choice between approaches.

The results highlighted significant CO2 emissions concentrated
along major highways and demonstrated the substantial impact of
COVID-19 lockdown measures on reducing traffic-related

emissions. The OxCGRT containment and closure policies,
including stay-at-home orders, workplace closures, school
closures, were associated with reductions in road traffic CO2

emissions during the lockdown period (March 15 to 1 June
2020). These measures continued to influence emissions
throughout 2020 and 2022.

This research underscores the utility of ML-based bottom-up
models in areas with limited emissions data, providing
researchers and policymakers with potential tools for
monitoring of traffic-related emissions and their impact on air
quality and public health. Our findings contribute to the growing
field of ML applications in emissions modeling and spatio-
temporal analysis of greenhouse gas variations, paving the way
for more data-driven, sustainable urban planning and
policy-making.
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