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The reduction of greenhouse gas emissions is a shared challenge encountered by
nations worldwide. As China is on its way toward a green economy, it is worth
studying whether producer services agglomeration, a key driver of economic
transition, can promote low-carbon urban development. Using panel data of
257 cities across China from 2006 to 2019, this paper examines the influence of
producer services agglomeration on urban carbon emissions with spatial
econometric models. The findings reveal a positive spatial correlation in
regional carbon emissions. The agglomeration of producer services notably
decreases the intensity of local carbon emissions, yet it appears to have
minimal influence on the emissions from adjacent regions. Enhancing energy
efficiency and adjusting the industrial structure are two critical mechanisms by
which producer services agglomeration reduces urban carbon emissions. This
beneficial effect varies with city type, the abatement effect of producer services
agglomeration is more pronounced in non-resource-based cities. When
considering city size, the carbon reduction potential of producer services
agglomeration is not apparent in smaller cities. As city size increases, the
emission reduction effect becomes more apparent. However, in mega-cities,
this impact is somewhat diminished. Accordingly, this paper proposes exploring
methods of coordinated air pollution management across cities, promoting
producer services agglomeration in line with market mechanisms, and driving
low-carbon urban development in a manner tailored to local conditions.
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1 Introduction

In light of global climate change, all nations are grappling with the substantial challenge
of reducing greenhouse gas emissions. As of 2023, China has released 12.05 billion tons of
carbon, making up 32.22% of the global CO₂ emissions total1. As the globe’s top carbon
contributor, China’s ability to effectively balance economic expansion with environmental
conservation is crucial to its sustainability and has far-reaching effects on global climate
management. In this context, the high-tech and environmentally-friendly producer services
sector is emerging as a significant player. In the “Eleventh Five-Year Plan” (2006–2010), the
Chinese government first proposed expanding the producer services sector, refining and
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deepening the specialization of labor, and improving the efficiency
of resource allocation. Since then, producer services have seen rapid
growth and increased agglomeration. However, the relationship
between the agglomeration of producer services (PSA) and urban
carbon emissions remains unclear. This ambiguity gives rise to the
central research question of this study: How does the PSA influence
urban carbon emissions?

The producer services sector, spearheaded by industries such as
finance, information services, and technology services, was spun off
from manufacturing. Compared to traditional energy-intensive
manufacturing, producer services generally require fewer physical
inputs in their operations, leading to lower energy consumption and
waste production. This sector is seen as greener due to its more
sustainable practices. With the restructuring of China’s economy,
the producer services have seen rapid growth, forming extensive
agglomerations in the developed regions of eastern China and the
national central cities. These conglomerates not only spark regional
economic growth but also influence urban energy consumption
patterns and the trajectories of carbon emissions.

PSA produces a series of environmental effects. While industrial
agglomeration can promote resource efficiency through economies
of scale, encouraging knowledge sharing, and aiding in the
establishment and implementation of green technologies (Lan
et al., 2021; Fan et al., 2023; Du and Zhang, 2023), it can also
augment energy requirements (Zhao et al., 2021; Wu J. et al., 2021).
Furthermore, the conglomeration of the service sector could
intensify urbanization, leading to increased traffic congestion, real
estate development, and lifestyle changes, all of which could
significantly impact a city’s carbon emissions. Understanding the
link between PSA and urban carbon emissions is vital for stimulating
the growth of the producer services sector and for encouraging the
establishment of green, low-carbon production and lifestyle habits.

This study empirically explores the research question by
examining the influence of PSA on urban carbon emissions using
spatial models. It evaluates the influence mechanism of PSA and
examines the heterogeneity of its impact on carbon emissions.
Through these endeavors, the paper seeks to assist China in
enhancing the quality of PSA, crafting differentiated carbon
reduction policies, and providing insights and guidance for
achieving low-carbon development goals both in China and globally.

The structure of this research is organized for clarity and
progression. Section 2 presents a literature review, setting the
stage for the theoretical framework discussed in Section 3.
Section 4 introduces the econometric model and describes the
dataset used for analysis. Section 5 delves into the results,
interpreting the estimations. Finally, Section 6 concludes the
study, highlighting key findings and their policy relevance.

2 Literature review

Prior studies have expounded on how elements such as urban
development (Wang et al., 2021; Xiao et al., 2023), trade
liberalization (Dou et al., 2021; Wang et al., 2024), environmental
policy (Chen and Lin, 2021; Dong et al., 2022b), technological
innovation (Suki et al., 2022; Dong et al., 2022), energy efficiency
optimization (Mahapatra and Irfan, 2021; Li et al., 2022a), and
industrial restructuring (Wu et al., 2021b; Zhao et al., 2022) can

substantially impact regional carbon emissions. The correlation
between industrial agglomeration and carbon emissions has been
a common theme in research investigating the environmental
impacts of industrial structuring, yet a definitive conclusion has
not been reached. Much of the research posits that industrial
agglomeration facilitates a decrease in carbon emissions through
improved research and development (R&D), knowledge transfer
and spillover effects (Yu et al., 2018; Lan et al., 2021). Conversely,
some studies suggest that the growth of production scale caused by
industrial concentration could expedite resource usage, thereby
potentially contributing to a rise in carbon emissions (Wu et al.,
2021a). The final impact may well depend on the equilibrium
between these advantageous and disadvantageous effects, which
implies a nonlinear relationship (He et al., 2019).

Producer services emerged from the manufacturing sector, later
evolving and separating due to the outsourcing of non-essential
functions by manufacturing industries. Research on PSA, an
important form of industry agglomeration, has mainly focused
on two aspects: its synergistic relationship with the
manufacturing sector (Gao et al., 2020; Zeng et al., 2021; Xu
et al., 2023; Yang and Shen, 2023) and its contributions to
sustainable development (Li W. et al., 2022; Du and Zhang,
2023). Although some studies consider the impact of PSA on
carbon emissions, these largely revolve around the manufacturing
sector. For example, Jin et al. (2022) and Liu et al. (2022) illustrated
how the carbon intensity and efficiency of the manufacturing
industry can be improved by the advancement and
agglomeration of producer services, respectively. Other research
explores the impacts of the co-agglomeration of manufacturing
and producer services on carbon emissions, but the findings have
been inconsistent. Xiao et al. (2024) argue that this co-agglomeration
leads to an improvement in carbon emission efficiency, while other
studies suggest a nonlinear relationship (Xu et al., 2023; Meng and
Xu, 2022).

So far, the direct impact of PSA on the environment remains
underexplored. Only a few studies have addressed this issue.
Zhao et al. (2021) reported that PSA might increase carbon
emissions by promoting economic scale. Fang et al. (2022)
investigated the factors influencing urban carbon emission
efficiency, revealing that PSA could boost local carbon
emissions efficiency and also enhance the carbon efficiency in
nearby regions through demonstration effects. There is a need for
more comprehensive research on the ecological effect of PSA.
Moreover, further examination is needed to understand how PSA
impacts the environment. Past research has studied PSA’s
mechanisms, focusing on its scale, technology, composition,
and demonstration effects (Zhao et al., 2021; Liu et al., 2022;
Fanget al., 2022). Some study examined its relationship with
industrial structures, indicating that modernization of this
structure could help improve urban carbon productivity (Xu
et al., 2023). Sun and Li (2022) found that PSA decreases
technical efficiency locally, while this negative effect could be
reduced by improving industrial structure. Still, the impact of
PSA on carbon emissions through energy efficiency has not been
fully explored. Additionally, exiting research is insufficient in
examining the endogeneity between PSA and carbon emissions.
Studies typically focus on how the supply of producer services
affects city-level emissions. However, the correlation could also
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be reversed. Areas with high carbon emissions could suffer
environmental degradation and resultant diminishing
standards of living. This scenario may cause a migration of
skills and businesses elsewhere, thus inhibiting the
accumulation of the producer service sector. In contrast, if a
city is burdened with elevated carbon emission levels, the
government could incentivize the congregation of service
industry businesses through tax benefits, financial aid, or
infrastructural investment. These strategies could potentially
reduce total carbon emissions. In these instances, a misleading
link between PSA and carbon emissions might be discerned.
Current literature aims to counter this issue of reverse causality
by introducing a 1-year lag for PSA (Liu et al., 2022). However,
forecasts of the forthcoming year’s emissions could influence
government policies and workforce behavior within the current
year. Consequently, the effectiveness of using lagged terms may
not be particularly strong.

This paper aims to address the recognized lacunae in current
research, offering several potential contributions. First, it introduces
a fresh viewpoint. The productive service industry is characterized
by high added value, high knowledge content, and a relatively low
environmental impact. The emergence of PSA not only provides
support and services to the manufacturing sector, enhancing its
efficiency, but can also generate positive externalities that extend
beyond their direct contributions to manufacturing. This work goes
beyond the confines of manufacturing to directly assess how PSA
influences urban carbon emissions. The findings indicate that PSA
substantially lessens the carbon emission intensity in urban areas.
Since direct carbon emissions in urban areas contribute to 85% of
China’s overall carbon emissions (Shan et al., 2019), this work offers
a novel perspective for formulating carbon reduction strategies in
cities. Second, the paper analyzes the methods by which PSA aids in
reducing urban carbon emissions from a novel perspective. It
employs the SBM-DEA method to calculate the total-factor
energy efficiency and productivity of cities. The results show that
PSA contributes to carbon emission reductions by enhancing total-
factor energy efficiency. This discovery extends the scope of existing
academic discussions. Lastly, the study introduces a novel method to
circumvent the endogeneity issues often seen in industrial
agglomeration and emission studies. It uses the relief amplitude
of various Chinese cities as an instrumental variable for PSA. Relief
amplitude is sufficiently exogenous as an instrumental variable and
does not directly impact urban carbon emissions intensity, thus
providing a robust tool for the analysis.

3 Theoretical analysis

3.1 PSA and energy efficiency improvement

Recent research underscores the importance of energy
efficiency in lowering emissions (Akram et al., 2020; He et al.,
2021). Dense production and living arrangements can lead to
more centralized energy usage, resulting in lower per-unit-area
energy consumption (Glaeser and Kahn, 2010). Proque et al.
(2020) and Fan et al. (2023) also found that, compared to
dispersed production, concentrated production methods
benefit from economies of scale, aiding in the reduction of

energy use. In the context of PSA, the strategic consolidation
of public infrastructure has led to a marked reduction in resource
idleness and wastage, which are often a consequence of the
geographical dispersion of enterprises. Specifically, the
centralized layout of production facilities has reduced energy
loss for lighting and heating, thus cutting unnecessary energy
consumption. The geographic concentration of employees allows
public transportation systems to operate on a larger scale,
enhancing operational efficiency and reducing the energy
required for commuting. Meanwhile, the shared mechanism of
information technology resources effectively prevents redundant
labor and resource waste during the R&D process, thereby not
only saving on R&D costs but also accelerating the speed of
innovation. These shared mechanisms reduce the resource
consumption for producing the same quantity of products or
services, improve overall energy efficiency, and propose a novel
economic development model that emphasizes energy
conservation and consumption reduction.

Moreover, the enhancement of energy efficiency heavily relies
on advancements in technology (Li and Lin, 2018; Chen and Liu,
2021). Producer services are characterized as talent-intensive,
knowledge-intensive, and technology-intensive, which
contributes significantly to energy efficiency. Marshall and
Guillebaud (1961) found that in areas with a high density of
producer services, innovative resources are more concentrated,
and the pace of technological advancement is quicker.
Furthermore, knowledge-intensive enterprises are more likely
to gain the advantage of technology spillovers in an agglomerated
environment (Glaeser, 1999). PSA provides geographical
convenience, allowing advanced energy-saving and emission-
reduction measures to spread through spillover effects, thereby
improving labor productivity and energy efficiency on a broader
scale. Additionally, the production efficiency of input factors
varies across different sectors, and this efficiency difference
causes factor flows, with energy factors tending to shift from
low-efficiency sectors to high-efficiency sectors. In this process,
producer services can propel a comprehensive enhancement of
energy efficiency within the agglomeration area.

Hypothesis 1. PSA reduces carbon emission intensity through
enhancing energy efficiency.

3.2 PSA and industrial structure adjustment

The adjustment of industrial structure can shift away from an
extensive development model, which is favorable for decreasing
carbon emissions (Zhao et al., 2022; Zhu, 2022). The agglomeration
of producer services is a result of the deepening social division of
labor and economic structural adjustment, and the agglomeration
will further promote the specialization of producer services, thereby
facilitating the enhancement of the overall industrial framework. In
economic activities, a significant portion of information is “non-
standardized,” requiring effective transmission through face-to-face
communication among professionals. PSA strengthens the sharing
and accumulation of such “non-standardized information” in
human capital (Grubel and Walker, 1989). This accumulation of
professional talent, in turn, can enhance regional innovation and
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management capabilities, promoting the refinement of industrial
structure (Cai and Xu, 2017). Furthermore, the agglomeration of
producer services increases competition among firms. To capture
market share, homogeneous producer service enterprises may
reduce prices, which compels them to boost productivity. On the
other hand, heterogeneous producer service enterprises are more
likely to seek competitive advantages by enhancing technology,
improving service quality, and introducing innovative products.
This progression encourages the producer services industry to
climb from low-end to high-end offerings, ultimately advancing
the regional industrial structure.

Hypothesis 2. PSA reduces carbon emission intensity by
enhancing the industrial structure.

4 Methods and data

4.1 Model specification

In this section, the study further explores how PSA impacts
urban carbon emission intensity through empirical analysis.
Influenced by natural conditions, geographic location, industrial
transfer and technological spillover, emissions from different
regions cannot be spatially isolated. Neglecting spatial correlation
when studying regional carbon emissions may lead to
inconsistencies between estimated and actual values. To address
this, spatial models are utilized. Popular spatial models include the
Spatial Lag Model (SAR), the Spatial Error Model (SEM), and the
Spatial Durbin Model (SDM). Anselin et al. (2013) suggest that the
SAR should be chosen when spatial dependence is a significant
factor among variables, and the SEM should be selected when the
error term is spatially correlated. The SDM, as detailed by Lesage
and Pace (2009), is capable of handling both spatial lag and spatial
error concurrently, with the SAR and SEM being its simplified
variants. In the subsequent analysis, both the Likelihood Ratio (LR)
test and the Wald test indicate that the SDM utilized in this study
cannot be reduced to either the SEM or the SAR. Therefore, the SDM
is selected for empirical analysis, and the model is constructed
as follows:

lnCEIit � ρ ∑N
j�1,j ≠ i

Wij lnCEIjt + β lnPSAit + γ ∑N
j�1,j ≠ i

Wij lnPSAjt

+ θXit + ui + vt + εit

(1)
where, lnCEIit, lnPSAit are the carbon emission intensity and
producer services agglomeration for city i in year t, respectively. ρ
is the spatial lag coefficient. Xit is the set of control variables. ui,
]t, εit are individual effect, time effect, and disturbance term,
respectively. Wij is the spatial weight matrix and takes the
form of:

Wij � e−αdij , i ≠ j
0, i � j

{ (2)

Here, dij is the geographic distance between spatial unit i and
spatial unit j. α is a coefficient that takes the reciprocal of the
shortest distance between cities.

4.2 Data sources and variable selection

The sample period for this paper is from 2006 to 2019, and the
subjects of the study are prefecture-level cities and above2. After
excluding cities with significant data missing and those with fewer
than 100,000 employees, a balanced panel data set comprising
257 cities over 14 years was selected as the analysis sample. All
data are sourced from the China City Statistical Yearbook of the
corresponding years. The following elucidates the choice of variables
and the techniques employed to build the indices. Descriptive
statistics for these variables are displayed in Table 1.

4.2.1 Dependent variable
Carbon Emission Intensity (CEI). To eliminate the impact of

regional economic scale, the CEI for each region is calculated by
dividing the total carbon emissions of each city within a specific year
by its corresponding GDP. The GDP data used in these calculations
is adjusted to constant prices, using 2006 as the base year, to account
for inflation. Since urban carbon emissions mainly arise from energy
consumption, this study follows the methodology of Wu and Guo
(2016), computing urban carbon emissions by estimating and
aggregating the emissions produced from four energy sources:
electricity, heat, natural gas, and liquefied petroleum gas. The
calculation formula is represented as:

CO2 � ∑Cij � ∑Eij × fj (3)

In Equation 3, Cij is the carbon emissions resulting from the
consumption of energy j in city i, Eij is the consumption quantity of
energy j in city i, and fj is the carbon emission coefficient of
energy j.

TABLE 1 Descriptive statistics of variables.

Variable Obs Mean Std Min Max

lnCEI 3,598 −0.965 0.725 −3.522 1.748

lnPSA 3,598 −0.214 0.340 −2.128 0.684

lnTE 3,598 −1.122 0.504 −2.657 0.365

lnHD 3,598 0.047 0.096 0.000 2.152

lnSR 3,598 −0.472 1.379 −5.644 4.750

lnHUM 3,598 4.584 1.170 −5.493 7.178

lnINV 3,598 −0.439 0.460 −3.833 0.879

lnFDI 3,598 −4.627 1.392 −17.645 −1.391

lnpGDP 3,598 1.234 0.693 −0.962 3.452

lnFD 3,598 0.701 0.426 −0.580 3.059

lnER 3,598 −1.100 0.439 −4.009 0.032

2 The China City Statistical Yearbook stopped releasing employment figures

categorized by industry after 2019. Therefore, given the research

requirements and the constraints of data availability, the sample period

is set from 2006 to 2019.
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4.2.2 Core explanatory variable
The level of producer services agglomeration (PSA). The

primary methods for measuring the degree of PSA include
location entropy, the Herfindahl index, and the spatial Gini
coefficient. Compared to other methods, location entropy
adjusts for the impact of regional scale differences, thereby
more accurately reflecting the spatial distribution within
smaller areas. Consequently, location entropy is used to
measure PSA in this study. Following Fang and Zhao (2021),
the producer services are categorized into seven sectors,3 and the
number of individuals employed in these sectors is used as the
basic indicator4.

PSAi � Eij/∑
j

Eij
⎛⎝ ⎞⎠/ ∑

i

Eij/∑
i

∑
j

Eij
⎛⎝ ⎞⎠ (4)

In Equation 4, Eij,∑
j

Eij represent the employment in producer
service sectors and the total employment in city i, respectively;∑
i

Eij, ∑
i

∑
j

Eij represent the employment in producer service

sectors and the total employment in all cities, respectively. This is
a positive index, a higher value corresponds to a greater
concentration of producer service sectors.

4.2.3 Mechanism variables
4.2.3.1 Total-factor energy efficiency (TE)

This is estimated using the SBM-DEA model that includes
undesired outputs. Specifically, an optimal frontier is established
using a non-parametric method. This frontier represents the
most efficient production possibility based on the given inputs
and outputs. The actual performance of each Decision Making
Unit (DMU) is then compared against this optimal frontier to
determine its relative efficiency. Assuming there are m DMUs,
each of them consumes n inputs, produces u desired outputs, and
v undesired outputs. The corresponding vectors are
X � (xij) ∈ R+

n × m, Y
g � (yg

ij) ∈ R+
u × m, Y

b � (yb
ij) ∈ R+

v × m. Then
the set of production possibilities can be articulated according to
Equation 5:

P x( ) � x, yg, yb( )
∣∣∣∣∣∣∣∣∣x≥Xλ, yg ≤Ygλ, yb � Ybλ,∑m

i�1
λ � 0, λ≥ 0

⎧⎨⎩ ⎫⎬⎭
(5)

Where λ is the weight of each cross-sectional observation. For a
specific DMU, the efficiency score θ* is obtained by solving the
following linear programming problem:

θ* � min
1 − 1

n ∑n
i�1
s−i /xi0

1 + 1
u+v ∑u

j�1
sgj/yg

j0 + ∑v
j�1
sbj/yb

j0( ) (6)

s.t.x0 � Xλ + s−, yg
0 � Ygλ − sg, yb

0 � Ybλ + sb, λ, s−, sg, sb ≥ 0

Where s−, sb and sg are the slack variables of inputs, undesirable
outputs and desirable outputs, respectively. In this article, each city is
considered as a DMU, and the input indicators used include labor
input, capital input, and energy input. Labor input is represented by
the count of individuals employed in each city; capital input is
estimated using the perpetual inventory method with 2006 as the
base year; energy input is calculated using the night light simulation
index. The expected output is the constant-price GDP of each city,
again with 2006 as the reference year; whereas the unexpected
outputs are SO₂ and CO₂ emissions. Given these assumptions,
Equation 6 is solved to obtain θ*, which is the total-factor
energy efficiency.

4.2.3.2 Industrial structure rationalization index (SR)
Han et al. (2017) measured the rationality of the industrial

structure based on structural deviation and the proportion of output
from various industries. The formula is as follows:

IS � ∑3
j�1

Yj

Y
( ) Yj

Lj
( )/ Y

L
( ) − 1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (7)

In Equation 7, Y is output, L is labor input, j is the industry
(j = 1,2,3). When the productivity levels of all sectors are the
same, that is, Yj/Lj � Y/L, the economy is in a state of
equilibrium, and the level of industrial structure
rationalization is at its highest; at this point, IS = 0.
Conversely, the further the economy deviates from the state of
equilibrium, the less rational the industrial structure becomes,
and the greater the value of IS.

As IS is an inverse indicator, a higher value of IS indicates a
lower degree of industrial structure rationalization. In this paper, we
take the reciprocal of IS, which makes the explanation of the
empirical results in the subsequent text more convenient. The
index is constructed according to Equation 8:

SR � 1/IS � 1/ ∑3
j�1

Yj

Y
( ) Yj

Lj
( )/ Y

L
( ) − 1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣⎛⎝ ⎞⎠ (8)

4.2.3.3 Industrial structure adjustment magnitude (HD)
Following Findeisen and Südekum (2008), it is calculated by the

intensity of the re-allocation of employed personnel among
industries. The calculation process is as follows:

HDit � ∑n
j�1

ei j, t + 1( ) − ei j, t( )∣∣∣∣ ∣∣∣∣⎡⎢⎢⎣ ⎤⎥⎥⎦ − ei t + 1( ) − ei t( )| |⎧⎨⎩ ⎫⎬⎭/ei t( )

(9)
In Equation 9, ei(j, t + 1), ei(j, t) represent the number of

employees in industry j in city i at time t + 1 and t, respectively.
ei(t + 1), ei(t) are the total number of employees in city i at time
t + 1 and t, respectively. This index is a positive indicator.

3 The seven producer service sectors are: transportation, warehousing and

postal services; information transmission, computer services and software

industry; financial industry; rental and business services industry; scientific

research, technology services and geological exploration industry;

wholesale and retail industry; water conservancy, environmental and

public facilities management.

4 Given producer service sectors are mainly concentrated in municipal

districts, this study is based on persons employed in municipal districts

rather than the entire city.
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4.2.4 Control variables
(1) Human Capital (HUM) facilitates the dissemination of

knowledge and the generation of innovative ideas. The
creation of advanced technologies can reduce energy
consumption by increasing production efficiency, thereby
reducing carbon emissions. Therefore, HUM is used as a
control variable and quantified by the ratio of university
students per 10,000 individuals.

(2) Physical Capital Investment (INV) not only expands the
economic scale but also increases energy consumption,
thereby affecting carbon emission intensity. Hence, this
indicator is introduced as a control variable and is gauged
by the ratio of fixed asset investment to GDP.

(3) Foreign Direct Investment (FDI) is determined by its
proportion in relation to GDP. The impact of FDI on
carbon emission intensity is complex. On one hand, FDI
can stimulate regional economic growth, potentially
increasing energy consumption and carbon emissions.
On the other hand, FDI can lead to technology
spillovers, promoting the optimization of regional
industrial structures, potentially reducing
carbon emissions.

(4) Economic Development (pGDP), a significant driver of
carbon emissions, is included as a control variable and
quantified by per capita GDP.

(5) Financial Development (FD) has a dual effect on carbon
emissions. It can increase carbon emissions by stimulating
demand and energy consumption. Simultaneously, it can
reduce emissions by facilitating structural adjustments and
promoting cleaner production methods. Hence, it is set as a
control variable and measured by the ratio of year-end
balances of loans and deposits in financial
institutions to GDP.

(6) Environmental Regulation (ER) reflects the commitment
of local governments to sustainable development and
can influence regional carbon emission behaviors. ER is
calculated by using Python to tally the occurrence of
environmentally related terms in the annual reports of
provincial governments. The resulting figure is then
adjusted by the output value share of secondary
industries in each city within the province for that year.

5 Empirical results and analysis

5.1 Spatial correlation test

Prior to utilizing the spatial econometric approach, it is crucial
to initially examine the spatial correlation of the dependent variable.
Currently, the most widely used test for this purpose is Moran’s I.

I � ∑n
i�1∑n

j�1wij xi − x
−( ) xj − x

−( )
S2∑n

i�1∑n
j�1wij

(10)

In Equation 10, S2 is the sample variance, wij is the spatial
weight matrix. Moran’s I values range from −1 to 1, with the
magnitude indicating the strength of the spatial correlation of the
variable in question. According to the results presented in Table 2,
the Moran’s I values for the intensity of carbon emissions in Chinese
cities from 2006 to 2019 are all positive and highly significant, with a
noticeable rise in spatial dependence. This means that cities
exhibiting high carbon emission intensity are typically
neighbored by regions with comparable emission levels.
Conversely, cities with low emission intensity are typically near
regions with low emissions as well. This pattern of spatial correlation
signifies the appropriateness of employing a spatial model.

5.2 Regression results and analysis

To identify the most suitable estimation form of the spatial
model, the Lagrange Multiplier (LM) test, the Likelihood Ratio (LR)
test, the Wald test, and the Hausman test are conducted sequentially
on Equation 2, following the methodology proposed by Elhorst
(2014). The findings reveal that both the LM-lag and LM-error are
statistically significant at the 1% level, suggesting a preference for the
spatial model over the OLS model. Moreover, the LR andWald tests
provide strong evidence against simplifying the SDM to either the
SAR or SEM. Additionally, the Hausman test favors fixed effects
over random effects. Consequently, a two-way fixed effects SDM is
used for analysis. Results from the OLS, SAR, and SEM models are
also presented for comparison.

Table 3 shows that the coefficients of PSA are always negative
across various models and are statistically significant at the 1% level.

TABLE 2 Results of Moran’s I test for China’s urban carbon intensity, 2006–2019.

Year Moran’s I Z-Statistic Year Moran’s I Z-Statistic

2006 0.178*** 4.536 2013 0.221*** 5.626

2007 0.176*** 4.496 2014 0.188*** 4.802

2008 0.186*** 4.749 2015 0.252*** 6.392

2009 0.198*** 5.050 2016 0.259*** 6.571

2010 0.210*** 5.343 2017 0.241*** 6.125

2011 0.192*** 4.894 2018 0.255*** 6.470

2012 0.198*** 5.058 2019 0.214*** 5.444

Note: 1) Prepared based on the processing results from STATA 16 software. 2) *p < 0.1. **p < 0.05. ***p < 0.01.
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This suggests that when producer services cluster together, they
create beneficial external effects that significantly lower carbon
emission intensity in urban areas. Moreover, the spatial lag
coefficient ρ is significantly positive, implying a positive spatial
correlation or interdependence of carbon emissions among cities
in China. This observation underscores the importance of regional
collaboration in addressing environmental issues. Further, Wx ×
lnPSA coefficient is not significant, suggesting that the local
development of PSA has minimal influence on carbon emission
reduction in adjacent regions. A possible explanation is that China’s
productive service clusters are predominantly led by government
policies, rather than market forces. This approach has somewhat
affected the clusters’ competitiveness, has not effectively facilitated
the exchange of talent, knowledge, and technology, and has thus
weakened the positive effects on carbon emissions in
neighboring areas.

Regarding the control variables, the inhibitory effects of
increased human capital and physical capital on carbon
emissions are significantly positive. This may be because skilled
individuals and environment-friendly investments contribute to
cleaner production, which, in turn, promotes regional
decarbonization and sustainable development. Foreign direct
investment, economic development, and financial development
significantly increase local carbon emission intensity while
reducing that of neighboring regions. This could be because the
substantial inflow of foreign capital, accelerated economic growth,

and rapid financial expansion collectively consume a large amount
of natural resources, thus negatively impacting the local ecological
environment. However, foreign capital and economic development
can bring advanced knowledge and technology, whichmay spread to
neighboring regions, resulting in a decrease in the carbon emission
intensity of these areas. Environmental regulations may reduce
urban carbon emissions by compelling businesses to use clean
energy sources, adopt emission reduction technologies, and by
raising public awareness of low carbon practices. The
environmental regulation coefficient is not statistically
meaningful, potentially due to the diverse intensity of
environmental regulation enforcement across various cities.

5.3 Robustness test

To confirm the solidity of the aforementioned analysis, the
subsequent methods were employed: (1) Replacing the spatial
weight matrix. Since connections between spatial units may be
influenced by not only geographic distances but also by regional
economic activity, a combined weighting matrix incorporating
geographic location and economic linkages is constructed.
Equation 1 is then re-estimated. The matrix is in the form of
We

ij � (Yi×Yj)/d2ij, with diagonal elements taking 0. Where Yi

and Yj are average values of GDP per capita for city i and j,
respectively, during the observation period. (2) Altering the core

TABLE 3 Baseline results.

OLS SAR SEM SDM SDM [Wx]

lnPSA −0.1406** −0.1383*** −0.1398*** −0.1468*** 0.0096

(−2.33) (−5.31) (−5.33) (−5.61) (0.18)

lnHUM −0.0304 −0.0272* −0.0242* −0.0239* −0.0772***

(−0.85) (−1.92) (−1.70) (−1.70) (−2.91)

lnINV −0.1173*** −0.1125*** −0.1193*** −0.1144*** 0.0308

(−2.91) (−7.50) (−7.63) (−6.65) (1.22)

lnFDI 0.0046 0.0055 0.0069 0.0115* −0.0263***

(0.35) (0.96) (1.18) (1.88) (-2.76)

lnpGDP 0.0486 0.0703* 0.0884** 0.1981*** −0.4439***

(0.49) (1.66) (1.99) (4.04) (-5.79)

lnFD 0.0897 0.1039*** 0.1274*** 0.1674*** −0.4104***

(0.84) (2.58) (3.06) (3.95) (−5.84)

lnER −0.0574* −0.0517*** −0.0548*** −0.0232 −0.0326

(−1.93) (−2.88) (−2.80) (−0.77) (−0.85)

λorρ 0.1315*** 0.1372*** 0.1140***

(5.50) (5.60) (4.71)

Time fixed Y Y Y Y

City fixed Y Y Y Y

N 3,598 3,598 3,598 3,598

Note: t-statistics are presented in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01. This notation applies to all subsequent tables as well.
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independent variable. Narrowing the scope of producer services, and
the main regression model is then retested5. (3) Changing the
dependent variable. Urban carbon emission intensity is
recalculated as per capita carbon emissions, and the main
regression model is reapplied. The outcomes of the robustness
tests are presented in the initial three columns of Table 4,
demonstrating that the impact of PSA on urban carbon emission
intensity is consistent with the findings from the primary model.

To relieve the potential issues of reverse causality and omitted
variables between PSA and carbon emissions intensity, the following
methods are used for endogeneity testing: 1) First-order lag of PSA.
While the likelihood of reverse causality—where urban carbon
emission intensity affects the PSA—is relatively low, it is crucial
to note that elevated carbon emission intensity could negatively
impact the inflow of talent, capital, and technology into urban areas.
This effect, often referred to as the crowding-out effect, could
subsequently influence the degree of PSA. To mitigate potential
bidirectional causation issues, this study substitutes PSA with its
first-order lagged value and retest the main model. 2) Instrumental
variable method. This method uses relief amplitude as an
instrumental variable for PSA. Relief amplitude is a crucial factor
in urban construction, as areas with significant relief are unsuitable
for housing and CBD development. Underdeveloped CBDs and
public service infrastructures can further hinder the clustering of
high-tech industries. Moreover, relief amplitude is sufficiently
exogenous to serve as an instrumental variable and does not
directly impact urban carbon emissions intensity. 3) A dynamic
SDM. The dynamic panel model includes the core dependent
variable’s value from the previous period as a regressor. Since the
lagged dependent variable captures the influence of unaccounted
variables, accounting for it mitigates the bias due to omitted
variables to a certain degree. The regression outcomes, detailed in
the final three columns of Table 4, illustrate that after addressing a

range of endogeneity issues, PSA continues to be a significant
element in diminishing urban carbon emission intensity.

5.4 Heterogeneity test

The above empirical analysis shows that PSA can notably reduce
the intensity of urban carbon emissions. However, it is crucial to
acknowledge that cities in China vary in size and do not follow the
same development path. To account for these differences, the
following heterogeneity tests are conducted.

5.4.1 Variations in resource dependency
China is a vast country with diverse resource endowments across

regions, and the developmental paths of cities rich in resources differ
significantly from those lacking them. In line with the classification
provided by the National Sustainable Development Plan for Resource
Cities (2013–2020), this study categorizes the sample of 257 cities into
99 resource-based and 158 non-resource-based cities. Table 5 reveals
that in non-resource-based cities, PSA notably reduces carbon emission
intensity. However, this positive effect is not as prominent in resource-
based cities. This difference can be attributed to two factors. First,
resource-based cities are less constrained by natural resources, resulting
in insufficient motivation to improve energy efficiency. Second,
resource-rich areas tend to develop resource-intensive industries and
have formed path dependence, resulting in low efficiency of structural
adjustment. These two factors together impede the carbon reduction
process in resource-based cities.

5.4.2 Variations in city size
The impact of PSA varies with the size of the city. Following the

Notice on Adjustment of City Size Classification Criteria issued by the
State Council in 2014, sample cities are divided into four groups
based on the number of permanent residents within each city’s
municipal district at the end of the year. These groups include large
cities I (with populations of 3 million and above), large cities II (with
populations ranging from 1 million to 3 million), medium-sized
cities (with populations between 5,00,000 and 1 million), and small
cities (with populations of 5,00,000 and below).

As depicted in Table 5, PSA can substantially decrease the
carbon emission intensity in medium and large cities. Conversely,
it appears to increase the same in small cities. This discrepancy may

TABLE 4 Robustness of baseline results.

(1) (2) (3) (4) (5) (6)

lnPSA −0.1384*** −0.1086*** −0.1438*** −0.1154*** −0.1403*** −0.0349*

(-5.32) (−4.78) (−5.54) (−4.19) (−5.10) (−1.94)

ρ 0.1525*** 0.1108*** 0.1076*** 0.1114*** 0.0534***

(4.01) (4.57) (4.38) (4.38) (2.71)

Controls Y Y Y Y Y Y

Time fixed Y Y Y Y Y Y

City fixed Y Y Y Y Y Y

N 3,598 3,598 3,598 3,341 3,598 3,341

5 Only five producer service sectors are considered here, they are:

transportation, warehousing and postal services; information

transmission, computer services and software industry; financial

industry; rental and business services industry; scientific research,

technology services and geological exploration industry.
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be due to the insufficient market size in small cities, which prevents
the formation of a “clustering effect.” Additionally, small cities often
suffer from duplicated construction and low-level infrastructure
development. This results in resource misallocation and efficiency
distortion, which in turn increases the carbon emission intensity. As
a city expands in size, the total demand for producer services also
increases. As a result, PSA exerts a more significant influence in
curbing carbon emissions. It’s important to highlight that in large
cities I, the advantageous impact of PSA has lessened. Gao and Yuan
(2020) argue that this is because the agglomeration of inefficient and
homogeneous producer service enterprises in mega-cities leads to
resource congestion and energy waste, which ultimately undermines
the effectiveness of carbon emission reduction efforts.

5.5 Mechanism test

5.5.1 Energy efficiency improvement
PSA actively promotes the sharing of knowledge and the spread

of technology, encouraging regions to adopt cleaner production
technologies to optimize their energy use. Moreover, the centralized
production approach leads to economies of scale, which, in turn,
reduce the resource input required for each unit of output,
consequently enhancing regional energy efficiency. Heterogeneity
analysis demonstrates that PSA’s effect on curbing carbon emissions
is more pronounced in cities that do not rely on natural resources.
The mechanism of energy efficiency is probably a crucial factor in
this observed phenomenon.

The significant role of energy efficiency in influencing carbon
emission levels is underscored. To this end, Table 6 offers a detailed
regression analysis that isolates and examines the impact of PSA on
energy efficiency. Column 1) reveals the impact of PSA on total-
factor energy efficiency. The coefficient of PSA indicates that a 1%
increase in PSA can enhance total-factor energy efficiency by
0.0815%. In Column 2), single-factor energy efficiency is
examined in place of total-factor energy efficiency. This measure
of energy efficiency is quantified by the amount of standard coal
consumed per unit of GDP, commonly referred to as energy
intensity (SE). The results indicate that with a 1% rise in PSA,

the energy input per unit of output decreases by 0.0854%.
Furthermore, the SMB-GML method is employed to calculate the
green total factor productivity (GTFP) of each city. This
measurement employs the same inputs and outputs as those used
in the assessment of total-factor energy efficiency. GTFP is then
decomposed into technical progress (TC) and technical efficiency
(EC). Technical efficiency (EC) reflects changes in efficiency
resulting from alterations in management, technology, production
scale, and other factors, providing a comprehensive assessment of
resource efficiency. Technical efficiency (EC) is regressed in Column
3), and the conclusions remain consistent. This implies that PSA can
effectively enhance energy efficiency, thus Hypothesis 1 is verified.

5.5.2 Industrial structure adjustment
The adjustment of industrial structure involves two aspects.

Firstly, it entails the transition of the dominant industry from the
primary sector to the secondary and tertiary sectors within the three
major industry categories. Secondly, it involves the replacement of
outdated technologies with high-tech alternatives within each
industry. A significant amount of research has confirmed the
beneficial effect of industrial structure modification on reducing
carbon emissions. Therefore, this work reports only the effect of PSA
on industrial structure adjustment.

TABLE 5 Heterogeneous impacts.

Resource-based city City size

Yes No Small cities Medium-sized cities Large cities II Large cities I

lnPSA −0.0365 −0.1901*** 0.1667** −0.1408*** −0.2101*** −0.1102*

(−0.87) (−5.76) (2.01) (−2.66) (−5.77) (−1.91)

ρ 0.0605** 0.0419 0.0599 0.0770** 0.1948*** 0.1042**

(1.98) (1.56) (1.31) (2.46) (6.87) (2.03)

Controls Y Y Y Y Y Y

Time fixed Y Y Y Y Y Y

City fixed Y Y Y Y Y Y

N 1,386 2,212 336 1,050 1708 504

TABLE 6 Results of the mechanism test for energy efficiency.

lnTE lnSE lnEC

lnPSA 0.0815*** −0.0854** 0.0455**

(3.92) (−2.46) (2.22)

ρ 0.2721*** 0.0918*** 0.2245***

(12.72) (3.83) (10.17)

Controls Y Y Y

Time fixed Y Y Y

City fixed Y Y Y

N 3,598 3,598 3,598
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Table 7 shows that the coefficient of PSA is positive at the 1%
level when the dependent variable is the industrial structure
rationalization index (SR). This result remains consistent when
SR is advanced by one period. This suggests that PSA helps to
intensify market competition, reduce transaction costs, and promote
the effective allocation of production factors within and across
industries, thereby promoting the economy towards a more
rational industrial structure. Meanwhile, PSA can enhance the
division of labor, optimize the business environment, and attract
highly skilled talent. This significantly bolsters the modernization of
conventional industries and the growth of emerging industries,
thereby increasing the magnitude of regional industrial
restructuring. Replacing the dependent variable with the
industrial structure adjustment amplitude (HD), the results
indicate that with each 1% rise in PSA, the industrial structure
adjustment amplitude increases by 0.0411%. This suggests that PSA
can accelerate economic structure transformation. Hypothesis 2
is verified.

6 Conclusion

This study utilizes data from 257 Chinese cities between
2006 and 2019, and applies a spatial econometric model to
explore how PSA impacts the intensity of urban carbon
emissions. The results indicate that spatial spillover effects are
crucial to understanding patterns of carbon emissions, with high-
emission regions often adjacent to others with similarly high levels.
PSA can significantly decrease the intensity of local carbon
emissions by promoting energy efficiency and refining the
industrial structure. However, the absence of effective
mechanisms for skill and technology exchange between regions
limits the broader impact of local PSA on surrounding area
emissions. When considering variations between cities, cities rich
in resources may have developed a kind of path dependence, which
diminishes the mitigation effects of PSA. Meanwhile, smaller cities
might suffer from the duplicated and low-level of construction,
leading to an increase in carbon emission intensity. Consequently,
the positive effects of PSA on reducing carbon emissions are more
evident in non-resource-based cities, as well as in medium-sized and
Type II large cities.

These findings yield several significant policy implications.
First, there should be a focus on the regional overflow
consequences of carbon emissions. Environmental governance
framework should break through the restrictions of
administrative boundaries, explore a collaborative approach to
air pollution management across cities, and promote regional
linkage for the transition to low-carbon cities. Second, market
mechanisms should be adhered to as the main driver,
supplemented by government policy support, to strengthen the
construction of producer services clusters. Establish an
educational and training cooperation network within the
region, promote the circulation of expertise and technological
interchange, and accelerate the promotion and application of
low-carbon technologies. Third, enhance the sharing of
information and infrastructure within clusters to form a scaled
factor market and promote energy efficiency improvements. At
the same time, optimize the quality of producer services,
continuously innovate services and products, and elevate the
producer services industry from low-end to high-end, promoting
industrial structure optimization. Fourth, formulate
differentiated low-carbon development plans according to city
types. Resource-based cities can reduce their dependence on
traditional resources by introducing and developing circular
economies and clean energy industries. Meanwhile, large cities
should control the excessive expansion of the producer services
industry to avoid redundant construction, whereas medium-
sized cities can accept the industrial transfer from large cities
by establishing industrial parks, business centers, and other
means. Small cities can develop suitable clusters for producer
services by identifying their unique advantages and potential for
development. For example, they can become outsourcing centers
for specific service businesses or develop into professional service
centers for certain industries. Such strategies can prevent the
environmental negative impacts that may arise from blindly
developing clusters of producer services.

It should be noted that this study has certain limitations,
primarily due to the difficulty of acquiring data. The research
relies chiefly on a sample of urban macro data for empirical
analysis. Moreover, data concerning the number of people
employed in various industries in Chinese cities post-2020 is
unavailable, which may affect the timeliness and relevance of the
policy implications derived from this study. Looking towards
future research directions, the COVID-19 pandemic has
popularized the remote work model, which could potentially
change the agglomeration patterns of productive service
industries, thereby indirectly affecting the intensity of urban
carbon emissions. On the one hand, with the spread of remote
work, employees no longer need to be in the same location to
perform their jobs. This could significantly decrease the demand
for commuting, potentially reducing urban traffic carbon
emissions. On the other hand, remote work may increase the
reliance on data centers, which could, in turn, increase their
energy use and thereby elevate carbon emissions. The specific
effects of these impacts may vary depending on the region and the
industry. Therefore, more research is necessary to more
comprehensively understand the impact of these changes on
carbon emissions.

TABLE 7 Results of the mechanism test for structural adjustment.

lnSRt lnSRt+1 lnHDt lnHDt+1

lnPSA 0.2757*** 0.2158*** 0.0411*** 0.0156*

(5.09) (3.70) (4.85) (1.68)

ρ 0.2389*** 0.2262* 0.1313*** 0.1391***

(10.61) (1.88) (5.33) (5.41)

Controls Y Y Y Y

Time fixed Y Y Y Y

City fixed Y Y Y Y

N 3,598 3,341 3,598 3,341

Frontiers in Environmental Science frontiersin.org10

Zhu 10.3389/fenvs.2024.1458029

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1458029


Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: China City Statistical Yearbook.

Author contributions

SZ: Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Akram, R., Chen, F., Khalid, F., Ye, Z., and Majeed, M. T. (2020). Heterogeneous
effects of energy efficiency and renewable energy on carbon emissions: evidence from
developing countries. J. Clean. Prod. 247, 119122. doi:10.1016/j.jclepro.2019.119122

Anselin, L., Florax, R., and Rey, S. J. (2013). Advances in spatial econometrics:
methodology, tools and applications. New York: Springer.

Cai, H., and Xu, Y. (2017). Does trade openness affect the upgrading of China’s
industrial structure? J. Quant. Tech. Econ. 34, 3–22. doi:10.13653/j.cnki.jqte.2017.10.001

Chen, X., and Lin, B. (2021). Towards carbon neutrality by implementing carbon
emissions trading scheme: policy evaluation in China. En. Pol. 157, 112510. doi:10.1016/
j.enpol.2021.112510

Chen, Y., and Liu, Y. (2021). How biased technological progress sustainably improve
the energy efficiency: an empirical research of manufacturing industry in China. Energy
230, 120823. doi:10.1016/j.energy.2021.120823

Dong, F., Zhu, J., Li, Y., Chen, Y., Gao, Y., Hu, M., et al. (2022a). How green
technology innovation affects carbon emission efficiency: evidence from developed
countries proposing carbon neutrality targets. Environ. Sci. Pollut. Res. 29 (24),
35780–35799. doi:10.1007/s11356-022-18581-9

Dong, Z., Xia, C., Fang, K., and Zhang, W. (2022). Effect of the carbon emissions
trading policy on the co-benefits of carbon emissions reduction and air pollution
control. En. Pol. 165, 112998. doi:10.1016/j.enpol.2022.112998

Dou, Y., Zhao, J., Malik, M. N., and Dong, K. (2021). Assessing the impact of trade
openness on CO2 emissions: evidence from China-Japan-ROK FTA countries.
J. Environ. Manag. 296, 113241. doi:10.1016/j.jenvman.2021.113241

Du, M., and Zhang, Y. J. (2023). The impact of producer services agglomeration on
green economic development: evidence from 278 Chinese cities. Energy Econ. 106769,
106769. doi:10.1016/j.eneco.2023.106769

Elhorst, J. P. (2014). Matlab software for spatial panels. Int. Reg. Sci. Rev. 37 (3),
389–405. doi:10.1177/0160017612452429

Fan, F., Dai, S., Yang, B., and Ke, H. (2023). Urban density, directed technological
change, and carbon intensity: an empirical study based on Chinese cities. Technol. Soc.
72, 102151. doi:10.1016/j.techsoc.2022.102151

Fang, G., Gao, Z., Tian, L., and Fu, M. (2022). What drives urban carbon emission
efficiency? - Spatial analysis based on nighttime light data. Appl. Energ. 312, 118772.
doi:10.1016/j.apenergy.2022.118772

Fang, H., and Zhao, S. (2021). Has the belt and road initiative promoted the upgrading
of China’s industrial structure? A difference-in-differences test based on 285 cities of
China. Econ. Res. 1, 29–42. doi:10.13269/j.cnki.ier.2021.01.003

Findeisen, S., and Südekum, J. (2008). Industry churning and the evolution of cities:
evidence for Germany. J. Urban Econ. 64 (2), 326–339. doi:10.1016/j.jue.2008.02.003

Gao, K., and Yuan, Y. (2020). Research on resource misallocation effect of producer
services agglomeration from the perspective of space. Mod. Econ. Sci. 42 (6), 108–119.

Gao, X., Lu, C., and Mao, J. (2020). Effects of urban producer service industry
agglomeration on export technological complexity of manufacturing in China. Entropy
22 (10), 1108. doi:10.3390/e22101108

Glaeser, E. L. (1999). Learning in cities. J. Urban Econ. 46 (2), 254–277. doi:10.1006/
juec.1998.2121

Glaeser, E. L., and Kahn, M. E. (2010). The greenness of cities: carbon dioxide
emissions and urban development. J. Urban Econ. 67 (3), 404–418. doi:10.1016/j.jue.
2009.11.006

Grubel, H., and Walker, M. (1989). Service industry growth: causes and effects.
London: Fraser Institute.

Han, Y., Huang, L., and Wang, X. (2017). Do industrial policies promote industrial
structure upgrading? Theory and evidence from China’s development-oriented local
government. Econ. Res. J. 52 (8), 33–48.

He, W., Zhang, H., Chen, X., and Yan, J. (2019). An empirical study on population
density, economic agglomeration and carbon emission state of Chinese provinces: from
the perspective of agglomeration economy effects, congestion effects and spatial effects.
Nankai Econ. Stud. 2, 207. doi:10.14116/j.nkes.2019.02.011

He, Y., Liao, N., and Lin, K. (2021). Can China’s industrial sector achieve energy
conservation and emission reduction goals dominated by energy efficiency
enhancement? A multi-objective optimization approach. En. Pol. 149, 112108.
doi:10.1016/j.enpol.2020.112108

Jin, Z., Li, Z., and Yang,M. (2022). Producer services development andmanufacturing
carbon intensity: evidence from an international perspective. En. Pol. 170, 113253.
doi:10.1016/j.enpol.2022.113253

Lan, F., Sun, L., and Pu, W. (2021). Research on the influence of manufacturing
agglomeration modes on regional carbon emission and spatial effect in China. Econ.
Model. 96, 346–352. doi:10.1016/j.econmod.2020.03.016

LeSage, J., and Pace, R. K. (2009). Introduction to spatial econometrics. New York:
CRC Press, Taylor and Francis Group.

Li, K., and Lin, B. (2018). How to promote energy efficiency through technological
progress in China? Energy 143, 812–821. doi:10.1016/j.energy.2017.11.047

Li, R., Li, L., and Wang, Q. (2022a). The impact of energy efficiency on carbon
emissions: evidence from the transportation sector in Chinese 30 provinces. Sustain.
Cities Soc. 82, 103880. doi:10.1016/j.scs.2022.103880

Li, W., Zhang, Y., Yang, C., Gong, W., Wang, C., and Zhang, R. (2022b). Does
producer services agglomeration improve urban green development performance of the
Yangtze River Economic Belt in China? Ecol. Indic. 145, 109581. doi:10.1016/j.ecolind.
2022.109581

Liu, X., Zhang, X., and Sun, W. (2022). Does the agglomeration of urban producer
services promote carbon efficiency of manufacturing industry? Land Use Policy 120,
106264. doi:10.1016/j.landusepol.2022.106264

Mahapatra, B., and Irfan, M. (2021). Asymmetric impacts of energy efficiency on
carbon emissions: a comparative analysis between developed and developing
economies. Energy 227, 120485. doi:10.1016/j.energy.2021.120485

Marshall, A., and Guillebaud, C. W. (1961). Principles of economics: an introductory
volume. London: Macmillan.

Meng, X. N., and Xu, S. C. (2022). Can industrial collaborative agglomeration reduce
carbon intensity? Empirical evidence based on Chinese provincial panel data. Environ.
Sci. Pollut. Res. 29 (40), 61012–61026. doi:10.1007/s11356-022-20191-4

Proque, A. L., dos Santos, G. F., Junior, A. A. B., and Larson, W. D. (2020).
Effects of land use and transportation policies on the spatial distribution of urban
energy consumption in Brazil. Energy Econ. 90, 104864. doi:10.1016/j.eneco.2020.
104864

Shan, Y., Liu, J., Liu, Z., Shao, S., and Guan, D. (2019). An emissions-socioeconomic
inventory of Chinese cities. Sci. Data. 6 (1), 190027. doi:10.1038/sdata.2019.27

Suki, N. M., Suki, N. M., Sharif, A., Afshan, S., and Jermsittiparsert, K. (2022). The role
of technology innovation and renewable energy in reducing environmental degradation

Frontiers in Environmental Science frontiersin.org11

Zhu 10.3389/fenvs.2024.1458029

https://doi.org/10.1016/j.jclepro.2019.119122
https://doi.org/10.13653/j.cnki.jqte.2017.10.001
https://doi.org/10.1016/j.enpol.2021.112510
https://doi.org/10.1016/j.enpol.2021.112510
https://doi.org/10.1016/j.energy.2021.120823
https://doi.org/10.1007/s11356-022-18581-9
https://doi.org/10.1016/j.enpol.2022.112998
https://doi.org/10.1016/j.jenvman.2021.113241
https://doi.org/10.1016/j.eneco.2023.106769
https://doi.org/10.1177/0160017612452429
https://doi.org/10.1016/j.techsoc.2022.102151
https://doi.org/10.1016/j.apenergy.2022.118772
https://doi.org/10.13269/j.cnki.ier.2021.01.003
https://doi.org/10.1016/j.jue.2008.02.003
https://doi.org/10.3390/e22101108
https://doi.org/10.1006/juec.1998.2121
https://doi.org/10.1006/juec.1998.2121
https://doi.org/10.1016/j.jue.2009.11.006
https://doi.org/10.1016/j.jue.2009.11.006
https://doi.org/10.14116/j.nkes.2019.02.011
https://doi.org/10.1016/j.enpol.2020.112108
https://doi.org/10.1016/j.enpol.2022.113253
https://doi.org/10.1016/j.econmod.2020.03.016
https://doi.org/10.1016/j.energy.2017.11.047
https://doi.org/10.1016/j.scs.2022.103880
https://doi.org/10.1016/j.ecolind.2022.109581
https://doi.org/10.1016/j.ecolind.2022.109581
https://doi.org/10.1016/j.landusepol.2022.106264
https://doi.org/10.1016/j.energy.2021.120485
https://doi.org/10.1007/s11356-022-20191-4
https://doi.org/10.1016/j.eneco.2020.104864
https://doi.org/10.1016/j.eneco.2020.104864
https://doi.org/10.1038/sdata.2019.27
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1458029


in Malaysia: a step towards sustainable environment. Renew. Energ. 182, 245–253.
doi:10.1016/j.renene.2021.10.007

Sun, S., and Li, X. (2022). Productive services agglomeration, financial development
and regional innovation efficiency in the Yangtze River Economic Zone. FRL 50,
103221. doi:10.1016/j.frl.2022.103221

Wang, Q., Zhang, F., and Li, R. (2024). Free trade and carbon emissions revisited: the
asymmetric impacts of trade diversification and trade openness. Sustain. Dev. 32 (1),
876–901. doi:10.1002/sd.2703

Wang, W. Z., Liu, L. C., Liao, H., and Wei, Y. M. (2021). Impacts of urbanization on
carbon emissions: an empirical analysis from OECD countries. En. Pol. 151, 112171.
doi:10.1016/j.enpol.2021.112171

Wu, J., and Guo, Z. (2016). Research on the convergence of carbon dioxide emissions
in China: a continuous dynamic distribution approach. Stat. Res. 33 (1), 54–60. doi:10.
19343/j.cnki.11-1302/c.2016.01.008

Wu, J., Xu, H., and Tang, K. (2021a). Industrial agglomeration, CO2 emissions and
regional development programs: a decomposition analysis based on 286 Chinese cities.
Energy 225, 120239. doi:10.1016/j.energy.2021.120239

Wu, L., Sun, L., Qi, P., Ren, X., and Sun, X. (2021b). Energy endowment, industrial
structure upgrading, and CO2 emissions in China: revisiting resource curse in the
context of carbon emissions. Resour. Policy. 74, 102329. doi:10.1016/j.resourpol.2021.
102329

Xiao, Y., Huang, H., Qian, X. M., Zhang, L. Y., and An, B. W. (2023). Can new-type
urbanization reduce urban building carbon emissions? New evidence from China.
Sustain. Cities Soc. 90, 104410. doi:10.1016/j.scs.2023.104410

Xiao, Y., Xu, Y., Li, M., Wang, Y., and Chen, W. (2024). Does the integration of
manufacturing and producer services improve carbon emission efficiency? Clean.
Technol. Environ. Policy. 26 (5), 1603–1619. doi:10.1007/s10098-023-02567-3

Xu, H., Liu, W., and Zhang, D. (2023). Exploring the role of co-agglomeration of
manufacturing and producer services on carbon productivity: an empirical study of
282 cities in China. J. Clean. Prod. 399, 136674. doi:10.1016/j.jclepro.2023.136674

Yang, Z., and Shen, Y. (2023). The impact of intelligent manufacturing on industrial
green total factor productivity and its multiple mechanisms. Front. Environ. Sci. 10.
doi:10.3389/fenvs.2022.1058664

Yu, X., Chen, H., Wang, B., Wang, R., and Shan, Y. (2018). Driving forces of
CO2 emissions and mitigation strategies of China’s national low carbon pilot industrial
parks. Appl. Energ. 212, 1553–1562. doi:10.1016/j.apenergy.2017.12.114

Zeng, W., Li, L., and Huang, Y. (2021). Industrial collaborative agglomeration,
marketization, and green innovation: evidence from China’s provincial panel data.
J. Clean. Prod. 279, 123598. doi:10.1016/j.jclepro.2020.123598

Zhao, J., Dong, X., and Dong, K. (2021). How does producer services’ agglomeration
promote carbon reduction? the case of China. Econ. Model. 104, 105624. doi:10.1016/j.
econmod.2021.105624

Zhao, J., Jiang, Q., Dong, X., Dong, K., and Jiang, H. (2022). Industrial structure
adjustment and CO₂ emissions reduction: a spatial and mediation effects analysis for
China. Energy Econ. 105, 105704. doi:10.1016/j.eneco.2021.105704

Zhu, X. (2022). Have carbon emissions been reduced due to the upgrading of industrial
structure? Analysis of the mediating effect based on technological innovation. Environ. Sci.
Pollut. Res. 29 (36), 54890–54901. doi:10.1007/s11356-022-19722-w

Frontiers in Environmental Science frontiersin.org12

Zhu 10.3389/fenvs.2024.1458029

https://doi.org/10.1016/j.renene.2021.10.007
https://doi.org/10.1016/j.frl.2022.103221
https://doi.org/10.1002/sd.2703
https://doi.org/10.1016/j.enpol.2021.112171
https://doi.org/10.19343/j.cnki.11-1302/c.2016.01.008
https://doi.org/10.19343/j.cnki.11-1302/c.2016.01.008
https://doi.org/10.1016/j.energy.2021.120239
https://doi.org/10.1016/j.resourpol.2021.102329
https://doi.org/10.1016/j.resourpol.2021.102329
https://doi.org/10.1016/j.scs.2023.104410
https://doi.org/10.1007/s10098-023-02567-3
https://doi.org/10.1016/j.jclepro.2023.136674
https://doi.org/10.3389/fenvs.2022.1058664
https://doi.org/10.1016/j.apenergy.2017.12.114
https://doi.org/10.1016/j.jclepro.2020.123598
https://doi.org/10.1016/j.econmod.2021.105624
https://doi.org/10.1016/j.econmod.2021.105624
https://doi.org/10.1016/j.eneco.2021.105704
https://doi.org/10.1007/s11356-022-19722-w
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1458029

	Advancing towards a low-carbon urban future in China: the role of producer services agglomeration
	1 Introduction
	2 Literature review
	3 Theoretical analysis
	3.1 PSA and energy efficiency improvement
	3.2 PSA and industrial structure adjustment

	4 Methods and data
	4.1 Model specification
	4.2 Data sources and variable selection
	4.2.1 Dependent variable
	4.2.3.1 Total-factor energy efficiency (TE)
	4.2.3.2 Industrial structure rationalization index (SR)
	4.2.3.3 Industrial structure adjustment magnitude (HD)
	4.2.4 Control variables


	5 Empirical results and analysis
	5.1 Spatial correlation test
	5.2 Regression results and analysis
	5.3 Robustness test
	5.4 Heterogeneity test
	5.4.1 Variations in resource dependency
	5.4.2 Variations in city size

	5.5 Mechanism test
	5.5.1 Energy efficiency improvement
	5.5.2 Industrial structure adjustment


	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


