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Introduction: The Northeast black soil area is an important marketable grain base
in China. However, due to soil erosion, the black soil layer has been gradually
thinning and its quality deteriorating. Therefore, accurately assessing the extent
of soil erosion in this region is essential for the protection and sustainable
utilization of black soil resources.

Methods: In this study, linear and nonlinear models were compared combined
with remote sensing images to invert soil organic carbon (SOC). In the scenario of
SOC change, temporally variable soil erodibility factor were obtained. Then based
on the RUSLE model and GIS technology, land use, rainfall, soil texture and digital
elevation model (DEM) were used to evaluate the temporal and spatial variation
characteristics of soil erosion in black soil region from 1995 to 2020 inHulan River
Basin. The main influencing factors were explored by random forest model and
analyzes in combination with eco-geological.

Results: The findings are as follows: The random forest (RF) model was optimal
for SOC inversion (2020: R2 = 0.64, RMSE = 0.70, 2010: R2 = 0.66, RMSE = 0.35).
The erosion intensity was mainly slight or mild while mean annual soil loss firstly
decreased then increased from 1995 to 2020 reaching a rate of 1020.16 t km−2 y−1

by 2020. Rainfall and topography were the main driving factors of soil
conservation changes, and soil erosion was more likely to occur in the eco-
geological environment of the neutral rock hilly woodland area.

Discussion: The results provide insights into spatial distribution characteristics of
black soils erosion which are crucial for preventing further degradation and
ensuring national food security.
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1 Introduction

The concentration and fertility of black soil resources in
northeast China are pivotal for ensuring food and ecological
security. However, extensive land reclamation and transitional
development have resulted in soil erosion in the region,
exacerbated by the unique topography of the floodplain. Soil
erosion not only alters the physical environmental conditions of
black soil and depletes soil nutrients but also leads to reduced grain
production, deterioration of the ecological environment, water
pollution, and severe constraints on land productivity and
regional ecosystem services (Wang, F. et al., 2022; Qin and
Wang, 2011; Zhu, Y., 2021; Han and Li, 2018; Yang, F. et al.,
2018). Since the 1950s, there has been a significant decrease in
average black soil thickness by approximately 40 cm (Wang S. et al.,
2023; Huang et al., 2019). Therefore, it is of great significance to
grasp the situation of black soil erosion and evaluate the spatial
distribution characteristics of soil erosion for preventing
degradation of black soil and ensuring national food security. At
the same time, the analysis of soil erosion offers valuable insights
into the investigation of regional tectonic environmental activities.
Because the activities of geological structures can trigger local
geomorphological changes, such as slope incisions, river terraces,
water system turning, and deep valleys. These alterations contribute
to the occurrence or exacerbation of soil erosion. And the erosion
intensity serves as the most effective indicator for evaluating regional
denudation, indirectly reflecting the characteristics of micro-
geomorphological changes resulting from regional tectonic
activities. Therefore, the study of soil erosion holds significant
importance in assessing tectonic evolution and the development
of river hydrology (Ghosh and Kundu, 2025).

Various models incorporating land use, soil texture,
geomorphology, vegetation, and climate data have been developed
both in China and abroad to predict and quantify soil erosion, such
as the universal soil loss equation (USLE), the revised universal soil loss
equation (RUSLE), Chinese Soil Loss Equation (CSLE), the water
erosion prediction project, etc. Among these models, RUSLE stands
out due to its easily obtainable parameters with high precision, making
it widely used for assessing soil erosion in watershed areas and black soil
regions (Hu et al., 2018; Ren et al., 2015; Xiong et al., 2023; Singh et al.,
2023; E, 2015). Wang T. et al. (2023) conducted a spatial-temporal
analysis of soil erosion in the typical black soil region of BinxianCounty,
Heilongjiang Province from 2000 to 2020 using the RUSLE soil erosion
equation. E. (2015) examined the spatial-temporal pattern and
evolution process of soil erosion in WuYuer river from 1980 to
2010, while also analyzing the main driving factors of regional soil
erosion based on the theories of soil erosion and landscape ecology. The
results revealed that non-irrigated farmland located at elevations
ranging from 150 to 200 m with slopes between 5 and 15°

experienced the most severe levels of soil erosion. Additionally, Wei
et al. (2006) simulated soil erosion and studied the relationship between
landscape index and erosion modulus by correlation analysis and
multiple regression based on RUSLE of GIS.

The RUSLE model contains rainfall erosion (R) factor,
topographic (LS) factor, the land cover (C) factor, soil erodibility
(K) factor and conservation measure (P) factor. The soil erodibility
factor reflects the difficulty of soil dispersion and transportation
(Tian et al., 2023). Previous studies on dynamic changes in soil

erosion have predominantly relied on the World Soil Database
(HWSD) for K factor calculations (Xue et al., 2018). However,
with the intervention of human factors such as conservation
tillage and afforestation, the content of organic carbon in soil has
changed (Shi, W. et al., 2023). By solely utilizing one-time organic
carbon information to simulate dynamic changes in soil erosion, the
significance of soil erodibility in soil and water conservation may be
overlooked (Tian et al., 2023). Therefore, it is necessary to
dynamically evaluate the soil organic carbon (SOC) content to
accurately determine erosion conditions.

This study utilized the Hulan River Basin as the research area
and employed remote sensing inversion to obtain dynamic SOC
content. Subsequently, by employing the RF and RUSLE models, we
analyzed the spatial and temporal patterns as well as the
evolutionary processes of soil erosion in a typical black soil area
for 1995, 2010, and 2020. Additionally, we investigated the primary
factors influencing soil erosion while exploring changes in erosion
characteristics under eco-geological conditions. These findings
provide valuable scientific insights for effective soil erosion
control and sustainable soil and water conservation practices.

2 Materials and methods

2.1 Study area

The Hulan River Basin is located in the eastern Songnen Plain,
central Heilongjiang Province, China (Figure 1). It serves as a
primary tributary of the left bank of the Songhua River and
receives inflows from the Nuoming River and Tongken River
originating from Hulan City, Harbin. It is a fan-shaped branch
with high terrain in the northeast and low in the southwest (Xu, H.,
2020; Wang et al., 2015; Zhou et al., 2018). The study area with a
total area of 38,719 km2 covers parts of Harbin, Heihe, Suihua and
Yichun with the geographic location between 45°36′-48°6′north
latitudes and 125°23′-128° 43′east longitude (Figure 1). The
average annual temperature ranges from 0°C to 3°C within the
Hulan River Basin. The main soil types in the study area are
black soil, black calcium soil, meadow soil and dark brown earth
among which the black soil area is the largest, totaling 10,291 km2.
These fertile soil conditions have facilitated rapid development
within the agricultural sector in this region.

2.2 Data and materials

2.2.1 Meteorological data
The meteorological data utilized in this study comprised

monthly average precipitation data at a 1 km resolution for the
years 1995, 2010, and 2020 obtained from the National Tibetan
Plateau Data Centre. Additionally, annual rainfall was derived
through raster calculation.

2.2.2 Soil texture data
Soil texture data was obtained from the World Soil Database

HWSD. The soil organic carbon (SOC) content in 1995 came from
the second national soil survey in China, 2010 and 2020 were
estimated through inversion of measured data.

Frontiers in Environmental Science frontiersin.org02

Chen et al. 10.3389/fenvs.2024.1455737

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1455737


2.2.3 DEM data
30 m resolution topographic data (SRTM DEM) were obtained

from Geospatial Data Cloud.

2.2.4 Vegetation cover data
The vegetation cover data at a resolution of 250 m were acquired

from the data center of the Institute of Resources and Environment,
Chinese Academy of Sciences.

2.2.5 Land use land cover data
Land use data were also obtained from the data center of the

Institute of Resources and Environment, Chinese Academy of
Sciences. It was generated by manual visual interpretation based
on Landsat. And the data format was vector data.

2.2.6 Remote sensing images
This study utilized Landsat 8 and Landsat 5 images from the

USGS Earth Explorer website, captured in October 2010 and 2020.
In order to improve the accuracy of SOC inversion, radiometric
calibration and atmospheric correction were carried out on the
images (Jiang, S. et al., 2022; Dai et al., 2023).

2.2.7 Soil sample collection
Wecarried out surface soil samples (0–20 cm) campaign in this area,

collecting 2,645 soil samples in 2020 and 3,702 soil samples in 2010 at a
density of one point per square kilometer. Following the combination of
every four original samples, they were naturally air-dried and sieved
through a 20-mesh nylon sieve. The organic carbon content was

determined using the potassium dichromate-external heating method.
Subsequently, the samples were randomly divided into training and
validation sets with a ratio of three to one. Detailed information can be
found in Table 1, while Figure 2 illustrates their spatial distribution.

2.3 Methods

In this study, the RUSLE model (including R, K, LS, C and P
factor) was used to simulate the soil erosion in the black soil area
from 1995 to 2020. The SOC within the K factor was determined
through a comparison between measured soil sample data and
remote sensing imagery using linear and nonlinear models for
inversion. The random forest algorithm was used to explore the
main controlling factors affecting soil erosion in black soil, and the

FIGURE 1
Hulan River Basin elevation and location map. (A) The location of the Hulan River Basin in Heilongjiang Province; and (B) The elevation map of the
Hulan River Basin.

TABLE 1 Descriptive statistics of SOC (%).

Year Sample set Number Range Mean

2010 Testing 2,777 0.3–9.3 1.8

Validation 925 0.23–9.8 1.83

Entire 3,702 0.23–9.8 1.82

2020 Testing 1984 1.28–11.5 2.95

Validation 661 1.48–12.5 2.84

Entire 2,645 1.28–12.5 2.93
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analysis was carried out in combination with the eco-logical and
geological conditions. The flowchart is shown in Figure 3.

2.3.1 Estimation of SOC
2.3.1.1 Characteristic wavelength selection

In order to enhance the correlation between the image bands
and SOC, and to enlarge the response characteristics of organic
carbon band, the band reflectance (R) was mathematically
transformed in the study: reciprocal (RC), logarithmic (LG),
first derivative (FD), second derivative (SD), logarithm of
reciprocal (RL), reciprocal logarithmic first-order differential
(ATFD) transformations (Jiang, C.L. et al., 2023; Lu et al., 2020).
Correlation analysis is commonly employed for feature band
extraction, with Pearson correlation analysis primarily used to
assess the strength and direction of linear relationships between
two variables. However, soil spectral reflectance and SOC
content often exhibit more complex relationships beyond
simple linearity, which may lead to insufficient explanation
when applying linear models for SOC inversion purposes (Jia
et al., 2023). Therefore, random forest (RF) was used to select the
response bands of SOC in the study. RF is a machine learning
algorithm based on classification tree (Breiman, 2001). It can
calculate the importance of independent variables according to

the change of error. The greater the importance value, the
greater the impact on SOC, which is helpful to help us
understand which bands and mathematical transformations
are crucial to the prediction of organic carbon (Chen et al.,
2022; Zhu, Q. et al., 2020). Additionally, RF can also be
employed for identifying factors influencing soil erosion (Cao
et al., 2023).

2.3.1.2 Regression model
In the study of satellite remote sensing prediction SOC, the

modeling methods can be roughly divided into two categories: linear
and nonlinear modeling (Liu, Y.F. et al., 2017; Li, W.Y. et al., 2023).
To ensure the practicality and stability of the remote sensing
inversion model, as well as to build upon previous research
findings, we employed multiple linear regression (MLR) and RF
techniques (Zhao et al., 2019). Model with higher prediction
accuracy was selected for SOC estimation to obtain K factor.

2.3.1.3 Model accuracy and validation
To assess the performance of our model, the accuracy of the

inversion models of the SOC was measured using the determination
coefficient (R2) and root mean square error (RMSE), The calculation
method was as follows (Shi, Y.J. et al., 2022):

FIGURE 2
The distribution of sampling points in Hulan River Basin.
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R2 � 1 −
∑n
i�1

Yi − yi( )2
∑n
i�1

yi − yi( )2 (1)

RMSE �
������������
1
n
∑n
i�1

Yi − yi( )2√
(2)

where yi is the observed value, Yi is the predicted value, yi is the
average value of yi, and n is the sample number.

2.3.2 Soil erosion model
The revised universal soil loss equation (RUSLE) model

proposed in 1997 was used to estimate the actual soil erosion in
the study area (Renard et al., 1997). It has been demonstrated to be
appropriate for the northeast Chinese area with black soil. The
corresponding formula is listed as follows (Ma et al., 2023; Fang and
Fan, 2020; Ning et al., 2023):

A � R · K · LS · C · P (3)
where A is the average annual soil loss (t ha−1 y−1), R is the rainfall
erosivity factor (MJ mm ha−1 h−1 y−1), LS is the topographic factor, C is
the cover management factor, and P is the conservation measure. K is
the erodibility factor of soil (t ha h ha−1 MJ−1 mm−1).

2.3.2.1 Rainfall erosivity (R factor)
Rainfall erosivity refers to the potential ability of rainfall to

induce soil erosion, which is determined by the physical
characteristics of rainfall events (Xu, X.J. et al., 2023; Wang, W.

and Jiao, 1996). The following equation, developed by Wischmeier,
was used in the computation of rainfall erosivity (Arnoldus,1977;
Chen, W. et al., 2023)

R � 17.02 × 10
1.5×log∑12

1

P2
i
P −0.8188( )

(4)
where R is the rainfall erosivity factor (MJ mm ha−1 h−1 y−1), P is the
yearly precipitation (mm) and Pi is the precipitation in the
given month (mm).

2.3.2.2 Soil erodibility (K factor)
Soil erodibility characterizes the difficulty of soil erosion and

reflects the sensitivity of soil to denudation and transportation of
erosion exogenic forces. The value has a high correlation with soil
texture. The Erosion Productivity Impact Model (EPIC)
developed by Willams was used to calculate the K factor
(Williams and Singh, 1995). Its mathematical formulas are
shown in Equations 5, 6:

K� 0.2+0.3exp −0.0256SAN 1−SIL
100

( )[ ]{ }× SIL

CLA+SLA( )0.3

× 1− 0.25C
C+exp 3.72−0.95C( )[ ]× 1− 0.7SN

SN+exp 22.9SN−5.51( )[ ] (5)

SN � 1 − SAN/100 (6)
where SAN, SIL, CLA and C are percentage content of sand, silt,
clay, and organic matter, respectively. The result is an American

FIGURE 3
RUSLE model flowchart.
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unit. So the K value needs to be multi-plied by a conversion factor of
0.1317 in order to convert to the International System (Liu, B.
et al., 2001).

2.3.2.3 Topographic (LS) factor
Topographic (LS) factor reflects the influence of topography

on soil erosion. As the slope becomes longer and steeper, the
water catchment area increases and the water flow speed
increases, which will lead to increased soil erosion. In this
paper, the calculation formula of slope length (L) factor
proposed by Wischmeier and Smith (1978) and the calculation
formula of slope factor (L) proposed by Liu et al. (2000) were
adopted. Combined with DEM information, the LS factor value
was calculated, and the topographic (LS) factor grid layer was
generated. The factor is calculated using these equations
Equations 7–11.

LS � L × S (7)

S �
10.8 × sin θ + 0.03, θ < 5
16.8 × sin θ − 0.50, 5≤ θ < 10
21.9 × sin θ − 0.96, θ ≥ 10

⎧⎪⎨⎪⎩ (8)

L � λ
22.13

( )α

(9)

α � β

β + 1
(10)

β �
sin θ
0.0896

3.0 × sin θ( )0.8 + 0.56
(11)

where L is the slope length factor; S is the slope steepness factor; λ is
the horizontal projected slope length; α is a variable length-slope
exponent; β is a factor that varies with slope gradient; and θ is the
slope angle.

2.3.2.4 Land cover (C) factor
The C factor is used to reflect the effects of vegetation cover and

management measures on soil erosion in the RUSLE model, while
NDVI accurately captures the spatial variability of vegetation cover.
Greater vegetation cover corresponds to reduced risk of soil erosion.
Cai et al. (2000) utilized rainfall observation data within the
watershed to establish a relationship between vegetation cover
and the C factor, a method widely applied in assessing erosion
within watersheds (Equations (12) and (13)) (Ma et al., 2001; Yu
et al., 2006):

FVC � NDVI −NDVImin

NDVImax −NDVImin
(12)

C �
1, FVC � 0
0.6508 − 0.3436lgc
0, FVC≥ 78.3%

⎧⎪⎨⎪⎩ , 0<FVC< 78.3% (13)

where NDVImax is the NDVI value of a fully vegetated area,
NDVImin is the NDVI value for bare soil.

2.3.2.5 Conservation measure (P) factor
The P factor quantifies the erosion rate associated with various

conservation practices. And it characterizes the impact of land use or
farming systems on soil erosion. The P factor ranges from 0 to 1. The
closer the P-value is to 0, themore significant the effect of implementing
soil and water conservation measures are. The survey area was divided

into two categories (agricultural land and non-agricultural land). Non-
agricultural land needs to be combined with the actual situation of the
black soil area and refer to some studies to assign the P factor using the
land use type (Ma et al., 2023; Li, J.L. et al., 2020; Yang, J.J. et al., 2019).
There are primarily three types of protective measures for cultivated
land in the black soil region of northeast China: no-tillage straw
mulching, contour tillage, and ridge tillage (Guo et al., 2013).
However, further investigation is necessary to determine the precise
conservation measures required in different areas. Therefore, in this
study, 0.331 value of cultivated land conservationmeasures inNortheast
black soil area stipulated in “Technical Regulations on Dynamic
Monitoring of Regional Soil Erosion” promulgated by the Ministry
of Water Resources of China was used as the average P-value of
cultivated land in Hulan River Basin (Table 2).

3 Results

3.1 SOC estimation

The remote sensing images and their mathematical
transformation as independent variables, and Soil sample organic
carbon content as the dependent variable were input into the RF
model for important bands sorting (Figure 4). Then, 15 independent
variables with higher influence were selected as the characteristic
bands of SOC inversion for MLR and RF prediction. The model
validation results are shown in Table 3. Comparing linear and
nonlinear models, the R2 of RF in 2010 and 2020 were greater
than the MLR. So RF was chose to estimate SOC. As shown in
Figure 5, SOC ranged from 0.71% to 5.61%, with an average of 2.51%
in 2010 and it ranged from 1.62 to 6.49, with an average of 2.89% in
2020. Combined with the second national soil survey (average
SOC = 2.56%), SOC content increased by 12.9%. Spatially, the
distribution of organic carbon in this area is low in the
southwest and high in the northeast. It is mainly due to the hilly
forest land in the northeast with many plant residues, high altitude
and cold climate, which leads to the slow decomposition of organic
matter and the high organic carbon density of forest soil. The
obtained SOC distribution data were mainly used to calculate the
K factor in 2010 and 2020 in combination with Formula 5.

TABLE 2 Values of soil and water conservation factors.

Land use type Conservation measures P

Forest — 1.0

Grassland — 0.5

Water bodies — 0.0

Urban areas — 0.0

Built-up area — 0.0

Unused land — 0.2

Cultivated land Contour tillage 0.352

No-tillage straw mulching 0.399

Ridge tillage 0.180
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3.2 Spatio-temporal variations of black
soil erosion

3.2.1 Spatio-temporal characteristics of soil
erosion intensity

The soil erosion rate of Hulan River Basin in 1990,2010 and
2020 was calculated by RUSLE. The erosion rate of the Hulan River
Basin showed a trend of decreasing first and then increasing from
1995 to 2020. The average of soil erosion decreased from
762.68 t km-2 y-1 to 662.22 t km-2 y-1, and then increased to
1,020.16 t km-2 y-1, and the soil erosion increased as a whole.
According to the standard for soil erosion gradation and
classification (SL 190–2007) released by the Ministry of Water
Resources, China, the soil erosion intensity in Hulan River Basin
was divided into six grades of micro-degree, where A < 2 is slight; 2 ≤
A < 25 is mild; 25 ≤ A < 50 is moderate; 50 ≤ A < 80 is strong; 80 ≤
A < 150 is very strong; and A ≥ 150 is severe. Table 4 is formed by
area statistics. The area of slight erosion was about 25,882.91 km2 in
1995, increased by 1,166.41 km2 in 2010 and decreased to
24,374.21 km2 in 2020. The average of soil erosion of different
grades decreased first and then increased. Since the slight erosion
rep-resents that the amount of soil erosion is lower than the local soil

loss tolerance, the part that really belongs to soil erosion is the soil
above slight erosion. The area of above slight erosion increased by
12.74% from 1995 to 2020. Therefore, it was generally believed that
the erosiveness of black soil erosion is increased.

Combined with the spatial distribution map of soil erosion grade
(Figure 6), the soil erosion in Hulan River Basin from 1995 to
2020 was mainly slight and mild. More than mild erosion was
mainly distributed in the higher hilly areas. The northern region of
Zhaodong witnessed an increase in areas exhibiting mild erosion
from 1995 to 2010, and it improved significantly from 2010 to 2020.
The degree of soil erosion in other areas of the Hulan River Basin
was slowed down from 1995 to 2010, but the area of erosion
increased after 10 years, and the erosion area spread to the
southwest and northeast.

In order to explore the changes of soil erosion intensity in
different degrees, this paper analyzed and counted the soil erosion
grades from 1995 to 2020, calculated the area of soil erosion intensity
change from 1995 to 2010 and from 2010 to 2020, and generated
Figure 7. The area with constant erosion degree was 32,255.08 km2

from 1995 to 2010, accounting for 85.52% of the whole area. The
area with increased erosion degree was 1763.50 km2, mainly from
slight erosion to mild erosion. From 2010 to 2020, the area with
constant erosion degree in Hulan River Basin was 30,009.46 km2.
Among them, the area with slight erosion degree was the largest,
accounting for 61.96% of the whole area. The area with strong
change in erosion degree was mainly from slight to mild, with a total
of 3,611.94 km2.

Combined with the spatial variation map of soil erosion
intensity (Figure 8), the spatial distribution of soil erosion
intensity in different regions of Hulan River Basin was revealed.
The degree of soil erosion in different regions varied with time. From
1995 to 2010, the soil erosion in the Hulan River Basin was mainly
slowed down, and the aggravated areas were mainly distributed on
both sides of the river gully (Figure 8A). After 10 years, the degree of

FIGURE 4
Bands importance ranking affecting SOC estimation based on RF.

TABLE 3 SOC inversion results.

Year Model Testing set Verification set

R2 RMSE R2 RMSE

2010 RF 0.6641 0.3519 0.5171 0.4021

MLR 0.3532 0.4884 0.3345 0.4925

2020 RF 0.6397 0.7024 0.6216 0.7003

MLR 0.4102 0.8987 0.3781 0.8978
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erosion in the higher geography of Tieli City and other places had
increased significantly (Figure 8B). The degree of soil erosion in
Lanxi-Suihua remained unchanged, and the degree of soil erosion in
Zhaodong slowed down from 1995 to 2020 (Figure 8C). The main
reason was that the land is cultivated land, and the terrain fluctuates
slowly. In recent years, the state had effectively controlled the slope
farmland and achieved special rectification for the surrounding
small watersheds (Zhuang et al., 2006). In addition to the
intensification of erosion in hilly areas, the phenomenon of soil
erosion in Hailun and Suiling were also more obvious. The reason
may be that human activities such as urban expansion in small and
medium-sized cities have caused damage to surface vegetation and
caused changes in regional soil erosion grade intensity.

3.2.2 Effects of ecological environment factors on
soil erosion

In the past, researchers mostly discussed the environmental
dominant factors of soil erosion based on empirical knowledge, and
rarely discussed from the model and the data itself (Liu, X. et al.,
2022; Tan et al., 2023). According to Equation 3, RUSLE is
composed of rainfall erosion factor, slope length–steepness factor,
cover management factor conservation Measure factor and soil
erodibility factor. It includes 20 data such as annual average
rainfall, 12-month monthly average rainfall, sand content, silt
content, clay content, organic carbon content, elevation,
vegetation coverage and land use. Therefore, soil erosion is
related to factors such as rainfall, soil texture, topography,

TABLE 4 Area of different soil erosion levels in the Hulan River Basin from 1995 to 2020 based on RUSLE.

Classification 1995 2010 2020

Area
(km2)

Proportion
(%)

Average
of soil
erosion
(t ha-1

y-1)

Area
(km2)

Proportion
(%)

Average
of soil
erosion
(t ha-1

y-1)

Area
(km2)

Proportion
(%)

Average
of soil
erosion
(t ha-1

y-1)

Sight 25,882.91 68.62 1.65 27,049.33 71.72 1.54 24,374.21 64.62 1.74

Mild 8878.49 23.54 10.12 8008.77 21.23 10.00 9621.64 25.51 10.61

Moderate 1721.05 4.56 36.06 1712.39 4.54 35.85 1,664.68 4.41 36.11

Strong 836.18 2.22 62.48 723.96 1.92 61.85 1,087.49 2.88 63.20

Very strong 382.52 1.01 99.92 216.02 0.57 97.43 837.88 2.22 105.41

Severe 15.75 0.04 169.37 6.45 0.02 165.49 131.00 0.35 180.31

FIGURE 5
Prediction of spatial distribution of SOC in different years using Landsat in the Hulan River Basin. (A) 2020; and (B) 2010.
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vegetation covers and land use. In order to explore the main factors
affecting soil and water loss in black soil, 20 indicators in
1995,2010 and 2020 were used as input values, and the
importance degree was sorted by RF model. As shown in
Figure 9, elevation has the greatest impact on soil erosion in the
three-phase data analysis, followed by average annual rainfall.

The relationship between soil erosion and average annual
rainfall in black soil is shown in Figure 10. The relationship
between erosion rate and annual average rainfall was a quartic
polynomial fitting relationship, and R2 was 0.99. When the
average annual rainfall was less than 700 mm, the change of
rainfall had little effect on erosion. At this time, the occurrence
of soil and water loss was mainly controlled by the small topographic

fluctuation. When the rainfall exceeded 700 mm, rainfall became the
dominant factor, and the erosion capacity increased with the
increase of rainfall.

According to the natural discontinuity method, the elevation
data of Hulan River Basin were divided into 8 grades (<156,
(156,203), (203,259), (259,337), (337,430), (430,560), (560,776), ≥
776 m). The changes of annual soil erosion rate at different elevation
levels were analyzed. The impact of elevation on erosion is primarily
related to the degree of topographic relief. Since the Late Pleistocene,
the neotectonic movement has exhibited limited intensity, while the
geomorphological evolution in the region has displayed
characteristics indicative of an intermediate stage, and a positive
correlation between elevation and relief can be observed. As shown

FIGURE 6
Distribution of different soil erosion degree and average of soil erosion statistics in Hulan River Basin from 1995 to 2020 based on RUSLE. (A)
Distribution of erosion degree in 1995; (B) Distribution of erosion degree in 2010; (C) Distribution of erosion degree in 2020; and (D) The average of soil
erosion in for each category.
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in Figure 11, the terrain < 337 m was high plain, first platform and
river beach. The terrain exhibits a slight undulation, and the
influence of altitude on soil erosion is relatively negligible,
thereby minimizing the likelihood of inducing soil erosion. As
the elevation of hilly areas exceeded 430 m, the amount of soil
erosion increased significantly with the increase of altitude. The
primary factor was in the gradual increase of topographic relief,
which led to an acceleration of rainwater flow and the subsequent
formation of runoff. As the flow potential energy increases, the
erosion of the soil below became more intense.

3.2.3 Eco-geological characteristics of soil erosion
Eco-geological was first proposed by K. Tsol, a former Soviet

Union scientist, to study the changes in the geological circle under
the influence of human activities and natural factors (Wu and Liu,
2003). Subsequently, it was developed to study various ecological
problems or ecological course in combination with geological
mechanism investigation (Nie et al., 2019). Discussion on black
soil erosion from the perspective of eco-geological is a research
hotspot of soil erosion at present. By analyzing the erosion of black
soil under different eco-geological conditions, it is helpful to
explore the characteristics of ecological and geological
comprehensive environment under the difference of erosion.
The division of 11 eco-geological units in the Hulan River
Basin was achieved by overlaying spatial data on the actual
conditions of soil-forming parent material and parent rock,
topography and landform, as well as land use, in accordance
with the classification system presented in Table 5 (Figure 12).
By counting the degree of change of erosion rate in different eco-
logical geological areas, it was found that the intermediate rock
hilly woodland was most easily to soil erosion (Figure 13). From
1995 to 2020, the soil erosion rate was 55.64 t ha−1 y−1, which was

strong erosion. Mainly because of its location conditions would be
subject to relatively strong water erosion. The erosion rate of sandy
conglomerate hilly woodland is lower than that of the siltstone
hilly woodland, it is because that the fragility of the same lithology
affects the difficulty of soil erosion. The harder the lithology and
the more stable the soil structure formed by weathering. Its ability
to resist the erosion and dispersion of runoff on the soil itself is
stronger, and it is not easy to be washed away by rainwater, so the
stronger the soil erosion resistance, the less prone to soil erosion.
In the cultivated land, the erosion degree of the loess-like mild clay
rise mound high plain farmland area is higher. The average annual
erosion amount reached 482.19 t km−2 a−1. The main reason is that
the soil type in this area is loess-like mild clay with high clay
content and poor permeability. This structure determines that the
black soil has weak corrosion resistance and is prone to surface
runoff. At the same time, the surface fluctuation degree is
20m~30 m, which is prone to soil erosion (Yang and Meng,
2012; Li, Y., 2022). The eco-geological geological analysis of soil
erosion is helpful for us to carry out erosion control place-based in
the future.

4 Discussion

Black land resources play an irreplaceable role in ensuring food
security in China. For a long time, due to natural factors and
unreasonable human production and operation activities, soil
erosion in the black soil area of Northeast China has been
increasing (Li, T., 2012). The RUSLE model has been widely
recognized as a valuable tool for assessing soil erosion risk at
the watershed scale. However, it is important to note that the
methods of obtaining factors and the sources of basic data may

FIGURE 7
Soil erosion area conversion statistics in different years in Hulan River Basin.
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FIGURE 9
Distribution of important factors affecting soil erosion.

FIGURE 8
Spatial distribution of average annual soil loss change in Hulan River Basin. (A) Average annual soil loss change from 1995 to 2010; (B) Average annual
soil loss change from 2010 to 2020; and (C) Average annual soil loss change from 1995 to 2020.
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vary across different regions. But the K factor is predominantly
calculated using Equations 5, 6 in Asia and Africa. For example, the
formulas were employed by Okenmuo and Ewemoje (2023) in
recent years to compute soil water erosion in Obibia River
watershed, Anambra, Nigeria. Richi (2025) used the same
formulas to determine the degrees of soil erosion risk in
Ghamima River Basin, Syria. And the Global Soil Grid
Database (Data time span:1971–1981) was utilized for the soil
data involved. Furthermore, numerous studies have used second
national soil survey in China to calculate the K value of long time
series. But the alterations in soil physical and chemical properties
exert an influence on the estimation of the model (Fang and
Fan, 2020).

In this paper, the soil erosion assessment of Hulan River Basin
in typical black soil area from 1995 to 2020 was carried out in
combination with temporally variable SOC by using RUSLE.
During the period from 1995 to 2020, there was an initial
decline followed by subsequent increase in SOC levels within

TABLE 5 The reference in classification of eco-geological regions in Hulan River Basin.

Parent material and parent rock Topography Land use

Acidite River beach Woodland

Intermediate rock First platform

Siltstone Rise mons high plain
(Relative height: 20 m–30 m)

Sandy conglomerate Farmland

Loess-like mild clay Rise mound high plain
(Relative height: 5 m–20 m)

Loess-like mild clay-sand loam
Microrelief tilt high plain
(Relative height:<5 m)

Grassland
Arenaceous soil

Muddy soil Hilly

FIGURE 11
Change of soil erosion at different altitudes.

FIGURE 10
Change of soil erosion under different rainfall.
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typical black soil regions as observed in this study. Combined with
Equation 5, the K value of each year is obtained (Table 6). The
SOC and K values exhibit a negative correlation. If the SOCs for
1995, 2010, and 2020 are both calibrated based on the organic
carbon content at the time of the second national soil survey in
China, then there will be a slight underestimation of 0.0005 in the
K value for 2010 and a marginal overestimation of 0.0002 in the K
value for 2020. The slight error in the value of K will result in a
deviation ranging from-70.5 to 673.8 t km-2 y−1 in the erosion of
the entire black soil area in 2010, and a deviation ranging
from −90.94 to 628.3 t km−2 y−1 in 2020. This discrepancy
poses significant challenges to accurately assessing black soil
erosion. Through model calculation, it is considered that the

degree of soil erosion in Hulan River Basin is mainly slight
degree, and the erosion rate decreases first and then increases.
It aligns with the outcomes in Cheng, J et al. (2024). The
occurrence of more intense erosion was observed in areas with
higher relief, which aligns with the findings of Abdo’s study on
estimating potential soil erosion in Khawabi river basin, Tartous,
Syria using RUSLE (Abdo, 2022). The researcher also used the
latest soil data to estimate the K Factor. However, the lack of
model validation data in the study area of the Hulan River Basin
makes it impossible to quantitatively verify the model-based
conclusions. In the future, the 137Cs tracer method will be
used to calculate the total erosion amount in the region, and
the model will be verified.

FIGURE 12
Eco-geological zoning in Hulan River Basin.
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5 Conclusion

In this study, the measured soil information combined with
remote sensing image was used to invert SOC and calculate
dynamic soil erodibility factor. And the distribution and
temporal and spatial variation characteristics of soil erosion in
the Hulan River Basin in 1995,2010 and 2020 were simulated by the
RUSLE model. The main ecological environment factors affecting
the erosion of black soil were explored by random forest model, and
soil erosion was analyzed in combination with eco-geological
zoning. Our results show that: From 1995 to 2020, SOC content
increased by 15.6% in the Hulan River Basin. It was dominated by
slight and mild erosion, and the severe erosion was mainly
distributed in hilly areas. The erosion rate decreased first and
then increased. The average annual water erosion rate in
2020 was 1020.16 t km−2 a−1. From 1995 to 2010, the area with
improved erosion degree was 3,698. 33 km2. From 2010 to 2020, the
areas with strong changes in erosion degree were mainly
concentrated in higher terrain areas. The average annual rainfall
and elevation were the main factors affecting soil erosion in black
soil area. When the altitude was greater than 337 m, the amount of
soil erosion increased significantly with the increase of altitude.
When the average annual rainfall was less than 700 mm, the
topography was the dominant factor of soil erosion disaster.
From the perspective of eco-geological characteristics, the
erosion degree of hilly forest land was large, and the harder the
soil parent rock of the same lithology was, the less likely the soil
formed by weathering was to suffer from soil erosion.
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