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We perform a set of high-fidelity simulations of geochemical reactions within
three-dimensional discrete fracture networks (DFN) and use various machine
learning techniques to determine the primary factors controlling mineral
dissolution. The DFN are partially filled with quartz that gradually dissolves
until quasi-steady state conditions are reached. At this point, we measure the
quartz remaining in each fracture within the domain as our primary quantity of
interest. We observe that a primary sub-network of fractures exists, where the
quartz has been fully dissolved out. This reduction in resistance to flow leads to
increased flow channelization and reduced solute travel times. However,
depending on the DFN topology and the rate of dissolution, we observe
substantial variability in the volume of quartz remaining within fractures
outside of the primary subnetwork. This variability indicates an interplay
between the fracture network structure and geochemical reactions. We
characterize the features controlling these processes by developing a
machine learning framework to extract their relevant impact. Specifically, we
use a combination of high-fidelity simulations with a graph-based approach to
study geochemical reactive transport in a complex fracture network to determine
the key features that control dissolution. We consider topological, geometric and
hydrological features of the fracture network to predict the remaining quartz in
quasi-steady state. We found that the dissolution reaction rate constant of quartz
and the distance to the primary sub-network in the fracture network are the two
most important features controlling the amount of quartz remaining. This study is
a first step towards characterizing the parameters that control carbon
mineralization using an approach with integrates computational physics and
machine learning.
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1 Introduction

Reactive transport through subsurface fractured media plays a
critical role in numerous civil and industrial engineering endeavors
including geosequestration of carbon dioxide, energy extraction via
hydrocarbon and enhanced geothermal systems, drinking-water
aquifer management, and the long-term storage of spent nuclear
fuel Birkholzer et al. (2012); Deng et al. (2018b); Dobson et al.
(2003); Follin et al. (2014); Frash et al. (2021); Hyman et al. (2016);
Jenkins et al. (2015); Joyce et al. (2014); Kueper and McWhorter
(1991); Middleton et al. (2017); National Research Council (1996);
Neuman (2005); Rutqvist and Stephansson (2003); Selroos et al.
(2002); VanderKwaak and Sudicky (1996); Viswanathan et al.
(2022); Wu et al. (2021). In fairly homogeneous rock formations,
reactive fronts can be adequately modeled using reaction rates
constrained by elementary principles Maher et al. (2009); Moore
et al. (2012); Navarre-Sitchler et al. (2011); White et al. (2008).
However, within fracture networks the application of these simple
models is limited. Recent studies have highlighted the potential of
machine learning techniques, particularly physics-informed neural
networks (PINNs), to address these limitations by integrating
physical laws directly into machine learning algorithms Wang
et al. (2024); Abbasi et al. (2024); Thiyagalingam et al. (2022);
Pachalieva et al. (2022). These approaches have shown promise in a
variety of physical systems, including fluid flow and reactive
transport dynamics in fractured systems He et al. (2020);
Srinivasan et al. (2020); Srinivasan et al. (2021); Valera et al.
(2018a); Stansberry et al. (2024). Herein, there exists a highly
heterogeneous fluid flow field due to the spatially variable
resistance offered to flow by the geo-structural attributes of the
fracture network Hyman and Jiménez-Martínez (2018); Hyman
et al. (2019a); Hyman et al. (2020); Maillot et al. (2016); Kang
et al. (2020); Painter et al. (2002); Neuman (2005); Sherman et al.
(2018); Sweeney and Hyman (2020); Sweeney et al. (2023); Yoon
et al. (2023). The integration of multiscale modeling frameworks,
such as those by Molins et al. (2019) and Wang and Battiato (2020),
allows for better characterization of these fracture networks by
combining high-resolution simulations with data-driven
approaches like PINNs. As readily accessible reactive minerals
are depleted, the apparent, or domain-averaged, mineral
dissolution rate decreases to values that can be orders of
magnitude lower than the laboratory-measured rate Andrews and
Navarre-Sitchler (2021); Atchley et al. (2013); Beisman et al. (2015);
Jung and Navarre-Sitchler (2018a). In turn, reactions in fractured
media are often transport-controlled and elementary models cannot
properly constrain/predict reaction rates Andrews and Navarre-
Sitchler (2021); Andrews et al. (2023); Berkowitz and Scher (1997);
Becker and Shapiro (2000); Edery et al. (2016); Geiger et al. (2010);
Haggerty et al. (2001); Huseby et al. (2001); Hyman et al. (2019c);
Jung and Navarre-Sitchler (2018a); Jung and Navarre-Sitchler
(2018b); Pandey and Rajaram (2016); Kang et al. (2020); Meigs
and Beauheim (2001); Painter et al. (2002); Wen and Li (2018).
Characterizing the feedback between the network structure on the
flow field and associated reactive transport requires a coupled
thermo-hydro-chemical simulator capable of dynamically
modifying flow resistance (hydraulic aperture/permeability)
within a three-dimensional fracture network. To date, most
computational studies of geochemical reactions have been carried

out in a single fracture, small two-dimensional networks, or in
upscaled/equivalent continuum models Andrews and Navarre-
Sitchler (2021); Andrews et al. (2023); Deng et al. (2018a); Feng
et al. (2019); Lebedeva and Brantley (2017); Jones and Detwiler
(2019); Molins et al. (2019); Noiriel et al. (2021); Pandey and
Rajaram (2016); Steefel and Lichtner (1998); Steefel and Lasaga
(1994); Steefel and Hu (2022). These three-dimensional high-fidelity
simulations, although heavily sought after, were relatively infeasible
due to computational limitations. However, recent developments in
high-performance computing now allow for the exploration of flow
and reactive transport properties in 3D fractured media Hyman
et al. (2022a).

One specific application that requires detailed reactive transport
modeling is the mineralization of carbon to permanently remove it
from the atmosphere Matter et al. (2016); Gadikota (2021). While
the technology is still in its infancy, there have been successful pilot-
scale mineral carbon storage projects Clark et al. (2020);
Gunnarsson et al. (2018); Pogge von Strandmann et al. (2019);
White et al. (2020). However, the efficacy of this technology depends
upon a host of factors, namely, coupled thermal, hydrological,
mechanical, and chemical processes that all interact with
geostructural attributes Gaus (2010); Mishra et al. (2021); Shao
et al. (2010); White et al. (2003). As the injected fluids containing
CO2 passes through the fractures, they will commonly be out of
equilibrium with the resident minerals and a variety of reactions,
both dissolution and precipitation, will occur Deng and Spycher
(2019); Laubach et al. (2019); Bonnet et al. (2001); Deng and Spycher
(2019); National Research Council (1996); Neuman (2005). In turn,
these changes in the local mineralogy within the fractures due to the
geochemical processes will modify the fracture’s hydraulic resistance
Ellis et al. (2013). Understanding how these processes affect the flow
and transport of CO2 within the reservoir is critical for the integrity
of the long-term fate of the geologic carbon sequestration.

While the mineralization of carbon requires both dissolution of
an in-place mineral and the subsequent precipitation of a carbonate,
we have yet to characterize the dominant factors controlling the
initial dissolution processes in fracture networks. While it is
challenging to determine the interplay between the network
geostructure and geochemical reactions in fractured media, there
have been attempts to unraveling these connections using high-
fidelity simulations Hyman et al. (2022a); Andrews and Navarre-
Sitchler (2021). Unfortunately, these attempts have been limited by
the incredible computationally expensive of modeling flow and
reactive transport in these domains. Furthermore, even though
our physics-based models can simulate these coupled dissolution/
precipitation processes, it is difficult to unravel which model
parameters impact which quantities of interest (e.g., amount of
quartz remaining or CO2 mineralized in a given fracture). Thus, a
natural starting point for characterizing these systems is modeling
dissolution in isolation with a relatively straightforward chemical
system, and in due course considering secondary precipitation.

Machine learning (ML) techniques have shown tremendous
promise in geosciences due to their ability to infer parameters
and mechanisms of importance with relatively low computational
burden.Advances in deep learning-based frameworks, such as
Fourier neural operators; Gaussian process models, and enhanced
physics-informed learning, offer new possibilities for modeling
subsurface processes Wen et al. (2022); Kovachki et al. (2023);
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Sorokin et al. (2024); Murph et al. (2024). These methods reduce
computational costs while maintaining accuracy by leveraging the
inherent physical relationships within complex systems. A key
aspect that makes their application possible within the context of
fractured media is that flow and transport often happen within
preferential pathways through the network Hyman et al. (2015b),
Hyman et al. (2019a); Kang et al. (2020); Maillot et al. (2016);
Neuman (2005). The union of these preferential pathways is often
called the primary subnetwork, or colloquially, the network
backbone Osthus et al. (2020). PINNs have been utilized to
model similar flow channelization processes and transport
mechanisms with greater efficiency and accuracy Fraces et al.
(2020); Abbasi et al. (2024). These methods are particularly
advantageous in understanding the interplay between flow
pathways and geochemical reactions. It is within these backbones
of the fracture network that the majority of flow takes place, and in
turn where the majority of fluid-solid geochemical reactions are
expected to occur Hyman et al. (2022a). Indeed, it has been reported
that inferring the characteristics of the backbone prior to solving the
governing equations for flow and transport can yield significant
reductions of computational time Srinivasan et al. (2019);
Viswanathan et al. (2018); Vesselinov et al. (2019); Ahmmed
et al. (2021); Liu et al. (2022). In a similar spirit, fractured rock
formations, and other structured systems, have been successfully
represented as pipes or graphs in previous research, which allows for
solving flow and transport equations on a lower-dimensional
representation network rather than relying on expensive meshing
constructs Karra et al. (2018). Many of the successful ML
applications in fractured media have relied on such graph
representations to either topologically characterize the system or
produce the volume of data required for an ML training set Valera
et al. (2018b). Previous research has exploited ML algorithms to
construct emulators, surrogate models, and reduced order models
(ROM) which once trained, can run in a fraction of the time it takes
to solve complex advection-dispersion-reaction (ADR) equations
Santiago et al. (2014); Goetz et al. (2015); Valera et al. (2018b).
Another benefit of the surrogate models or ROMs obtained through
training ML algorithms is their use in a multi-fidelity uncertainty
quantification sense. Several thousand to millions of low-fidelity ML
algorithms can be used in conjunction with a handful of high-fidelity
runs to improve both the precision and accuracy of the predictions
O’Malley et al. (2018).

In this work, we perform a large number of flow and reactive
transport simulations in three-dimensional discrete fracture
networks (DFN) that are analyzed using machine learning
techniques to determine the important features controlling
reactive transport properties. As previously mentioned, an
appropriate starting point is first considering mineral dissolution
alone to develop the methodology, approach, and analysis. In future
studies, we will extend this approach to consider the effects of
dissolution and precipitation to characterize of the feedback between
these processes on carbon mineralization. We model quartz
dissolution because it does not induce significant pH changes
and will not be as sensitive to pH changes in the fluid as other
mineral reactions might be. We construct a set of fracture networks
composed of a single family of mono-disperse disc-shaped fractures.
Initially, the fractures are partially filled with quartz, which dissolves
gradually until a quasi-steady state is reached. Depending on the

DFN topology and the rate of dissolution, we observe large
discrepancies in the remaining quartz in each fracture at the end
of the reactive transport simulation. This variation across the
ensemble indicates an interplay between the fracture network
structure and the impact of geochemical dissolution, which is the
primary goal of this study. To achieve our goal of linking these
observations to physical quantities and model parameters, we
combine graph representations of the networks with machine
learning techniques, which allows us to predict the remaining
quartz volume in quasi-steady state conditions using the
following three hierarchical categories of features of the fracture
network: topological, geometric, and hydrological. By using a
regression model, we are also able to assess the importance of
different features that characterize the fracture networks. We
observe that the most important features are topological and
geometric, and they are sufficient to train a regression model that
predicts the remaining quartz volume in the system with acceptable
accuracy. The topological distance to the primary sub-network and
the rate constant are the features that significantly affect the amount
of quartz remaining in each fracture, which is understandable since
they control the flow channelization and the strength of the chemical
reaction, respectively. The hydrological quantities are the least
important ones with respect to the amount of quartz remaining
in the system; however, including them in the training process leads
to improved confidence in the regression model.

In Section 2, we describe the methods used to generate the DFNs
and simulate flow and reactive transport, as well as the machine
learning regression models that we consider in this study.
Additionally, we introduce the important features (geometrical,
topological, and hydrological) that we use to characterize the
fracture networks. In Section 3, we describe the main results of
our work, that include (1) a performance comparison between a
number of regression models that allows us to choose the most
suitable one for our flow and reactive transport data set; (2) a feature
importance and correlation analysis; (3) a extensive grid search
using the best-performing regression model (random forest
regression model); as well as (4) training a number of different
random forest regression models using a different subset of input
features. In Section 4, we discuss the implications of our results and
provide conclusions.

2 Methods: computational approach

Our primary goal is understanding the connection between
properties of the fracture network (topological, geometric, and
hydraulic) and resulting geochemical reactions within the
network. Identifying such connections is difficult because of the
complexity of both the fracture network structure and its impact on
fluid flow properties, which determines transport and subsequent
reactions. To do so, we adopt a multi-fidelity computational
approach. We consider three-dimensional fracture networks
using a discrete fracture network (DFN) method. Discrete
fracture network models are distinguished from continuum
models in that the fractures are explicitly represented rather than
via their upscaled effective properties Davy et al. (2013); Davy et al.
(2010); de Dreuzy et al. (2004); de Dreuzy et al. (2012); Erhel et al.
(2009); Hyman et al. (2014); Hyman et al. (2015a); Flemisch et al.
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(2016); Manzoor et al. (2018); Hyman et al. (2022b). Due to the
disparity between their length and aperture, DFN models represent
fractures as co-dimension one objects, e.g., lines in two-dimensional
simulations and planes in three-dimensional simulations. Each
fracture is assigned a shape, location, orientation, and hydraulic
properties based on field site characterization. The individual
fractures interconnect to form a network. We characterize these
fracture networks in terms of their topological (connectivity),
geometrical, and hydrological properties using a graph-based
approach Hyman et al. (2018). Graph-based approaches are a
useful companion to DFN simulations as they provide a rigorous
and interpretable manner on how to link fracture network
properties to flow and reactive transport observations Hyman
et al. (2017); Hyman and Jiménez-Martínez (2018); Hyman et al.
(2019b); Hyman (2020); Hyman et al. (2021); Pachalieva et al.
(2023); Srinivasan et al. (2018); Yoon et al. (2023). Flow and
reactive transport within the networks are simulated using the
massively parallel subsurface flow and reactive transport code
PFLOTRAN Lichtner et al. (2015). There are a variety of reactive
transport simulators available that differ in terms of spatial
dimensions, discretization schemes, time integration methods,
governing equations, flow simulator capabilities (single-phase
Darcy flow, variable saturation Richards flow, multi-phase flow,
variable density, non-isothermal, and heterogeneous permeability),
transport formulations (advection, mechanical dispersion,
molecular diffusion, multi-continuum), and geochemistry options
(surface complexation, kinetic mineral precipitation-dissolution,
aqueous kinetics, mineral nucleation, mineral solid-solutions).
The most common simulators in use today are PHREEQC
Parkhurst and Appelo, (2013) (which is the geochemistry engine
for HPX Jacques et al. (2018), PHT3D Prommer et al. (2003), and
OPENGEOSYS Kolditz et al. (2012)), HYTEC van Der Lee et al.
(2003), ORCHESTRA Meeussen (2003), TOUGHREACT Xu et al.
(2011), ESTOMP White and Oostrom (2003), HYDROGEOCHEM
Yeh and Tripathi (1990), CrunchFlow CRUNCHFLOW Steefel
(2009), MIN3P Su et al. (2021), and PFLOTRAN Lichtner et al.
(2015). A comparison of strengths and weaknesses between the
codes is provided in Steefel et al. (2015). The aforementioned graph-
based approaches for network characterization have been combined
with machine learning techniques to link geo-structure with flow
and transport Valera et al. (2018a); Srinivasan et al. (2019),
Srinivasan et al. (2020), but this study marks the first time to do
so in the context of reactive transport models.

In the first portion of this section, we describe the geometric
simulations for reactive transport modeling in fractured media
which are used to generate our data set. Next, we describe our
adopted machine learning techniques.

2.1 Reactive transport modeling

Our reactive transport modeling through fractured media has two
primary steps. The first step is the generation of an ensemble of generic
three-dimensional DFNmodels. In theDFNmethodology, fractures are
explicitly represented as planar polygons in space. Each fracture has a
stochastically sampled shape, size, and orientation. The fracture
interconnects to form a network through which flow occurs. This is
in contrast to continuum models, where fractures are represented by

their effective properties Sweeney et al. (2020). The choice to use a DFN
model, rather than a continuum model, is born from the desire to link
reactive transport observations directly with fracture attributes. The
second step is simulating fluid flow and associated reactive transport,
which requires a coupled thermo-hydro-chemical simulator capable of
dynamically modifying flow resistance (hydraulic aperture/
permeability) within a three-dimensional fracture network.

2.1.1 Three-dimensional discrete fracture
network modeling

We use DFNWORKS Hyman et al. (2015a) software suite to
perform our reactive transport simulations in three-dimensional
discrete fracture networks (DFN), cf. Viswanathan et al. (2022) for a
comprehensive discussion of DFN modeling approaches. We
consider a set of generic networks composed of a single families
of mono-disperse (constant sized) disc-shaped fractures in a cubic
domain with sides of length 10m. Each fracture has a radius of 1.5 m
and their centers are uniformly distributed throughout the domain.
Fractures are placed into the domain until a fracture intensity, total
surface area over total volume, of P32 = 3.25 is obtained. During
generation, the domain is increased by 0.5 m in all directions to
mitigate boundary density effects. The orientation of the fracture
family is randomly distributed across the unit sphere to mimic a
disordered media Hyman and Jiménez-Martínez (2018). The
generic nature of these parameters is designed to isolate the
effects of reactive transport and network connectivity from other
structural attributes of fracture networks. After generation is
complete, we remove isolated fractures, because they do not
participate in flow. Once the final network is produced, the
feature generation for meshing (FRAM) described in Hyman
et al. (2014), which combines network generation with mesh
generation to remove features that degrade mesh quality, and the
near-Maximal Algorithm for Poisson Sampling (nMAPS) presented
in Krotz et al. (2022), are implemented using the LaGriT meshing
toolbox LaGriT (2013) to generate a conforming Delaunay
triangulation, i.e., the computational mesh. The mesh is
composed of uniform triangular elements with edge lengths of
0.05 m. Initially, all fractures are assigned a uniform hydraulic
aperture of b � 1 · 10−5 m, which is a reasonable value in
crystalline rocks such as granite for fractures of this size Svensk
Kärnbränslehantering (2010). The cubic law is used to define the
initial permeability of each control volume within the fractures, k �
8.3 · 10−12 m2. Even though the apertures are initially uniform, they
can vary spatially. Additional information about the inclusion of in-
fracture aperture variability into DFN meshes using DFNWORKS
can be found in Karra et al. (2015); Frampton et al. (2019);
Makedonska et al. (2016); Hyman et al. (2021).

2.1.2 Flow and reactive transport
Flow and reactive transport within the networks are simulated

using the massively parallel subsurface flow and reactive transport
code PFLOTRAN Lichtner et al. (2015). Flow in the fracture
network is modeled using the Richards equation with a spatially
variable permeability field. We use PFLOTRAN to numerically
integrate the governing equations for pressure and volumetric
flow rates. We use a direct method to obtain the solution to the
linear system for improved accuracy and performance Greer
et al. (2022).
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The DFNs are initialized with an 80% volume fraction of quartz
(SiO2) e.g., a uniform fracture porosity of 0.2. Primarily quartz-filled
fractures are plausible in crystalline rocks Fisher and Brantley
(1992); Navarre-Sitchler et al. (2015). A volumetric flow rate
boundary condition is applied to the inflow and outflow
boundaries of the domain. The flow rate is equal to the initial
volume of the particular fracture network per year. Even though the
volume of the network increases due to dissolution, this flow rate is
held constant. As fresh water is introduced into the domain, the
quartz dissolves to produce aqueous silica (SiO2(aq))

SiO2 qz( ) → SiO2 aq( ).

The quartz specific surface area (A) was defined as 0.0225 m2 g−1

Wollast and Chou (1988) to calculate the initial total quartz surface
area (Ao) in each cell. Initial fluid composition in the fractures was
in equilibrium with quartz and contained 1·10−20 M non-reactive
tracer while the input fluid composition flowing into the domain
consisted of 1·10−3 M non-reactive tracer and 1·10−20 M SiO2(aq).
The non-reactive tracer is used to initialize the transport equations
and is not analyzed or considered in this study. We consider four
rate constants (k) of 1·10−9, 1·10−10, 1·10−11, 1·10−12 mol m−2 s−1.
These reaction rate values span a broad range of physically realistic
rates for quartz dissolution under geochemical conditions relevant
to our study. Higher reaction rates would exceed the physical limits
of quartz dissolution and are therefore not considered in this work.
This range is sufficient to capture the interplay between reaction
kinetics and network topology.

The local dissolution rate of quartz (R, mol m−3 s−1) at each time
step was calculated according to linear transition state theory (TST),

R � kA 1 − SiO2 aq( )
Keq

( ),
where Keq = 10−3.9993 at 25oC, as defined in the hanford.dat

database distributed with PFLOTRAN. As quartz dissolves
throughout the simulation, the volume of quartz in each cell is
updated and the bulk quartz surface area in each cell is
recalculated where A at time t is scaled by the ratio of quartz
volume (V) at time t and initial quartz volume (Vo)

At � Vt

Vo
( )2/3

Ao.

The permeability, porosity, and mineral surface area of every cell in
the mesh are also updated at every time step. Permeability and
mineral surface area are updated due to mineral dissolution
reactions through the change in porosity

φ � 1 −∑
m

φm.

Change in permeability involves a phenomenological relation
with porosity

k � k0f φ, φ0, φc, a( ),
where k0 is the initial permeability and

f �
φ − φc

φ0 − φc

( )a

φ>φc,

fmin φ≤φc.

⎧⎪⎪⎨⎪⎪⎩

The mineral surface area evolves according to

Am � A0
m

φm

φ0
m

( )n
1 − φ

1 − φ0

( )n′

,

where the super/subscript 0 denotes initial values, with a typical
value for n of 2/3 reflecting the surface to volume ratio. Note that this
relation only applies to primary minerals (φm > 0). The quantity φc

refers to a critical porosity below which the permeability is assumed
to be constant with scale factor fmin. Note that because hydraulic
aperture is integrated into the cell volume which does not change, it
is not directly updated at every step. However, these changes in
porosity and permeability would correspond to an implicit change in
hydraulic aperture with constant porosity under the assumption of a
dependency of permeability on the hydraulic aperture. Flow
simulations are run for 10 million years, whence all simulations
have reached a quasi-steady state in terms of the outflowing
SiO2(aq) values.

At the end of the simulation, we measure the quartz remaining
in each fracture within the domain. We consider both the total
quartz volume [m3] and the quartz volume fraction, which is the
total quartz volume divided by the fracture volume. Figure 1 shows
one DFN from our ensemble. Fractures are colored by the total
quartz volume remaining at the end of the simulation.

2.2 Machine learning methods

Our goal in using ML techniques is to determine the primary
factors controlling this dissolution. Regression models are valuable
tools for uncovering and understanding correlations between
features and observables, and in turn making accurate
predictions. In this section, we present our data set, along with
the derived features from the fracture network, including
topological, geometric, and hydrological properties. Additionally,

FIGURE 1
DFN containing 59 fractures. Fractures are colored by the
remaining total quartz volume in the network at the end of the
simulation.
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we provide an overview of the regression models available in
Python’s scikit-learn machine learning package, and define
the performance metrics used to evaluate and compare these models
in the results section.

2.2.1 Flow and reactive transport data set
We used 800 generic networks for training and testing the ML

regression model. Each DFN was run with four reaction rate
constants, (k) of 1·10−9, 1·10−10, 1·10−11, 1·10−12 mol m−2 s−1,
equal to a total of 3256 networks. The DFNs consist of a set of
fractures (on average 133 fractures per network) and each fracture is
considered a sample used to train or test the random regression
model. The total number of fractures in the data set is
446,129 fractures, and two-thirds (2/3) of the data were used for
training the ML model (training set), while the rest of the data (1/3)
were used for testing the model (testing set). The fracture-based
features are divided into three categories: (i) topological, (ii)
geometric, and (iii) hydrological as described below.

2.2.1.1 Topological features
To obtain and measure the topological features of the DFN, we

adopt a graph-based representation as described in Hyman et al.
(2018). Therein the fractures are represented as nodes in the graph,
and intersections between fractures are represented as edges. If two
fractures intersect in the DFN, then there is an edge in the graph
between the corresponding nodes. Formally, let Ω � {fi} for i �
1, . . . , N denote the entire network composed ofN fractures and let
ℓi,j be the set of intersections between fractures,
i.e., fi ∩ fj ≠ ∅ ≡ ℓi,j. We define a graph G � (V, E) of node set
V and edge set E using a mapping ϕ defined in the following way.
For every fracture fi ∈ {fi}, there is a node v ∈ V,

ϕ: fi → vi.

Similarly, for every intersection in ℓi,j, there is an edge ei,j ∈ E that
connects the corresponding nodes in V

ϕ: fi ∩ fj ≠ ∅ → ei,j � vi, vj( ).
We also include nodes representing the inflow and outflow
boundaries G to account for the direction of flow. Every fracture
that intersects the inlet plane x0 is connected to the source node s

ϕ: fi ∩ x0 ≠ ∅ → s, vi( ).
Likewise, every fracture that intersects the outlet plane xL is
connected to the target node t

ϕ: fi ∩ xL ≠ ∅ → vi, t( ).
Similar mappings have been used in the literature Hope et al. (2015);
Andresen et al. (2013); Hyman et al. (2017). Note that the mapping ϕ
is an isomorphic bijection, which means that every sub-graph in the
graph corresponds to a unique sub-network in the DFN. The graph
is handled using NetworkX Hagberg et al. (2008) and all graph-
based features are computed using built-in algorithms
within NetworkX.

Figure 2 shows a graph representation of one DFN from our set of
simulations, other networks exhibit the same behavior. We represent
each DFN using a graph to characterize topological structure influences
for the distribution of reactive transport within the network. In
Figure 2A fractures are colored by their remaining quartz volume at
the end of the simulation. There is almost no quartz remaining in
fractures that are well connected between the inflow and outflow nodes.
However, there remains a substantial amount of quartz in the fractures
in that set’s compliment. Flow channelization, isolated regions of higher
volumetric flow rates, is a commonly observed phenomenon in field
and laboratory experiments as well as numerical simulations in
fractured media Abelin et al. (1991); Abelin et al. (1985); de Dreuzy
et al. (2012); Frampton and Cvetkovic (2011); Hyman (2020);
Rasmuson and Neretnieks (1986). These flow channels indicate the
existence of primary sub-networks, also referred to as backbones, within
the fracture network. To this end, we partition the network into disjoint
primary and secondary sub-networks. Formally, let Ω � {fi} for i �
1, . . . ,N denote the entire network composed of N fractures, then

Ω � Ω′ ∪ Ω* and Ω′ ∩ Ω* � ∅,

where Ω′ and Ω* are the primary and secondary sub-networks. We
define the secondary network to be comprised of all dead-end
structures, i.e., dead-end fractures and cycles, and the primary
sub-network is its complement, similar to the methods proposed
in Doolaeghe et al. (2020) and Yoon et al. (2023). Our partitioning
definition is based solely on the network structure, specifically the
topology/connectivity, and does not utilize any hydraulic, geometric,
or flow information. To do so, we compute the current-flow through

FIGURE 2
Graph representations based on the DFN shown above. Nodes/fractures are colored by (A) quartz volume remaining (B) topological distance to the
backbone. Distance to the backbone equal to 0 refers to a fracture on the backbone (primary sub-network membership).

Frontiers in Environmental Science frontiersin.org06

Pachalieva et al. 10.3389/fenvs.2024.1454295

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1454295


the network using Kirchhoff’s laws with one unit of current is
injected into the graph at the source node and one unit is extracted at
the target, and every edge has unit resistance. Kirchhoff’s law
expresses that the sum of incoming currents at a node must be
equal to the sum of outgoing currents. Defining the sign of incoming
currents as positive and the sign of outgoing current as negative, the
law can be represented as the sum of the currents at each node
being zero,

∑n
j

Ii,j � 0∀ vi ∈ V.

Once the current is determined on every edge, all edges with current
less than machine precision (ϵ � 10−16) are removed

E′ � ei,j{ } if Ii,j > ϵ.
Then any nodes that are no longer connected to the sub-network
containing the source are removed

V′ � vi{ } if |ei,·|> 0,

where |ei,·| is the number of edges with an endpoint on the node vi.
Then our primary sub-graph is defined as

G′ � V′, E′( ),
and the secondary is its complement

G* � G\G′.

Recalling that the mapping ϕ is a bijective isomorphism allows us to
extract the primary and secondary sub-networks of the DFN

ϕ−1: G′ → Ω′ and ϕ−1: G* → Ω*.

Figure 2B shows the same graph as in (a) but nodes are colored by
their distance to the backbone. There is a correlation between the
volume of quartz remaining and the distance to the backbone,
indicating the latter’s impact on dissolution.

Based on the network connectivity, we obtain the following
topological features:

1. Node degree: The degree of a node vi is the number of edges
with one endpoint on the node vi. It describes the number of
intersections on the corresponding fracture. Formally,

Degree vi( ) � ∑n
j�1

Aij,

where Ai,j is the adjacency matrix of the graph G in which the entry
ai,j is the number of edges in G with end points ei,j � (vi, vj). Nodes
with a larger degree are well connected and ought to be a location of
substantial transport and reactions.

2. Degree centrality: Degree centrality is a normalized measure of
the node degree defined above. For vertex i,

Degree centrality vi( ) � 1
n − 1

∑n
j�1

Aij.

High degree centrality indicates that a node is well connected and
such nodes tend to be concentrated in the core of the network.
Nodes with low degree centrality are often in the periphery or on

branches that cannot conduct significant flow and transport.
Physically, it describes the number of other fractures that
intersect with a given fracture.

3. Distance to backbone: If a fracture is on the backbone, then the
distance to the backbone is 0. If the fracture is in the secondary
sub-network, then the value is the shortest topological path
from that fracture to one on the backbone. Formally,

Distance to backbone vi( ) � 0, if fi � Ω′
min d fi, fj( ) ∀fj ∈ Ω′, if fi ≠ Ω*{

where the topological distance metric d(ui, uj) counts the number of
edges between the nodes ui, uj. In practice, we use an unweighted
Dijkstra’s method implemented in NetworkX for the search.
Primary/secondary membership is a good indicator of the final
quartz volume in each fracture–compare Figures 2A, B. Almost all of
the quartz has been dissolved out of the primary sub-network and
there is a significant volume remaining in the secondary sub-
network fractures. Beyond a Boolean of backbone membership,
the distance to the backbone includes more information about
the proximity of a fracture in the secondary sub-network to the
backbone. Reactions in fractures that are farther away from the
backbone tend to be transport-limited and therein remains
more quartz.

4. Betweenness centrality: The betweenness centrality Anthonisse
(1971); Freeman (1977) of a node describes the extent to which
a node can control communication on a network. Consider a
path with the fewest possible edges (geodesic path), that
connects a node u and a node v on a graph. In general,
there may be more than one such paths, and with σuv, we
denote the number of such geodesic paths. Furthermore, let
σuv(i) denote the number of such paths that pass through node
i. We then define for node i,

Betweenness centrality � 1
n − 1( ) n − 2( ) ∑n

u,v�1
u≠i≠v

σuv i( )
σuv

,

where the leading factor normalizes the quantity so that it can be
compared across graphs of different sizes n. Many backbone
nodes have high betweenness values; however, other paths
through the network can show high values, since this feature
considers all paths in the graphs, and not only those from source
to target.

5. Source-to-target current flow: This is a type of centrality
measure adopted from an electrical current model Brandes
and Fleischer (2005). The current flow assumes a given source
and target. Imagine that one unit of current is injected into the
network at the source, one unit is extracted at the target, and
every edge has one unit of resistance. Then, the current flow
centrality is given by the current passing through a given node.
This can be described by Kirchhoff’s laws, or in terms of the
graph Laplacian matrix L � D − A, where A is the adjacency
matrix for the graph andD is a diagonal matrix specifying node
degree: Dii � ∑jAij. We can define the current flow for
node i as
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Current flow vi( ) � ∑n
j�1

Aij L+
is − L+

js( ) − L+
it − L+

jt( )∣∣∣∣∣ ∣∣∣∣∣,
where L+ is the Moore-Penrose pseudoinverse of L, s is the source
node, and t is the target node.

The current flow centrality is often referred to as random-walk
centrality Newman (2005), measuring how often a random walk
from the source (s) to the target (t) passes through a node i. Unlike
betweenness centrality, the current flow centrality considers only the
paths from source to target, its values are zero on any branch of the
graph outside of the central core. Thus, we expect a correlation
between high current flow values and nodes that have a large
influence on the transport from source to target.

2.2.1.2 Geometric features
The following features are based on the fracture geometry.

Recall that fractures are planar discs with the same initial
aperture and radius. Thus, initially, they all have the same
surface area and volume. However, if a fracture intersects with
the domain boundary, its shape is modified to conform to the
boundary. Therefore, there is variation in the following
attributes.

1. Surface area: The surface area of the polygon represents the
fracture plane. For a non-truncated fracture, the value is equal
to πr2.

2. Total fracture volume: The total volume of the fracture is the
surface area, which varies between fractures, and the aperture,
which is initially constant,

Total fracture volume ni � Vi.

The total fracture volume determines the initial amount of quartz in
each fracture, being the total volumemultiplied by the initial volume
fraction (80%). Because the total quartz volume is a constant scaled
quantity of the total fracture volume, we only include the total
fracture volume as a feature.

3. Projected volume: The projected volume of the fracture is the
component of a fracture’s volume-oriented parallel to the main
flow direction (inlet to outlet plane). Assuming the flow is
oriented along the x-axis, the projected volume is expressed as

Projected volume � Vi

�����������
Oi( )2y + Oi( )2z

√
,

where Vi is the volume of fracture i andOi is the unit vector normal
to the fracture plane, called the orientation vector. Since the flow is
oriented along the x-axis, the projected volume is expressed by the
projection ofOi onto the yz-plane. Fractures that are oriented along
the main flow direction are more likely to carry a significant part of
the flow, compared to the fractures oriented perpendicular to the
normal flow direction.

4. Intersection area: The intersection area is the total length of
intersections on a fracture multiplied by the initial aperture.

2.2.1.3 Hydrological features
The following are a set of hydrological features that are

computed on a pipe-network representation of the DFN, cf.

Karra et al. (2018) for details on how the pipe/graph-network is
obtained and how the numerical simulations are performed. Steady
pressure-driven flow is computed to obtain pressure and volumetric
flow rates throughout the DFN. Obtaining these values is
computationally inexpensive especially when compared to the
high-fidelity reactive transport simulations.

1. Volumetric flow rate: We compute the volumetric flow rate of
fluid passing through each fracture. Given the flow rates into
and out of the fracture, we take a single value that is one-half
the absolute value of total flow exchanged by a fracture with
its neighbors,

Q fi( ) � 1
2
∑n
j

|Qi,j|.

The absolute value is necessary because of the sign dependence of
flow into (positive) and outgoing (negative), and the 1/2 is to
account for double counting.

2. Péclet number:We compute the Péclet number of each fracture
using the volumetric flow rate Qi, fracture radius ri, surface
area Si and the diffusion coefficient D � 10−12m2/s

Pe fi( ) � Qiri
SiD

.

Regions with a high Péclet tend to occur within the primary sub-
network and reactions therein are kinetically-limited, i.e., there is
sufficient volumetric flow to flush away the aqueous silica, and once
the quartz is fully dissolved in the primary sub-network, than a
quasi-steady state is reached, and the overall apparent dissolution
rate slows.

3. Advective Damköhler number: The advective Damköhler
number compares the reaction timescale to the
convection. We compute it on a fracture basis, similar to
the Péclet number. First, we convert the rate constant k [mol
m2/s] used in simulations to a rate k′ [m/s] using the quartz
molar volume (Vm= 22.6880 10−6 m3/mol, k′ � kVm). Then
our advective Damköhler number is defined as

DaI fi( ) � k′Si
Qi

.

4. Diffusive Damköhler number: Likewise, we compute the
diffusive Damköhler which compares the reaction timescale
to diffusion and is given as

DaII fi( ) � k′ri
D

.

This concludes the definition of the input features used to train
the ML regression models as described in the following sections.

2.2.2 Regression models
Regression models are powerful tools enabling prediction,

analysis, and optimization of various phenomena. They are often
used to understand the relationship between a target variable and the
features of the data set. The main goal of the regression models is to
predict the target value based on the input features. Types of
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regression models include linear regression, ridge and lasso (least
absolute shrinkage and selection operator) regression, polynomial
regression, support vector regression, decision tree regression,
random forest regression, gradient boosting regression, and
HistGradientBoostingRegressor James et al. (2013). Based on the
complexity of our data set and the large number of input features, we
focus on support vector regression, decision tree regression, random
forest regression and gradient boosting regression, since these
models are capable of handling more complex non-linear
relationships. Table 1 includes a summary of the regression
models considered in this study.

All these regression models also provide an importance estimate
of the individual features, also called permutation importance. To
measure the feature’s importance the values of each feature are
randomly permuted; a decrease in performance compared to the
baseline indicates the importance of the permuted features. The
importance score is calculated by averaging the difference between
the error before and after the feature permutation. If a feature is
important for the regression model, the permutations will produce
many errors, while if a feature is not important, the permutations
will not have a large effect on the performance of the regression
method. We show the results of the importance analysis
in Section 3.3.

To assess the performance of the regression models, we use
the R-squared score (R2), also called coefficient of
determination. In regression models, the R2 coefficient
measures how well the regression predictions estimate the
real data points. An R2 coefficient of determination equal to
1.0 signals that the predictions of the regression model perfectly
fit the data.

In Section 3, we compare the different regression models and
their performance taking into account the before mentioned
performance measures. We discuss the correlations between
features, as well as the accuracy of the trained ML models. For
all our ML studies we use the scikit-learn machine learning
package developed in Python Pedregosa et al. (2011).

3 Results

We use the flow and reactive transport data set described in
Section 2.2.1 to train multiple regression models in order to predict
the quartz volume that remains in a given fracture depending on
three different attribute sets–topological, geometric, and
hydrological features as described above. In our ML models, we
also include the reaction rate constant, which we consider a primary
control feature. The results show that having access to flow features
enhances the accuracy of the quartz volume prediction, however, it is
not significant.

In the next subsection, we perform a comparison between
different regression models. Once we identify the most suitable
regression model (random forest regression model) for our data set,
we perform an extensive grid search to obtain an optimized version
of the model. In Section 3.3, we discuss the feature importance
analysis, giving us insights into the significance of each feature in
predicting the remaining quartz volume per fracture. This analysis
shows an interplay between the feature categories and their
correlations. Later, we show details on the performance of the
following two types of random forest regression models: (1)
including all rate constants and gradually adding more
complexity regarding the feature categories. For this type, we
generated the following three regression models: RF-1 model
using only topological features; RF-2 model using topological and
geometric features; RF-3 model using topological, geometric, and
hydrological features; (2) including one rate constant at a time while
using all features, resulting in four regression models for each of the
rate constants.

3.1 Regression models comparison

As mentioned in Section 2.2.2, we trained the following
regression models: support vector regression, decision tree
regression, random forest regression and two versions of the

TABLE 1 Summary of regression models used in this study.

Model Definition Usage Advantages Disadvantages

Support
Vector

regression

Support vector
machines (SVM)
for regression
with kernels

High-dimensional
non-linear
relationships

Models complex
relationships

robust

Computationally
intensive, sensitive

kernel choice

Decision
tree

regression

Tree structure
Splitting

data subsets

Non-linear
relationships
interpretability

Easy to
interpret
no scaling

Overfitting
sensitive to
variations

Random
Forest

regression

Ensemble of trees
averages

predictions

Accuracy
large data sets

High accuracy
reduces

overfitting

Computationally
intensive

slow prediction

Gradient
boosting

regression

Sequential
predictors
minimize
residuals

Predictive
performance
complex
data sets

High accuracy
handles outliers

Computationally
intensive

slow training
overfitting

Hist
gradient
boosting

regression

Histogram-based
gradient boosting

algorithm

Large-scale data
computational

efficiency

Efficient on
large data sets

high performance

Computationally
intensive

complex tuning

Frontiers in Environmental Science frontiersin.org09

Pachalieva et al. 10.3389/fenvs.2024.1454295

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1454295


gradient boosting regression. For the training, we included all the
features, and we used the default parameters for each of the
regression models as specified in the scikit-learn online
documentation. Table 2 shows the R2 values for the training
and testing.

The random forest method outperforms the other regression
models, when considering the R2 test results. The random forest
method uses an ensemble of recursively defined decision trees at
training time. Each tree considers a random portion of the original
data as training and the output of the method is the mean prediction
of the individual trees Watt et al. (2020). Combining forests of trees
can produce a single high-performing model and is suitable for large
data sets Ho (1995).

In the rest of the paper, we focus on training random forest
regression models using different combinations of features.

3.2 Grid search

The random forest regression model can be further optimized to
obtain even better R2 scores by tuning the hyperparameters of the
model. We performed an exhaustive cross-validated grid search over
a number of parameter values using the GridSearchCV function.
The optimized model was obtained after a grid search through the
following hyperparameters: n_estimators, max_depth, max_
features, min_samples_leaf, and min_samples_

split. The ranges for each of these hyperparameters are given
in Table 3. The input parameters used for the grid search study

include all features: topological, geometric, hydrological, and the
reaction rate constant (RF-3).

The cross-validated grid search took approximately 20 h to
complete on a CPUmachine. Training the R3 base model took about
20 s, whereas the optimized model required around 7.5 min on the
same machine. This increase in time is primarily due to the higher
number of estimators used in the optimized model. Although the
optimized model is nearly 22 times slower, it is significantly more
robust and less prone to overfitting.

Table 4 shows a performance comparison between the base model
(using the default parameters for the RandomForestRegressor

function) and the optimized model considering the R2 value obtained
during training and testing, and the out-of-bag score, which is an
unbiased estimate of themodel’s performance during training. The out-
of-bag score is calculated by averaging only the trees for which a given
data point prediction was not in the training data. This score is only
available when bootstrap=True, which means that bootstrap
samples are used when building the trees instead of using the whole
data set for each tree. We enabled the out-of-bag score using the
following command oob_score=True.

The performance measured in Table 4 shows that the remaining
quartz volume is hard to predict. When using only the topological
features (RF-1 model), the random forest regression models (base and
optimized) perform poorly, indicating that the topological features do
not carry enough information to train the model. Adding geometric
features enhances significantly the performance of the base and the
optimized model. The R2 train values of the optimized model actually
decrease in comparison to the base model; however, this is because the
base model is overfitting. Including hydrological features (RF-3 model)
only slightly increases the accuracy of the models, pointing to the
complexity of the DFN system exhibiting dissolution.

The overall accuracy of the training for the base and the
optimized model is good, however, during testing the coefficient
of determination (R2 value) drops significantly. This is very clear for
the RF-1 base model, where only topological input features are used.
The train R2 score for RF-1 is 0.9410, while during testing the
model’s test R2 score is only 0.6883, which implies that the random
forest regression models overfit during training and show higher
accuracy in training while under-performing during testing. The

TABLE 2 Comparison of the regression models’ performance.

Model Train R2 Test R2

Support vector regression 0.74527 0.74920

Decision tree regression 1.00000 0.71146

Random forest regression 0.97855 0.85055

Gradient boosting regression 0.81453 0.81603

Hist gradient boosting regression 0.84466 0.83978

TABLE 3 Hyperparameter ranges for the cross-validate grid search and
results. We show the default parameters used for the basemodel, as well as
the optimized hyperparameters, resulting from the grid search. To obtain
these results, we use the RF-3 model, which contains all input features
(topological, geometric, hydrological, and the reaction rate constant).
Additionally, we set the following parameters for all regression models:
bootstrap=True, and oob_score=True.

RF input
Parameters

Grid search Base
model

Optimized
model

n_estimators [10, 50, 100, 200, 300,
400, 500, 600, 700,
800, 900, 1000]

10 1000

max_depth [None, 30, 60, 90] None 30

max_features [None, sqrt, log] None sqrt

min_samples_leaf [2, 3, 4, 5] 2 2

min_samples_split [1, 2, 3, 4, 5, 6, 7, 8] 1 2

TABLE 4 Performance measures of the random forest regression models.
Comparison between the base regression model, using the default
parameter values, and the optimized model, obtained from an exhaustive
cross-validated grid search. These random forest models use all rate
constants, while the number of input features is increased gradually with
each model. The optimized model performs better than the base model.
The improved out-of-bag (OOB) score, which measures model
performance using data not included in the training subset, confirms the
optimized model’s superiority.

Model Train R2 Test R2 OOB score

Base RF-1 0.9410 0.6883 0.6256

Optimized RF-1 0.8864 0.7195 0.7179

Base RF-2 0.9672 0.8193 0.7658

Optimized RF-2 0.9506 0.8397 0.8356

Base RF-3 0.9701 0.8343 0.7845

Optimized RF-3 0.9499 0.8509 0.8474
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optimized models overfit less and perform slightly better than the
base model. The small difference between the test R2 values of the
base and the optimized model suggests that performing a grid search
and tuning the model parameters, even though important, it might
not improve the accuracy of the training significantly. This strongly
depends on the data set and the problem at hand.

The out-of-bag score (OOB) measures the model performance
using data not included in the training subset. The OOB score of the
optimized model is eight to nine points greater than the one of the
base model, which confirms that the optimized model is more
reliable than the base model, since higher OOB score reflects
better agreement and is desirable.

3.3 Feature importance analysis

As mentioned previously the random forest regression model
can be used to identify the importance of each individual feature for

the performance of the trees. Figure 3 depicts the input feature
importance analysis results for the three random forest regression
models (RF-1, RF-2, and RF-3), with a gradually increasing number
of features. Each model uses all values of the rate constant, shown in
black. The topological features are displayed in orange, the
geometrical features in purple, and the hydrological features
in green.

The feature importance analysis is calculated by comparing the
baseline model to the model obtained by permuting the feature
column. As shown in Figure 3, the analysis confirms that the
distance to the backbone and the rate constant are the two main
quantities controlling the dissolution of quartz in the fractures for all
regression models. This is not surprising since the distance to the
backbone indicates how far a fracture is with respect to the
backbone. The transport in fractures that are farther away from
the backbone tend to be diffusion-dominated, thus therein remains
more quartz. Likewise, when a given fracture is part or in the vicinity
of the primary sub-network, the behavior in the fracture is

FIGURE 3
Feature importance analysis for three regression models: RF-1 (topological features), RF-2 (topological and geometric features), and RF-3
(hydrological, topological and geometric features). The topological features are depicted in orange, the geometric features in purple, the hydrological
features in green, and the reaction rate constant in black. The importance analysis for all models show that the distance to the backbone and the rate
constant are the most important features in our study.
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FIGURE 4
Correlation matrix of the model features displayed as a heat map for the remaining quartz and the first nine features used for the random forest
regression training. The RF-2 results show strong correlations between the following features: distance to the backbone and the quartz volume, total
fracture volume and surface area, intersection area and degree, current flow, and degree centrality. The RF-3 model shows a strong correlation between
the aforementioned features and the following hydrological features: DaII and rate constant, volumetric flow rate and Péclet number. We observe a
strong inverse correlation between DaI and the distance to the backbone, and DaI and quartz volume. The RF-1 model is omitted for clarity.
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advection-dominated, which leads to the complete depletion of
quartz within the fractures. The rate constant is the second
important feature for all trained regression models because it
indicates the strength of dissolution in the fracture. There is a
strong correlation between the distance to the backbone, reaction
rate, and the quartz volume that remained in the system, since as the
reaction rate increases also the dissolution penetrating deeper levels
of the secondary fracture sub-network. This means that as higher the
rate constant is, the more quartz will be flushed out from the
secondary sub-network (taking into account that all quartz is
dissolved from the primary sub-network). Conversely, when the
rate constant is small, the reactive transport is reduced almost
entirely to the primary sub-network.

As we increase the number of features from topological to
topological and geometric, we can see that the total fracture
volume, surface area and intersection area line up right after the
first two topological features. When we add hydrological features, we
observe that the diffusive Damköhler number (DaII) becomes
almost as important as the rate constant, followed by the total
fracture volume and other hydrological features. From the training
results shown in Table 4, we know that the model accuracy does not
improve drastically, when more features are included in the training;
however, from the features importance analysis, we can confirm that
they carry significant information for the flow and reactive transport
of a fracture. Reactions during early simulation times are kinetically-
limited occurring mostly in the primary network. However, once all
of the quartz in the primary network is dissolved, the secondary
network becomes the location where all reactions are occurring.
Flow in the secondary network is slow compared to the primary
network (Péclet number < 1) and reactions therein are transport-
limited rather than kinetically. Thus, reactions in the secondary
network are a balance between diffusion and the reaction rate, which
is diffusive Damköhler number measures. In other words, DaII
captures the integrated effects of the distance to the backbone, rate
constant, and Péclet number into a single variable which is then
linked with late time dissolution effects and prediction of the
remaining quartz in the system.

Figure 4 shows the correlations between input features
(correlation matrix) in our regression model as a heat map. We
omitted the correlation matrix for the RF-1 model since the
topological features are depicted in RF-2 and RF-3. We reduced
the number of features for each heat map to ten to improve
readability.

The results for RF-2 show strong correlations between the
following features: total fracture volume and surface area (0.99),
intersection area and degree (0.73), current flow and degree
centrality (0.70), degree centrality and degree (0.65), and distance
to the backbone and the quartz volume (0.60). When we add the
hydrological features, some of the less significant topological
features are not displayed. The RF-3 model show strong
correlation between the aforementioned features and the
following hydrological features: diffusive Damköhler number
(DaII) and rate constant (1.0), volumetric flow rate and Péclet
number (0.95). We observe a strong inverse correlation between
the advective Damköhler number (DaI) and the distance to the
backbone (−0.8), and the advective Damköhler number (DaI) and
the quartz volume (−0.56). This is expected since these variables are
derived from one another, and it confirms that the regressionmodels

learn the correct behavior by being able to predict those strong
correlations.

3.4 Regression models using all
rate constants

Training regression models on all rate constants allows for
comparison between different feature categories. Figure 5 shows
the train and test results for the RF-1, RF-2, and RF-3 models.We see
that using only the topological features is not sufficient to obtain a
good regression model. The RF-1 test results are scattered and the
model is not able to predict the correct target quartz values. By
adding the geometric features (RF-2 model), we observe much better
predictions of the remaining quartz volume. However, the random
forest regression model still has difficulties predicting the quartz
volume, especially when the quartz is either fully depleted or clogs
the fracture (normalized quartz volume close to 0 or 1, respectively)
in advection- or diffusion-dominated regions, respectively. We
trained a third model (RF-3) that includes the hydrological
features, which performs slightly better than the RF-2 model;
however, the improvement is not significant. While hydrological
features contribute to model predictions, their relatively lower
importance suggests that structural and geometric features are
more critical in controlling flow and reactive transport dynamics.

3.5 Regression models using a single
rate constant

In order to have a better grasp on why training a regression
model using all rate constants does not deliver a very accurate
prediction for the quartz volume remaining in each fracture, we
train four more random forest regression models using all input
features and one rate constant at a time. The coefficient of
determination (R2 score) during training and testing is
depicted in Figure 6.One can see that the random forest
regression model has difficulties predicting the remaining
quartz volume for large rate constants, (k) of 1·10−9 and 1·10−10
mol m−2 s−1, while for small rate constants, (k) of 1·10−11 and
1·10−12 mol m−2 s−1, the model performs significantly better. When
the rate constant is large, we expect more rapid quartz dissolution
as fresh water is introduced to the system. This results in
advection-dominated flow and quartz depletion in the
backbone of the DFN, leading to shorter reactive transport
simulation times since the quasi-steady state is reached in less
time. It might seem a bit counter-intuitive, but for large rate
constants the quartz volume in the system will be either flushed
out completely from the fracture (mostly in a close proximity to
the backbone, advection-dominated flow), or it will be clogging the
fractures to a high extend (mostly in the secondary sub-network,
diffusion-dominated flow), leading to sharp interfaces between the
primary and the secondary sub-networks. This effect can be seen
in Figures 6A, B, where most of the samples are located either in
the lower left or in the upper right corners. The figures seem to
have fewer data samples, but this is not the case, the data points are
simply overlapping in the aforementioned regions. This makes
predicting the remaining quartz volume for a single fracture much
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harder for the regression model since the distance to the backbone
feature will carry less significant information.

Reaching a quasi-steady state for simulations with lower
reaction rates, (k) of 1·10−11 and 1·10−12 mol m−2 s−1, takes
longer times since the reactions within fractures are slower. For
those systems, we observe much smoother interfaces between the
quartz-filled and quartz-depleted regions. This allows a smoother
transition between these regions and more variability in the distance
to the backbone feature, making the prediction of the remaining
quartz volume an easier task. This is displayed in Figures 6C, D,
where the data samples are almost equally distributed in the range of
quartz volume. In this case, the regression model predicts the
remaining quartz volume with higher accuracy.

4 Discussion

This study provides valuable insights into the factors controlling
mineral dissolution in fractured media, with implications for
geologic carbon sequestration. By leveraging machine learning

techniques and high-fidelity simulations of reactive transport, we
identified the dominant features influencing quartz dissolution and
developed predictive models with promising accuracy. Below we
discuss (1) the advantages and limitations of the methodology; (2)
insights on controlling factors in mineral dissolution; and (3) the
implications for geologic sequestration.

4.1 Advantages and limitations of the
methodology

The random forest regression model outperformed the other
regression models that we tested (support vector regression, decision
tree regression, random forest regression and two types of gradient
boosting regression). An key advantage of using the random forest
regression model is that it provides importance rankings, which lead
to insights into the system behavior. A similar approach was taken
by Valera et al. (2018a) when considering the prediction of backbone
membership in a DFN, and extends their applicability by focusing
on predictive modeling.

FIGURE 5
Random forest train (purple) and test (orange) predictions for the following models: RF-1 (topological features), RF-2 (topological and geometric
features), and RF-3 (hydrological, topological, and geometric features). The RF-1 model does not include enough input parameters to predict correctly
the remaining quartz volume in a given fracture. RF-2 shows tighter predictions; however, it still fails to predict the quartz volume for fractures that are
either fully depleted or clogged (normalized quartz volume close to 0 or 1, respectively). RF-3 gives slightly better predictions (see the R2 score);
however, the improvement is not significant.
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However, several limitations must be acknowledged. First, while
the optimized random forest model provides more robust
predictions, it is computationally intensive, running
approximately 22 times slower than the base model. Second, our
models are trained on limited datasets focused on dissolution and
constrained to a relatively small fracture network property range,
limiting their generalizability to other geochemical contexts.

4.2 Insights on controlling factors in mineral
dissolution

We observe that the reaction rate constant and the distance to
the backbone are the two most important features for predicting the
remaining quartz volume in a single fracture. This is in agreement
with the work of Andrews et al. (2023) who found that the
topological structure and reaction rates were the primary factors
controlling quartz dissolution in the fracture networks they
considered.

The model has a hard time predicting the quartz volume
remaining in a fracture using only topological features. However,
adding geometric features improves the predictions significantly.
Interestingly, including the hydrological features only slightly
improves the regression model predictions, which suggests that
structural and geometric features are more critical in controlling
flow and reactive transport dynamics. In all models the distance to
the backbone (a topological feature) was the most useful for
prediction. This feature thereby provides a foundation for the

other properties to refine upon. This identified hierarchy of
lengths scales within the fracture network is agreement with
other approaches characterizing non-reactive transport modeling
in fractured media, which identified that the topology is the primary
control, then geometry, and finally hydrological properties Maillot
et al. (2016); de Dreuzy et al. (2012); Hyman and Jiménez-
Martínez (2018).

High reaction rates, (k) of 1·10−9 and 1·10−10 mol m−2 s−1,
result in sharper interfaces between the quartz-filled and quartz-
depleted fractures within a DFN while lower reaction rates, k �
1·10−11 and 1·10−12 mol m−2 s−1, lead to smoother interfaces of
quartz volume between the quartz-filled and quartz-depleted
fractures within a DFN. In the former the backbone is
completely depleted, while the fractures in the secondary sub-
network are still filled with quartz. These reactive transport
simulations take a shorter time to reach a quasi-steady state.
The distance to the backbone, which we observe to be one of the
most important features predicting the remaining quartz volume,
becomes less significant as the quartz volume associated with it is
either 0 or close to 1, as there is almost no variability in the overall
network. In the case of the lower reaction rates, the simulation
takes longer times to reach a quasi-steady state and the fresh
water can penetrate deeper into the secondary network and
dissolve larger amounts of the quartz in these fractures. These
links between network structure and where reactions occur has
identified through direct observation by Andrews and Navarre-
Sitchler (2021); Hyman et al. (2024b); Hyman et al. (2022a);
Pandey and Rajaram (2016). But this work is the first to identify

FIGURE 6
Random forest train and test predictions for each of the rate constants using all features (geometrical, topological, and hydrological). Each column
depicts the results for a different rate constant (A–D). The regression model can predict the remaining quartz volume with higher accuracy for lower rate
constants. The reaction rate constant is in (mol m−2 s−1) units and each train/test model has an equal number of data samples.
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such links using a data-driven approach. In these cases, the
distance to the backbone and the quartz volume associated
with a specific fracture carries more variability and as such
serves as a stronger predictor of the quartz volume compared
to the same feature when high reaction rates are used. The
occurrence of sharp interfaces could become more important
if precipitation is considered as the could lead to system clogging.

5 Conclusion

We conducted numerical simulations combined with regression
modeling to investigate the interplay between network geostructure
and geochemical reactions in fractured media. Using generic three-
dimensional fracture networks, we simulated flow and reactive
transport at multiple reaction rates to identify key factors
controlling quartz dissolution. Combining DFN graph
representation with machine learning, we identified the random
forest regression model as the best performer, optimized its
hyperparameters, and analyzed feature importance. We found a
strong correlation between the distance to the backbone, reaction
rate, and quartz volume. Finally, we built two model types: one using
all rate constants with varied feature categories and another trained
on individual rate constants.

Our key findings are summarized as follows:

• The random forest regression model demonstrated superior
performance compared to the other regression models we
tested, including support vector regression, decision tree
regression, and two types of gradient boosting regression.

• The first type of ML models assessed the importance of each
input feature category (topological, geometric, and
hydrological). The results showed that building a regression
model to predict the remaining quartz volume for all reaction
rate constants is a difficult endeavor.

• We observed that including topological and geometric features
are instrumental in building a useful regression model
predicting the remaining quartz volume in a quasi-steady
state. Including the hydrological features are the least
important ones, since they only slightly improve the
accuracy of the regression models.

• The most important features controlling the quartz
dissolution are the rate constant and the distance to the
backbone (primary sub-network), which can be easily
explained, since they control the flow channelization and
the strength of the chemical reaction, respectively.

• The second type of ML models gave us insights on how the
rate constant controls the dissolution in the DFN. The random
forest regression model was able to predict the remaining
quartz volume much better for low reaction rates in
comparison to high reaction rates. This is due to smoother
interfaces between the quartz-filled and quartz-depleted
regions in the simulations using low rate constants,
allowing for more variability in the quartz volume with
respect to the distance to the backbone, which helps to
build a more accurate model.

• In all models, the distance to the backbone (a topological
feature) emerged as the most significant predictor. This feature

serves as a foundational element upon which other properties
can build and refine their contributions.

As is slowly becoming better understood, our results reiterate
that network connectivity is at the top of the hierarchy in
determining flow and transport properties in fractured media. A
primary contribution of this work is characterizing how that
hierarchy influences reactions in fractured media as well. To this
end, we observe the dynamic reactions in the system exhibit a strong
interplay with the topology, geometry, and hydrology of the
network. In summation, the complex structure of the fracture
network determines the flow field which is then dynamically
modified by the reactions. However, it is currently unknown how
the inclusion of precipitation which could lead to blocking would
influence these results. It is feasible that the feedback loop of
precipitation leading to lowering permeability could alter the
importance of our determined features. Thus, the next step in
this line of research is twofold.

• We need to characterize how changing fracture network
properties influences our predictive capabilities as well as
feature importance. To do so, one would need to build an
extensive training set for different geological scenarios, rock
types and family configurations.

• A gradual increase in chemical complexity is required to take
these insights into the field. For example, it is now possible to
consider coupled mineral precipitation and dissolution in
three-dimensional fracture networks Neil et al. (2024);
Nisbet et al. (2024); Hyman et al. (2024a). In turn, could
design similar machine learning workflows as those presented
here to characterize various factors in those more complex
geochemical scenarios.

Both of these avenues warrant further exploration and detailed
research. Future work could also explore incorporating ensemble
learning or physics-informed neural networks to capture additional
dynamics in quartz dissolution and improve prediction accuracy.
Additionally, increasing the size of the dataset by simulating more
diverse fracture networks and reaction conditions could enhance the
model’s ability to generalize across different scenarios.
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