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Introduction: A nature-connected environment is important for constructing
building infrastructures in a sustainable city. However, its realistic application is
rarely utilized in urban planning, primarily due to a lack of accurate regression of
emotional perceptions of nature connectedness against existing landscapemetrics.

Method: In this study, Changsha was selected as the study area, targeting 50
urban parks as plots, with 165 left unselected for prediction. Twenty pedestrians
were randomly approached to assess their emotional perceptions of nature
connectedness. Self-reported data were used to evaluate positive and
negative emotion scores (Cronbach α: 0.803) and the emotional nonparametric
relation index (ENRI) (Pearson correlation in retest: R square = 66.37%).

Results: Three machine-learning algorithms (random forest, AdaBoost, and
gradient boosting trees [GBT]) were compared, with GBT being selected
(R square: 76.49 ‒ 88.64 %) for further comparison with multivariate linear
regression (MLR). Principal component analysis was used for verification, and
the GBT algorithm surpassed MLR in regression performance. The green view
index (GVI) in large and open green spaces was found to correlate with
perceptions of positive emotions (parameter estimate [PE]: 0.02 ‒ 0.13).
Conversely, large areas of green and blue spaces with low GVI on the flat
plane were found to evoke negative emotions (PE: -0.13 and -0.04, respectively).

Discussion: Artificial intelligence was used for describing cases of design using
our findings. For the purpose to evoke positive emotion of visitors, building
embedded landscape can be designed in distant view with large tree canopies in
closer view. Large area of green and blue spaces should not be recommended no
matter whether buildings background the view.
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1 Introduction

The United Nations published the Sustainable Development Goals (SDGs) to
integrate states into a sustainable world. Building-embedded landscapes frame the
major pillars of a city, but urban nature plays a significant role in sustainable social
development (Fu et al., 2024; Wei et al., 2022a). Green and blue spaces (GBSs) are the
primary components of urban nature and have been specifically highlighted to attract
attention for promoting sustainable landscapes, as seen in SDG 15 “Life on Land”

OPEN ACCESS

EDITED BY

Alessandro Crociata,
University of Studies G. d’Annunzio Chieti and
Pescara, Italy

REVIEWED BY

Javier Velázquez,
Universidad Católica de Ávila, Spain
Paul Sestras,
Technical University of Cluj-Napoca, Romania
Florin Ioras,
Buckinghamshire New University,
United Kingdom

*CORRESPONDENCE

Jiao Ren,
renjiao0828@163.com

RECEIVED 22 June 2024
ACCEPTED 18 November 2024
PUBLISHED 28 November 2024

CITATION

Zhong S and Ren J (2024) Evaluation on nature-
connected environment in building embedded
landscape: theory, detection, and case design.
Front. Environ. Sci. 12:1453010.
doi: 10.3389/fenvs.2024.1453010

COPYRIGHT

© 2024 Zhong and Ren. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 28 November 2024
DOI 10.3389/fenvs.2024.1453010

https://www.frontiersin.org/articles/10.3389/fenvs.2024.1453010/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1453010/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1453010/full
https://www.frontiersin.org/articles/10.3389/fenvs.2024.1453010/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2024.1453010&domain=pdf&date_stamp=2024-11-28
mailto:renjiao0828@163.com
mailto:renjiao0828@163.com
https://doi.org/10.3389/fenvs.2024.1453010
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2024.1453010


(Nasrabadi et al., 2023; Walter et al., 2023). Designing a
sustainability-promoted building landscape must incorporate
elements of GBS to improve access to urban nature (Talal and
Gruntman, 2023), environmental justice (Walter et al., 2023),
biodiversity conservation (Rajan et al., 2019; Wei et al., 2022b),
social cohesion (Dawson et al., 2023; Dawson et al., 2024), and
micro-climate mitigation (Li et al., 2022a; Roy et al., 2021). Public
attention is increasingly drawn to these nature objectives due to
the documented benefits on mental restoration (Kanelli et al.,
2024; Velázquez et al., 2022) and emotional wellbeing (Liu et al.,
2021a; Wei et al., 2021a). However, the key to hinder the
popularization of urgent findings in theory results from lack
of solid cases of planning and design with scientific evidence for
building landscape GBS that can function to restoration.

Human beings have long been known to experience enhanced
health and wellbeing through interactions with nature in urban
settings (Holy-Hasted and Burchell, 2022; Lauwers et al., 2021;
Vöelker and Kistemann, 2015). This improvement is supported
by two well-established theoretical models: the Attention Recovery
Theory (ART) (Kaplan and Kaplan, 1989) and the Stress Reduction
Theory (SRT) (Ulrich et al., 1991). These models have been
integrated into urban planning and design as nature-based
solutions (NBSs) to enhance the mental health of residents
(Andreucci et al., 2019; Du et al., 2019; Tache et al., 2023).
Research, including studies on the interfaces between sidewalks
and neighborhood green spaces, has confirmed these theories.
Findings suggest that spending time in natural settings can offer
greater health benefits than similar durations in built environments
(Lee et al., 2009; Szabo et al., 2023; Wu et al., 2021). These
advantages arise from reduced mental stress (Dawson et al., 2023;
Wei et al., 2021a) and enhanced physical health (Wen et al., 2023;
Wu et al., 2021). Further insights have been gained from studies on
underlying mechanisms, revealing that factors like air humidity,
sunlight spectrum, noise levels, wind speed, and air quality
contribute to these health benefits (An et al., 2019; He et al.,
2023a; Sou et al., 2021; Wei et al., 2020a)near natural
environments. However, these findings are seldom applied to the
actual design of built environments that incorporate natural features
to optimize health benefits.

The connection to nature is crucial in the built environment,
offering significant benefits to humans (Velázquez et al., 2022).
Current literature identifies three main reasons for this effect.
First, exposure to nature in Green Building Solutions (GBS)
triggers positive emotions, reducing anxiety (Hong et al., 2019;
Wei et al., 2021a). Second, high biodiversity in GBS is a key factor
in health benefits (Cameron et al., 2020; Wei et al., 2022b) and
has been linked to life satisfaction across Europe (Methorst et al.,
2021). However, it is difficult to pinpoint which specific species
contribute most to these perceptions. Third, micro-
environmental factors such as sound and sight also play a role
in eliciting positive emotions (Fang et al., 2024; Xiang et al.,
2022). Micro-climatic conditions under canopies, such as
shading and transpiration, enhance thermal comfort by
altering wind velocity, humidity, sunlight penetration, and
background noise (An et al., 2019; He et al., 2023a; Li et al.,
2022a; Wei et al., 2020a). Recent studies have shown that the
improvement in air quality provided by GBS may offer the most
noticeable benefits (He et al., 2023b; Mao et al., 2022; Zhang et al.,

2023). These studies typically focus on location-specific variables
and realistic landscape settings. Geographical location remains a
fundamental principle in building design (Mora-Pérez et al.,
2015; Stamps and Naser, 1997), providing a foundation for
balancing functionality and aesthetics.

Urban green blue spaces (GBS) can be analyzed by projecting
planes for landscape metrics and area components across different
studies (Liu et al., 2021b; Wang R. Y. et al., 2023; Zhang et al., 2021).
In landscapes integrated with buildings, larger GBS areas can
enhance visitors’ interactions with nature and promote emotional
wellbeing (Wei et al., 2022a; Zhang et al., 2021). This observation is
also supported by studies of neighboring GBS in residential
communities (Chen and Guo, 2022). The frequency of
interactions with nature in GBS is linked to a stronger
connection to nature in urban areas (Huang et al., 2022; Talal
and Gruntman, 2023). Designing built environments that
incorporate nature, accessible to neighborhood buildings, is
crucial (Talal and Gruntman, 2023). The visibility of greenery,
which a visitor can see, determines the nature available in the
green space. This visibility is measured using the Green View
Index (GVI), which calculates the ratio of greenery pixels to
those of the overall streetscape (Helbich et al., 2019; Huang et al.,
2022). Enhancements in GBS area and GVI are associated with
positive visitor experiences (Hao et al., 2024; Huang et al., 2022).
These findings provide a theoretical basis for designing landscapes
with GBS that function as nature-based solutions (NBS). However,
further studies using model verification are needed to link GBS with
emotional impacts in specific locations.

Multivariate linear regression (MLR) models are widely used in
current research to explore the relationship between humans and
nature. However, their use is limited within the framework of the
general linear model (GLM). Machine learning has proven to be an
effective tool for modeling these relationships (Hao et al., 2024;
Huang et al., 2022). Training datasets for modeling evaluations
based on metrics and quality in the GBS landscape has not been
significantly challenged (Hoang and Tran, 2021; Rustamov et al.,
2023). However, modeling human emotions still presents significant
challenges, particularly in gaining access to reliable data. Extracting
readable information from a facial photo requires training the model
with a large testing and validation dataset to minimize the
considerable uncertainties in interpreting human emotions (Guan
et al., 2021; Wei et al., 2020b). In contrast, the detection of emotion-
landscape relationships using machine-learning models and finding
adequate references for model selection have started later and are
notably lacking (Chen et al., 2022). Comparing MLR with machine-
learning models is beneficial for designing landscapes with
functional elements, as it allows for the use of a precise range of
inputs. Therefore, it is valuable to screen various models and
compare regressions to achieve optimal predictions using MLR.

The Random Forest (RF) model, widely recognized for its
application in analyzing remote sensing data for landscape
metrics (Lehmler et al., 2023), utilizes a combined learning
approach for both classification and regression tasks. It
operates by employing bagging techniques to generate multiple
classifiers across different subsets, using a decision tree to
integrate individual predictions into a comprehensive result (Li
and Guo, 2023). Although RF can manage errors through out-of-
bag (OOB) error assessments, this can sometimes lead to
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redundant processes and potentially unclear outcomes. In
contrast, the AdaBoost algorithm enhances data processing
and decision-making by sequentially adding weak learners
robust model is developed until a (Zhang and Yang, 2015).
Despite its high predictive accuracy, AdaBoost may be overly
sensitive to noisy data and outliers, potentially causing deviations
beyond typical logistic responses. Similarly, Gradient Boosting
Trees (GBT) utilize a methodology akin to AdaBoost but optimize
objectives along a gradient of decreasing residual error (Bagga
et al., 2023). Theoretically, GBT can achieve highly accurate
regression models, although this requires careful adjustment of
variables to prevent overfitting. Overall, while RF is often the
preferred method for handling large, multidimensional datasets,
it performs less effectively with unstructured data, such as
emotional scores. GBT, on the other hand, is favored for its
precision but requires substantial manual tuning to reach optimal
performance.

In this study, we proposed a design for integrating landscapes
with nature in urban settings, using Changsha as a case study.
The focus was on urban parks, where the connection to nature
was evaluated through interviews with random pedestrians. We
employed location-based GBS metrics and performed regression
analysis on emotional responses using two different methods,
which were then compared to identify the most effective
approach. The goal was to demonstrate how a design
incorporating natural elements in urban landscapes can

positively influence human emotions. We hypothesized that
factors such as larger park areas or higher Green View Index
(GVI) would enhance emotional wellbeing by fostering a sense of
connection to nature.

2 Methodology

Changsha was selected as the study location, where 50 urban
parks were examined (Figure 1). The city experiences a
continental monsoon climate with annual temperatures
ranging from 4.4°C to 34.2°C and average yearly precipitation
of 1,361.6 mm. The local population is approximately
10.51 million, with 83.59% residing in urban areas. An
application programming interface (API) was used to gather
data on park locations from Baidu’s online maps. Of the
211 parks listed in the latest database update in 2023, 50 were
randomly selected from the central urban areas (Figure 1). These
parks were numbered and their distribution is depicted
in Table 1.

2.1 Evaluation on landscape metrics

Spatial data for each park was derived from Landsat 8 OLI
imagery at a 30 m resolution. Using ArcGIS version 10.2 software

FIGURE 1
Location of Changsha city and distribution of numbered chosen urban parks therein.
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TABLE 1 Names and coordinates of parks chosen in Changsha.

Order Park name Longitude (degree E) Latitude (degree N)

1 Qianlong Lake Ecological Resort 112.693 28.418

2 Lafeng Park 112.821 28.373

3 Sun Mountain Forest Park 112.962 28.355

4 Moon Isle 112.931 28.303

5 Xingyue Lake Park 112.928 28.297

6 Xiufeng Mountain Park 112.971 28.293

7 Yinxing Bay Park 112.937 28.289

8 Rongsheng Flower Words Gym Park 113.057 28.279

9 Zhujiang Oriental Pearl Park 112.916 28.277

10 Wangcheng Gushan Gym Park 112.903 28.277

11 Hunan Songya Lake National Wetland Park 113.097 28.270

12 Xuteli Park 113.074 28.259

13 Xinghsa Ecological Park 113.066 28.258

14 Changsha Riverside Cultural Garden 112.974 28.245

15 Moon Isle Riverside Neighborhood Park 113.006 28.244

16 Riverside New City Tea Garden 112.953 28.244

17 Jianshan Lake Park 112.867 28.243

18 Bafang Park 112.931 28.240

19 Moon Lake Park 113.028 28.240

20 Xingsha Cultural Park 113.070 28.239

21 Jinfeng Park 112.917 28.239

22 Shanxianling Neighborhood Park 113.077 28.238

23 Riverside New City Shijiagang Park 112.955 28.237

24 Jinke Park 113.064 28.232

25 Jiudaowan Neighborhood Park 113.008 28.217

26 Wangyue Park 112.947 28.215

27 Martyr Garden 112.994 28.213

28 Xihu Park 112.936 28.210

29 Juzizhou Resort 112.957 28.198

30 Dongyi Park 113.060 28.198

31 Shuangshuiwan Gym Park 113.044 28.189

32 Yuelu Mountain Park 112.931 28.187

33 Guihua Park 112.998 28.175

34 Wangjiang Park 112.960 28.166

35 Changsha Sha Bay Park 113.034 28.159

36 Changsha Lituo Ecological Garden 113.065 28.150

37 Eagle-fly Gym Park 112.995 28.150

38 Locomotive Cultural Garden 112.956 28.149

(Continued on following page)
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(Esri China branch, Shanghai, China), each park’s boundary was
defined to calculate its projected area. The Green Space Area
(GreenA) was estimated based on the extent of the normalized
difference vegetation index (NDVI) across the park’s grid according
to Equation 1.

NDVI � NIR − BandRed
NIR + BandRed

(1)

where, NIR and BandRed are bands 5 and 4 in near infrared light and
red light reflections, respectively. Waterbody area was estimated by
the largeness of normalized difference water index (NDWI)
(Sekertekin et al., 2018) according to Equation 2:

NDWI � BandGreen − SWI1
BandGreen + SWI1

(2)

where, BandGreen and SWI1 are bands 3 and 6 in green and short-
wave infrared 1 reflections, respectively. Impervious surface
included lands covered by roads, lanes, and paved playgrounds,
which can be estimated for its areas (ImpA) as nonnormalized
difference impervious surface index (NDISI) (Xu, 2010) according
to Equation 3:

NDISI � TIR − NDWI+NIR +MIR1
3[ ]

TIR + NDWI+NIR +MIR1
3[ ] (3)

where, MIR1 is band 1 in mid-infrared light reflection; TIR is a
thermal infrared band 10. Additional landscape metrics are
calculated in Equations 4 and 5 (Chen and Guo, 2022; Zhang
et al., 2023):

BlueR � BlueA
ParkA

× 100% (4)

BtoG � BlueA
GreenA

(5)

where, BlueR is the areal ratio of blue space to host park (ParkA);
BtoG is the areal ratio of blue space to green space in a
common park.

2.2 Grid disassembly and green view index

The study area in Changsha was divided into 1,000 grids, each
covering an area of 2.25 km2 (1.5 km × 1.5 km) as shown in Figure 2.
Parks were mapped onto the grids with the fewest grids needed to
completely encompass their boundaries. Selected parks were used
for data analysis and regression, while others were reserved for
prediction purposes. Streetscape images were collected using the
Baidu online map API with Python version 3.6 (Python Foundation,
Python Inc., Beaverton, Oregon, United States). The study targeted
elements of vegetation such as leaves, needles, twigs, branches, and
new shoots for image recognition using deep learning. Initially, these
elements were identified using semantic tags from the Cityscapes
Dataset (Cityscapes Dataset, 2023). The DeepLabV3+ model was
then employed to refine the tagging of vegetation elements in the
streetscape images by analyzing and categorizing pixels using the
ResNet-101 network. Approximately 80% of the images were used
for training to improve the recognition of vegetation pixels, and the
remaining 20% were used for validation against the initial dataset
(El-Hokayem et al., 2023). The accuracy of recognition was
confirmed to be over 87%, considered satisfactory for Greenery
Visibility Index (GVI) studies (Chen et al., 2020; Long and Liu,
2017). Examples of GVI value recognitions are depicted in Figure 3.

2.3 Emotional perceptions of human-nature
connectedness

Emotional perceptions of nature connectedness were assessed
through self-reported scores from randomly selected pedestrians.
Visitors were randomly chosen from a park where they were
firstly photographed to record their faces and asked for whether
they can consent the permission to attend our study as
participants. If the consent was provided, the facial photo was
reserved and the subject was further asked about self-reported
scores towards perceived connectedness with nature; but if they
rejected the attendance, photos were deleted immediately. The

TABLE 1 (Continued) Names and coordinates of parks chosen in Changsha.

Order Park name Longitude (degree E) Latitude (degree N)

39 Nanjiao Park 112.960 28.144

40 Yang Lake Park 112.922 28.129

41 Changsha Red Star Neighborhood Park 112.999 28.125

42 Haitang Park 112.972 28.122

43 Xiangfu Cultural Park 112.978 28.114

44 Hunan Botanical Garden 113.027 28.106

45 Yichun Neighborhood Garden 112.978 28.102

46 Xiemating Neighborhood Park 113.006 28.097

47 Lion Mountain Park 113.028 28.095

48 Heili Community Park 112.984 28.093

49 Xiangu Mountain Park 112.999 28.081

50 Changsha Ecological Zoo 112.999 28.036
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questionnaire, adapted from (Otamendi-Urroz et al., 2023) and
reused in a study (Garau et al., 2024), included both consented
participation and real-time interviews. Participants responded to
18 emotional descriptors, categorized into positive sentiments

like alertness, awe, amusement, joy, contentment, hopefulness,
gratitude, love, and pride, and negative emotions such as disgust,
anger, embarrassment, sadness, shame, fear, contempt, and
anxiety. Responses were recorded in a binary format, with

FIGURE 3
Typical recognition results of green view index (GVI) in urban parks of Changsha. Park names are derived fromTable 1 and locations are referred to as
plots in Figure 1.

FIGURE 2
Schematic diagram of study area in Changsha disassembled in grids (each in 1.5 km diameter).
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0 and 1 representing ‘no’ and ‘yes’, respectively. Using these
responses, emotional perceptions of connectedness with nature
in urban parks were quantified using an emotional
nonparametric relation index (ENRI) as shown in Equation 6
(Garau et al., 2024).

ENRI � log
∑j
i�1
ScoreP

∑j
i�1
ScoreN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6)

where, ScoreP and ScoreN are totaling scores about binary perceived
responses to positive and negative emotions, respectively, reported
by the ith pedestrian up to the final jth per park. Some pedestrians
consented the participation, but his/her responses included zero
scores to any of emotions. This cannot be documented for recorded
scores in next-step analysis.

Data of self-reported scores may contain bias caused by
subjective interruption or uncontrolled systematic errors (Guan
et al., 2021; Wei et al., 2021b). Therefore, data were validated by
calculating the matching accuracy and detecting correlation with
data collected from a retest (Mo et al., 2023). The Cronbach alpha
was calculated to be 0.803, which fell in the level that can be fully
reliable for the acceptance of data in a low variance (Mo et al., 2023;
Paiva et al., 2014). Furthermore, self-reported data were validated
with data from facial expression scores and Pearson correlation was
calculated to be 66.37%. This also fell in the range that can be reliable
that self-reported data can be reliable according to empirical values
(Liu et al., 2024; Paiva et al., 2014). Overall, our results can be fully
reliable for their contribution to the estimate on nature
connectedness.

2.4 Data process and case design

The layout of the entire study along with data statistics and
processing are illustrated in Figure 4. Emotional results were
averaged to derive mean scores for each selected park, alongside
landscape metrics, which were mapped within the study area. Data
extracted from selected parks were organized into mosaic grids, used
for predicting emotional perceptions in other unselected park grids.
All data underwent normality tests with consistent variances,
allowing emotional scores to be analyzed for influencing factors
from landscape metrics using multivariate linear regression (MLR).
This analysis facilitated comparisons with prior studies on human
emotional responses to Green and blue spaces (GBS) in urban parks
(He et al., 2023b; Wei et al., 2022a). Independent variables showing
significant impacts on emotional scores were noted as references.
Using data from various urban parks, landscape metrics were
employed to enhance machine-learning models—specifically
Random Forest (RF), AdaBoost, and gradient boosting trees
(GBT)—for predicting emotional scores. Modeling accuracy was
assessed using root mean squared error (RMSE), mean square error
(MSE), mean absolute error (MAE), and determination coefficient
(R2). The importance of each landscape metric was evaluated across
the three machine-learning models. Principal component analysis
(PCA) was used to identify variation attributes of emotion and
landscape data, aiding in comparing results between machine-
learning models and MLR. The chosen model predicted
emotional scores based on landscape metrics in grids of
unselected parks. Green Vegetation Index (GVI) values were
collected and averaged across all grids. These values were then
mapped back onto land uses to display typical distributions of

FIGURE 4
Layout of whole study and data analysis and processing for landscape design.
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predicted emotional scores. Based on the number of selected parks
(Table 1), typical parks with key landscape metrics that positively
affect emotions were identified. These metrics were extracted and
combined with regression results for use in designing with OpenArt
(OpenArt, 2024).

3 Results

3.1 Spatial distributions of variables

Spatial distributions of landscape metrics for urban parks are
depicted in Supplementary Figure S1, and mosaic grids in Figure 5.
Parks in remote southern areas of Changsha, particularly GreenA,
tend to be larger (Figure 5A). Conversely, BlueA does not follow
this pattern and varies in size along the latitudinal gradient
(Figure 5B). The Green Vegetation Index (GVI) is more
uniformly distributed than GreenA and BlueA, with lower
values in areas having higher proportions of impervious
surfaces (Figures 5C, D).

The positive emotion score ranges from 1.33 to 6.60, averaging
4.95 ± 1.17 (± standard deviation), with higher scores in regions with
larger green buffering spaces (GBS) (Figure 6A). The negative
emotion score, with a lower average of 1.90 ± 0.62 (range:
1.00–3.33), is distributed more evenly (Figure 6B). The
Emotional Normalized Ratio Index (ENRI) varies from −0.42 to
0.77 (mean: 0.43 ± 0.25), indicating a balance between positive and
negative emotional perceptions, with higher positive scores

associated with GBS and negative scores linked to impervious
surfaces (Figure 6C).

3.2 Multivariate linear regression estimate

The areal ratio of blue to green spaces (BtoG) and GVI both
significantly contribute to the positive emotion score, although
GreenA slightly reduces it (F value = 52.37; P-value <0.0001;
Figure 7A). Conversely, GVI and BlueR together have a
substantial negative impact on the negative emotion score (F
value = 14.28; P-value <0.0001; Figure 7B). Both variables
positively affect ENRI (F value = 47.19; P-value <0.0001; Figure 7C).

3.3 Machine-learning modeling estimate

The performance of three machine-learning algorithms is
presented in Table 2. The Gradient Boosting Tree (GBT)
algorithm demonstrated superior performance compared to the
others. Specifically, GBT achieved a higher coefficient of
determination (R2) in regression analysis. However, it registered
higher values of root mean squared error (RMSE), mean square
error (MSE), and mean absolute error (MAE) when predicting
negative emotion scores than the Random Forest (RF) algorithm.
Despite this, the regression errors for GBT were generally better
controlled compared to those for AdaBoost. Consequently, GBT was
selected for further analysis in regression modeling.

FIGURE 5
Spatial distributions of mosaic grids for green space area (A), blue space area (B), GVI (C), and impervious land area (D) in chosen parks of study area
of Changsha.
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Regression analysis using GBT highlighted the significance of
various landscape metrics on emotional scores. Metrics such as the
area of green and blue spaces (GandB), park area (ParkA), the ratio
of green space to impervious surfaces (GtoI), the ratio of impervious
surface area to host park (ImpR), GreenA, and the Green Vegetation
Index (GVI) were identified as significantly influential (Figure 8).
Positive emotion scores correlated strongly with GVI in specific park
grids (Figure 8A). Negative emotion scores were influenced by
contributions from GandB, ParkA, GreenA (feature importance:
all >0.2), and GVI (feature importance: 0.18) (Figure 8B). The
Environmental Naturalness Related Index (ENRI) was primarily
influenced by GreenA and GVI, both showing feature importances
of ≥0.2 (Figure 8C).

3.4 Principal component analysis verification

The first two principal component analyses (PCAs) accounted
for 56.17% of the cumulative eigenvalues, with the first PCA
comprising 32.25% and the second 23.92% (Figure 9).
Consequently, these two PCs represented over 50% of the data
variation, with the first PCA proving more reliable for capturing
data variation. The eigenvalues for the positive emotion score and

ENRI followed a similar vector trend as the negative emotion score.
The landscape metric of ImpR displayed a trend similar to that of
the negative emotion score, both diverging from those along the
first PC axis for ParkA, GandB, GreenA, GtoI, and GVI. These
metrics were identified by the GBT algorithm in the machine-
learning model (Figure 8), but were not detected by MLR
(Figure 7). Parameters detected by MLR included BtoG and
BlueR, which aligned with eigenvalues along the second PC
axis, yet exhibited weaker trends against GVI and GreenA.
Therefore, MLR only identified two parameters (GreenA and
GVI) that aligned with trends in positive emotion score and
ENRI; it also identified two other parameters unrelated to
emotion scores. Overall, machine learning regression using the
GBT algorithm outperformed MLR in modeling emotions related
to landscape metrics.

3.5 Location-based emotion distribution
overlapping land uses

According to gradient boosted trees (GBT) modeling, it is
possible to predict emotional scores for the remaining
165 unselected parks. The spatial distribution of these scores

FIGURE 6
Spatial distributions of mosaic grids for positive (A) and negative (B) emotion scores and ENRI (C) in chosen parks of study area of Changsha.
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across all 165 parks is illustrated in Supplementary Figure S4.
Additionally, grid distributions were superimposed on land uses,
and the overlapping results are presented in Figure 10. When
compared with multiple linear regression (MLR) results, the GBT
model shows that high positive emotion scores are predominantly

found in the southern built-up areas of Changsha, with occasional
high scores in the northern parts as well (Figures 10A, B).
Conversely, higher negative emotion scores are predicted by GBT
in the eastern part of the study area, where MLR shows significantly
fewer high values (Figures 10C, D). GBT also suggests that high

FIGURE 7
Multivariate linear regression of positive (A) and negative emotion scores (B) and NERI (C) against landscape metrics of green space area (GreenA),
blue space areal ratio to host park area (BlueR), areal ratio of blue to green spaces (BTOG), and GVI. Error bars present standard errors towards the
zero line.

TABLE 2 Comparisons of regression performances using three machine-learning modelling algorithms for positive and negative emotional indexes and
ENRI.

Target variable Model RMSEa MSEb MAEc R2d

Positive Random Forest 0.5800 0.3364 0.3992 0.7731

AdaBoost 0.6737 0.4539 0.4421 0.6938

Gradient Boosting Trees 0.4103 0.1684 0.3355 0.8864

Negative Random Forest 0.4976 0.2476 0.4098 0.7118

AdaBoost 0.5325 0.2836 0.4355 0.6973

Gradient Boosting Trees 0.5371 0.2885 0.4406 0.7818

ENRI Random Forest 0.1680 0.0282 0.1127 0.6679

AdaBoost 0.1993 0.0397 0.1395 0.5326

Gradient Boosting Trees 0.1414 0.0200 0.1061 0.7649

Note:
aRMSE, root mean squared error.
bMSE, mean square error.
cMAE, mean absolute error.
dR2, determinant coefficient.
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Environmental Naturalness and Recreation Index (ENRI) levels
mostly occur near rivers, aligning with MLR findings
(Figures 10E, F).

3.6 Typical landscape description and
case design

GBT regression results identify positive emotions predominantly in
grids at the Changsha Ecological Zoo (Figure 1; Number 50; Table 1). A
typical view here includes a streetscape enriched with a high green
vegetation index (GVI) due to tree canopies over pedestrians
(Figure 11A), which serves as a basis for design prompts.

“Drawn in an overall comic style about a line of street trees being
planted along the sidewalk outside an urban forest park. The sky is
blue and road is light grey. It is a morning time when sunlight is
transmitted through dark-green tree canopies to the understory space
that is covered by alternatively sunlight and shade spots mosaiced
together. Tree canopies are connected together to be a long crown,
which looks large at the nearest side, shrinks to be smaller along black-
color iron fences of the park until invisible to the end of a street.
Canopies are in light-green color at the nearby side, and turns to be
darker and blacker at places in longer distance, until to be totally dark
at the furthest. Tree canopies account for over 60% area of a
streetscape. Most visual streetscape is occupied by connected tree
canopies, that result from canopies from trees in species of lacquer,
camphor, ulmus, Vervain, Elaeocarpus decipiens, pine, oak, and
Symplocaceae. Tree canopies are placed at the top layer which cover
back layers of metasequoia plants inside the park. The sidewalk is
paved along the neighborhood of a botanic park, where no buildings
can be seen.” The design result is shown in Figure 11B.

FIGURE 8
Magnitudes of feature importance of landscape metrics for positive (A) and negative emotion scores (B) and ENRI (C) predicted by the machine-learning
model using gradient boosting trees (GBT) algorithm.Only features with importance values >1.0 are listed as independent variables: GandB, green and blue space
area of a park; GtoI, ratio of green space area to impervious surface land area; ImpR, ratio of impervious surface area to host park area.

FIGURE 9
Nomograph of eigenvalues for the first and second principal
components (PC-1 and PC-2, respectively). Red font letters mark
emotion parameters and landscape metrics are marked in dark green
font. Abbreviations: VegH, vegetative height in green space of a
park; BtoI, ratio of blue space area to impervious land area of a park;
DEM, digital elevation map value.
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The Hunan Botanical Garden is identified by GBT as typically
evoking negative emotions (Figure 1; Number 44; Table 1). This
response is primarily due to extensive areas of dwarf plants on lawns,
grasslands, and near water bodies, which result in a low GVI with
visible buildings (Figure 11C).

“Drawn in an overall comic style about shrubs and weeds visible
behind iron fences of a large urban park, large areas of lawns and
wetland can be seen clearly inside the park, where no tree can be seen.
Plants are mainly in species of ferns, flowers, and saplings. Although
landscape inside the park looks enriched with greeneries and

FIGURE 10
Spatial distributions of positive (A, B), negative (C, D), and ENRI (E, F) in grids of all parks over land uses in Changsha regressed by machine-learning
GBT model (A, C, E) and multivariate linear regression (B, D, F).
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waterbody, most plants are dwarf both on land or in wetland and rare
of plants on ground account for occupation of visual view which is full
of blue sky and white clouds.”

The design can be seen in Figure 11D.
ENRI reflects a complex blend of positive and negative

emotions, typically experienced in Bafang Park (Figure 1;
Number 18; Table 1). This park is characterized by large open
green spaces with moderate to high GVI levels, and buildings visible
in the distance (Figure 11E). This setting can be used to prompt
further analysis.

“Drawn in an overall comic style. Large areas of forested lands are
distributed in a wide range across areas across black-color iron fences
of an urban park. Trees are mostly planted in lines both inside the
park and along a sidewalk outside park’s iron fences. Most lands
outside the park fences are covered by lawns, meadows, and
grasslands. Trees have large canopies in fresh green color in
nearby position with shadows at further places. Large canopies are
connected together to account for about 50% of visual view in a
streetscape along park’s fences. A waterbody can be seen behind
greeneries. The waterbody is a wetland with scattered green plants
over and blue water surface behind shrub plants. The floor is mainly
covered by grassland and lawns and nearly no impervious path or
road can be seen.”

The design can be seen in Figure 11F.

4 Discussion

4.1 Connectedness of perceived emotions

The concept of natural connectedness is significant for the level
of nature perceived and the corresponding emotional responses in
humans (Otamendi-Urroz et al., 2023). This is evident in how
humans emotionally react to landscapes with measurable
amounts of nature (Garau et al., 2024). In our study, we
measured perceived emotions using the emotion-nature ratio
index (ENRI), calculated as the logarithm of the ratio of positive
to negative emotion scores. Over 90% of ENRI values were positive,
reflecting a higher report of positive emotions compared to negative
ones. This finding aligns with observations in naturally preserved
parks in southeastern Spain (Garau et al., 2024) and in coastal
protected areas of the same region (Otamendi-Urroz et al., 2023).
Thus, human physiological parameters were more suitable to be
used for evaluating restorative effects than psychological factors (An
et al., 2019; Wen et al., 2023; Yu et al., 2018). Our self-reported data
were detected to have an acceptable correlation with facial
expression scores, and the latter was attracting an accumulating
number of followers who together gave a higher reliability than the
earlier one (Wang X. P. et al., 2023; Xin et al., 2024). Other research
utilizing facial expression scores also found predominantly positive

FIGURE 11
Typical streetscapes in chosen parks (A, C, E) with nature connectedness for positive (A, B) and negative emotions (C, D) and ENRI (E, F) which are
referred to for designing using OpenArt (B, D, F).
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emotional responses at city (Wei et al., 2021a), regional (Zhang et al.,
2021), and national levels (He et al., 2023b). These results support
theories such as stress recovery theory (SRT) and attention
restoration theory (ART), suggesting that people tend to
experience more positive emotions when they feel a connection
to nature. Contrarily, artificially built environments, like those with
extensive greenery in greenhouses, were linked to more negative
emotional responses (Garau et al., 2024; Otamendi-Urroz et al.,
2023). In our research, ENRI was particularly significant in park
landscapes with large green spaces and high green view index (GVI).
Crossover studies in heavily built environments have supported
these findings (Wei et al., 2021b; Yu et al., 2018), suggesting the
benefits of designing landscapes within buildings that promote a
strong connection to nature, as assessed using ENRI.

4.2 Landscape metrics that contribute to
emotional perceptions

The MLR results showed that BlueR significantly contributed to
ENRI by reducing negative emotion scores. Additionally, increasing
BtoG’s contribution could enhance positive emotions. Surprisingly,
GreenA had a minimal and negative impact on positive emotion
scores and showed no significant contributions to ENRI. PCA
verification suggested these findings were largely unreliable due
to their irrelevance to emotional scores. These metrics had strong
individual correlations with emotional scores, but their interactions
were nullified when contradicted by collinearity issues. Machine
learning regression models, which do not rely on linear
relationships, do not face these collinearity problems. It is
realistic to face challenges to increase the ratio of BlueR in urban
landscape which may need depressing ratio of GreenR. Stand area
and municipal input will be two solid obstacles to achieve
these benefits.

Generally, GBS represent a significant portion of accessible
nature in urban parks. Research suggests that the combination of
GBS plays a more crucial role in enhancing positive emotions than
either green or blue spaces alone (Wang R. Y. et al., 2023). Studies
also indicate that urban blue spaces are as beneficial as green spaces
for mental wellbeing (Helbich et al., 2019; Vöelker and Kistemann,
2015). Specifically, green spaces are more beneficial for positive
emotion in downtown areas with scattered, small patches, while blue
spaces enhance positive emotions in remote, rural areas with large,
continuous bodies of water (Wei et al., 2022a). In Changsha, the
Xiang River flows through the city in a latitudinal direction,
branching into several waterways in built-up downtown areas
(Figures 1, 2). Here, large green spaces are fragmented into
smaller, scattered patches. Parks near these blue spaces attracted
volunteers who reported both positive and negative emotions, with a
predominance of positive ones. According to GBTmachine learning
results, blue spaces had little direct impact on emotions but helped to
integrate a network of green spaces and impervious surfaces.
Buildings in these landscapes, characterized by extensive green
spaces but sparse vegetation, primarily influenced feelings of
sadness and reduced positive emotions.

In landscape metrics, the GVI significantly contributes to the
perception of positive emotions, demonstrating that the amount of
visible greenery in a streetscape is crucial for feeling connected with

nature. This aligns with the findings of Huang et al. (Huang et al.,
2022), who suggested that the ability to physically interact with
greenery is more significant for fostering positive sentiments than
merely having access to large green areas. Additionally, parks located
in regions with extensive impervious surfaces, such as densely
packed roads, typically display high Emotional Nature
Relatedness Index (ENRI) values. This suggests that GVI, when
accessible, can enhance positive emotions.

The methodology of multiple linear regression (MLR)
significantly differs from that of logistic regression in machine
learning modeling. The gradient boosting trees (GBT) algorithm
highlighted the beneficial effects of green spaces on emotional
wellbeing, findings that were supported by principal component
analysis (PCA). Similarly, Huang et al. (Huang et al., 2022) found
that both the size and GVI of green spaces are crucial for the positive
emotional responses of visitors to urban parks in Nanchang. Sun
et al. (2023) also observed that employees exhibit more positive
emotions in workplaces (Sun et al., 2023). Ma et al. (2024) with large
green spaces and high GVI. Moreover, noted that high-GVI
environments can enhance thermal comfort by moderating
increases in systolic blood pressure and heart rate, changes that
are associated with positive emotional responses to green spaces, as
confirmed by (Wen et al., 2023; Yu et al., 2018). Overall, contact with
green spaces, whether vertically or horizontally oriented, is
important for feeling connected to nature (Velázquez et al.,
2019). GBT-based machine learning models can more accurately
represent these effects compared to MLR.

4.3 Discrete results between MLR and
machine-learning modeling

Two regression systems demonstrated both divergence and
similarity in their findings. The most notable divergence was
observed with GreenA, which the multiple linear regression
(MLR) suggested negatively influenced the perception of positive
emotions. However, the Gradient Boosting Tree (GBT) algorithm
identified GreenA as having high feature importance for positive
emotions. This discrepancy arose from the technical limitations
under general linear model (GLM) rules, where GreenA was
impacted by its collinearity with the coefficient BtoG. BtoG
strongly influenced the positive emotion scores, stemming from
its impact on negative emotion scores. Collinearity typically results
in high mean squared error (MSE) in regressions (Marill, 2004), and
GLM lacks mechanisms to eliminate such errors. Conversely,
machine learning models, including GBT, are less affected by
multicollinearity due to their complex architectures, which
optimize procedures to control or reduce root mean squared
error (RMSE), including strategies to exclude multicollinear data
(Chan et al., 2022) inputs. This explains why variables like BtoG
were not selected for the GBT model. Another divergence involved
GVI, which MLR estimated as a driver of positive emotion scores
and negatively impacted scores in the GBT model. Although it is
possible for highly greened streets to evoke negative emotions, this is
less likely to occur frequently, as MLR suggested. The GBT model
indicated that while negative emotions could be perceived on high
GVI streets, it happened with lower probability compared to positive
emotions, leading GBT to assign high feature importance to GVI.
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This rationale applies similarly to GreenA’s contrasting results in
MLR and GBT, showcasing that machine learning models often
deploy more objective strategies to handle errors and assess
emotional impacts compared to MLR.

4.4 Theoretical base for cases of design

The case of design in our study was generated on the basis of
findings and inner relationships between human emotions and
perceptions to the nature in parks. These results can have more
practical implications than just being an exhibition of modelling
results. At the regional scale, our design disagreed with a rule that
was about to be recommended that the higher dose of nature in
environment the more positive sentiments can be perceived (Liu
et al., 2021b; Zhang et al., 2021). Our results, however, showed that
regions with high doses of nature in ambient environments can
evoke high scores of ENRI, but this accuracy was lower than results
found in regions with larger areas on impervious lands. Hence, in the
meaning of urban planning high dose of nature should be
considered more in the design of built environment if positive
sentiments were achieved for most of visitors. This can be
explained by the SRT theory as people living in cities tended to
attract more mental stresses; hence they may perceive higher
restorativeness when facing the nature compared to those living
in remote rural regions. Secondly, studies on horizontal planes of
GBS appeared to demonstrate that a large area of nature can
precondition the perception of positive emotions (Huang et al.,
2022; Liu et al., 2021b; Nasrabadi et al., 2023; Stamps and Naser,
1997). In design, however, the visible parts of green nature can
function to elicit positive emotions rather than a large and flat space
with low occupation of visible view by greeneries. This is important
for landscape architecture to arrange the trade-off of touchable
nature in greeneries between horizontal and vertical planes. This can
reflect outcomes ruled by the ART theory, which asserted that only
the touchable nature can attract and recover attention. Finally, the
ratio of visible green in landscape was indicated to be a stronger facet
in the design to attract positive emotions rather than other types of
nature. This can be referred to by policymakers to consider a higher
use of trees with large canopies along streets and large urban wetland
parks should not be encouraged actually.

4.5 Limitations of this study

Our study has three limitations. Firstly, Changsha lacks
significant elevation variation, which may explain why elevation
did not influence human emotions in urban parks. Studies in other
cities have suggested that elevation can impact park visitors’
emotions (Li et al., 2022b; Wang and Zhou, 2024; Zhang et al.,
2021). Further work is essentially needed to repeat our study in more
cities as variances may impact results found in a single city through
varied cultural and environmental factors among different cities.
Therefore, conducting our study in a different city might reveal
elevation effects on emotions. Secondly, the emotion scores were
assessed using a methodology previously employed in various
studies (Garau et al., 2024; Otamendi-Urroz et al., 2023), that
have been validated and passed tests in our study. This

methodology was not perfect because our data were collected in
a summertime and parks’ tourism may be limited to a special set of
emotions at this time of year. More time courses or seasons are
suggested to be tested in further works to promote the power of
usage. Thirdly, we found that machine-learning algorithms could
predict emotion scores with determinant coefficients over 50%, a
threshold acceptable for predictive studies. Even so, the employment
of deep learning algorithms may face challenges from overfit.
Nevertheless, the RMSE and MSE values were often higher than
0.1, suggesting that increasing the data input could help minimize
systematic errors. That is why we showed and compared predictive
results and mapped results together to show similarities of results
indicated by GBT and MLR. Future studies should explore more
machine-learning models to optimize these regressions.
Additionally, we designed a landscape embedding natural
elements using the OpenArt AI tool. This approach was not
widely accepted, indicating that it might be more effective to
compare AI-designed landscapes with those designed using
traditional artistic methods.

5 Conclusion

In pursuit of a sustainable GBS landscape that enhances
perceived emotions in urban parks, we moved beyond traditional
multiple linear regression (MLR) and applied selected machine-
learning algorithms. The machine-learning GBT regression,
validated through PCA, proved superior to MLR. It highlighted
the significant influence of green space connectivity on positive
emotions and the impact of impervious surfaces on negative
sentiments. The results demonstrated that landscapes promoting
positive emotions typically featured high Green View Index (GVI)
along streets bordered by large, open green spaces. As used for cases
of planning and designing, built environment in municipal areas on
impervious surfaces can be employed for inducing more positive
sentiments of visitors due to perceptions of more closeness with
nature. Large areas of green and blue spaces may not be so needed
for people who were seeking for restorative environments. High dose
of blue space in the nature and high occupation of sight view were
strongly suggested to inducing stronger positive sentiments.
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