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Lately, the ongoing issue of haze pollution in multiple cities across China has had
a profound impact on the residents’ wellbeing and overall health. The urgent
necessity to address haze pollution is undeniable. Meanwhile, the rapidly evolving
digital economy has sprung up as a pivotal driver for China’s economic growth,
providing innovative approach to tackle haze pollution. This research explores the
impact of the digital economy on haze pollution through utilizing the big data
pilot zone as a quasi-natural experiment. Panel data from 280 prefecture-level
cities in China is adopted, covering the period from 2011 through 2020. This
analysis incorporates various models, namely, difference-in-differences model
(DID), mediation effect model, and difference-in-differences spatial Durbin
model. The findings highlight the substantial contributions of digital economy
in alleviating haze pollution. Furthermore, these findings hold true even after a
series of rigorous robustness checks. The constraint influence of the digital
economy on haze pollution is particularly prominent in metropolitan areas,
cities with elevated administrative levels, primary environmental protection
cities, as well as economically developed cities. Financial development and
technological innovation serve as important mechanisms through which the
digital economy suppresses haze pollution. After accounting for spatial factors,
the digital economy exhibits consequential spillover effects, leading to substantial
inhibition of haze pollution in surrounding cities as well as locally. The novel
aspects of this paper are as follows: Firstly, it regards the establishment of big data
experimental zones as the exogenous policy shock of digital economy and
employs a multi period DID model to evaluate the impact of the digital
economy on haze pollution. Secondly, it explores the transmission pathways
through which the digital economy affects haze pollution from the perspectives
of financial development and technological innovation. Thirdly, it investigates the
heterogeneous characteristics of the impact of the digital economy on haze
pollution. Fourthly, it examines the spatial spillover effects of the digital economy
on haze pollution from the perspective of spatial econometrics.
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1 Introduction

Throughout the last 40 years of reform and opening up, China
has made impressive progress in economic growth, characterized by
a substantial rise in its gross domestic product (GDP) and cementing
its position as the world’s second-largest economy. Nevertheless,
this advancement has been accompannied by severe ecological and
environmental harm, with air pollutionmanifesting in frequent hazy
weather patterns. This issue has become a major concern as it
adversely affects the country’s economic performance (Wang F et al.,
2021). The 2022 Environmental Performance Index (EPI) Report
positions China 160th among 180 major economies concerning
overall environmental performance, with a score of 28.4. In relation
to air quality specifically, China ranks 157th with a score of 20.6
(Wolf et al., 2022). Moreover, the 2021 World Air Quality Report
indicates that the average concentration of PM2.5 in 143 cities out of
1,347 cities in East Asia is seven times upper than the target
recommended by the World Health Organization (WHO).
Importantly, all the 143 cities with excessively high PM2.5 levels
are located in China (Tan and Chen, 2022).To address this pressing
issue, the Chinese government has implemented targeted
procedures since 2013, including the Air Pollution Prevention
and Control Action Plan, the Three-Year Action Plan for
Winning the Battle for Blue Sky, and the Central Ecological and
Environmental Protection Inspection Work Regulations. Through
relentless efforts, the annual average concentration of PM2.5 has
been steadily decreasing. The 2022 China Ecological Environment
Report revealed that 37.2% of the 339 prefecture-level cities in China
have air quality exceeding standards, affecting 126 cities.
Additionally, 86 cities have PM2.5 level that exceed standards,
making up 25.4% of the total. The issue of hazy pollution not
only degrades air quality but also adversely affects urban traffic, daily
living, and public health, posing a significant challenge to China’s
sustainable development goals (Zhao et al., 2021).

Research on haze pollution has significant increased owing to its
profound harmful impact. An detailed analysis of the available
literature on haze pollution indicates that recent studies
predominantly revolve around its measurement (Yu and Wang,
2023), spatio-temporal evolution analysis (Zeng and Li, 2019; Zhang
et al., 2022a), population migration, health effects (Nguyen et al.,
2023; Wang K et al., 2021, Wang et al., 2023b), and influencing
factors (Liu and Xia, 2019; Wu and Zhang, 2019). Furthermore, the
investigation of factors influencing haze pollution has become the
focal point of extensive research within the field. In addition to
natural factors such as temperature (Zhang et al., 2015), wind
direction, and humidity, economic factors are significantly
correlated with haze pollution. The Environmental Kuznets
Curve (EKC) theory posits that environmental pollution varies
with per capita income. Specifically, in the early stages of
economic development, lower income levels are associated with
higher pollution levels, whereas higher income levels correlate with
lower pollution levels. This relationship creates an inverted “U”
shape between income and environmental pollution (Grossman and
Krueger, 1995). Building on the EKC theory, an increasing number
of scholars have integrated economic factors into its framework and
have empirically validated the existence of this inverted “U”
relationship between economic development and haze pollution
(Gan et al., 2021; Wang, 2023). Presently, studies have identified

several critical factors that contribute to haze pollution, including
population density and agglomeration (Wu and Yu, 2022; Zhu and
Zhao, 2021), technological innovation (Chen, 2022a; Liu, 2018),
industrial structure (Chen, 2022b; Ma and Cao, 2022), urbanization
(Li L et al., 2022; Yang et al., 2023), environmental regulation (Li J
et al., 2022), foreign investment (Guan et al., 2022; Li et al., 2016),
government support (Pang et al., 2020), and financial development
(Wang, 2023; Guo and Liu, 2021). Furthermore, due to the strong
diffusiveness and externality of haze pollutants, various factors may
have spatial spillover effects on haze pollution. For instance, Yufeng
Chen et al. investigated the spillover effects of industrial
agglomeration on haze pollution and further explored whether
industrial agglomeration could achieve a balanced development
between economic growth and environmental quality. The results
indicate that there is an inverted “U” relationship between industrial
agglomeration and haze pollution, with the indirect effects of spatial
spillover dominating this influence (Chen et al., 2022).

The essence of environmental issues can be distilled into the
challenges associated with production methods and lifestyle. The
digital economy, fueled by 5G, big data, and artificial intelligence,
transforms and enhances societal production, lifestyles, and
governance across multiple dimensions. It has increased the
efficiency of resource allocation throughout society, fostered
high-quality economic development, and emerged as a vital
engine of the modern economic system. To capitalize on the
considerable opportunities arising from the development of the
digital economy and to advance a data-centric digital economy,
major industrial nations worldwide have progressively implemented
big data development strategies. For example, the United States
issued its “Big Data Research and Development Strategic Plan” as
early as 2011, and Australia followed in 2013 with its “Public Service
Big Data Strategy”. Subsequently, both the United Kingdom and
France introduced their own big data development strategies to
further advance the digital economy (Liang and Shen, 2023). In
August 2015, China released the “Action Plan for Promoting Big
Data Development,”which specifically outlined the establishment of
national-level comprehensive big data pilot zones (hereinafter
referred to as big data pilot zones). The construction of the big
data pilot zone in Guizhou Province officially began in September
2015. In 2016, a second batch of pilot zones was established in the
Beijing-Tianjin-Hebei region, the Pearl River Delta, as well as in
Shanghai, Henan Province, Chongqing, and Shenyang. The primary
objective of these pilot zones is to foster industrial innovation and
development by fully utilizing data as a vital resource to facilitate
economic transformation and upgrading, which is regarded as a
crucial pathway for advancing the development of China’s digital
economy (Li and Liu, 2023).

The incorporation of the digital economy into economic
prosperity, industrial advancement, as well as societal life has
underscored the importance of harnessing its potential to support
environmental conservation and foster sustainable development,
which has garnered increasing attention in research. Therefore,
exploring the extent to which the digital economy contributes to
deterring air pollution caused by haze is paramount. If such a
deterrent role exists, exploring potential heterogeneity effects is
also necessary. Understanding the underlying mechanisms behind
the effects is imperative. Additionally, studying whether the impact
of the digital economy on haze pollution demonstrates spatial
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spillover effects would be meaningful. Research on these questions
can provide theoretical and practical sustenance for evaluating the
environmental effect of the digital economy on mitigating haze
pollution and designing relevant policies, which holds notable
theoretical and practical implications.

Drawing on the aforementioned information, the study utilizes a
quasi-natural experiment in the National Big Data Comprehensive
Pilot Zone, commonly referred to as the Big Data Experimental
Area, to probe the policy implications of the digital economy on haze
pollution utilizing the multi period Difference-in-Difference (DID)
model according to panel data from 280 prefecture-level cities in
China, covering the period from 2011 through 2020. Subsequently,
the research examines the heterogeneous effects of the digital
economy on haze pollution, considering various dimensions
including city size, administrative level, environmental protection
type, and level of economic development. Additionally, the study
analyzes the mediation mechanism of the digital economy’s impact
on haze pollution by incorporating two mediating variables:
financial development and technological innovation. Spatial
econometrics techniques are then applied to investigate the
spatial spillover effect of the digital economy on haze pollution.

This article makes significant contributions in several aspects:
Firstly, it utilizes big data experimental areas as exogenous policy
shocks to the digital economy and employs the multi period DID
model to evaluate the impact of the digital economy on
environmental pollution. This approach effectively alleviates
endogeneity issues caused by measurement errors in the digital
economy, providing a novel research direction for assessing the haze
pollution effects of the digital economy. Secondly, the paper explores
the transmission pathways of how the digital economy impacts
environmental pollution from the lenses of financial development
and technological innovation. The exploration helps uncover the
intrinsic mechanisms through which the digital economy influences
haze pollution, thus expanding the depth and breadth of research in
this field. Thirdly, the study examines the heterogeneity of the digital
economy’s impact on environmental pollution considering city size,
administrative level, environmental protection type, and economic
development level. This provides a more comprehensive analytical
perspective and policy insights on the connection between the digital
economy and haze pollution. Fourthly, this paper examines the
spatial spillover effects of the digital economy on haze pollution
from the viewpoint of spatial econometrics, expanding the
application field of the Difference in Differences model. The
research conducted by Zhao et al. (2023) and Zhou et al. (2021)
relates closely to the topic of this paper; however, the
aforementioned studies measure the digital economy using
indicators such as internet penetration rate, relevant employment,
related output, and mobile phone penetration rate, which may
inevitably introduce some measurement errors. In contrast, this
paper employs a DID model for causal effect identification,
providing a more accurate assessment of the impact of the digital
economy on haze pollution. Furthermore, the mechanism analysis
and heterogeneity analysis presented in this paper differ significantly
from those in the previous studies. Additionally, while those studies
also examined spatial spillover effects, this paper employs the
Difference-in-Difference Spatial Durbin Model (DIDSDM). This
model extends the traditional DID model to a spatial DID
framework, enhancing the understanding of the digital economy’s

impact on haze pollution and providing valuable insights for
policymakers. The structure of this study is organized as follows:
the second section entails a theoretical analysis and research
hypotheses; the third section adumbrates research design; the
fourth section encompasses empirical testing; and the fifth
section conducts an examination of the mechanisms involved.
The sixth section addresses expand research, specifically an
analysis of spatial spillover effects. Finally, the seventh section
consists of conclusions, policy implications and further research.

2 Theoretical analysis and research
hypothesis

2.1 The digital economy and haze pollution

The digital economy fundamentally refers to the utilization of
the internet and information communication technology to facilitate
the modernization of both the economy and society. The digital
economy has propelled the growth of digital industries, like
information and communication, as well as the infiltration of
digital technologies into traditional industries (Song et al., 2022),
which have improved the networked, digital, and intelligent aspects
of society (Guo B et al., 2022). Furthermore, while fostering high-
quality economic growth, the digital economy has also exhibited a
certain restrictive effect on haze pollution.

From the perspective of an enterprise, in alignment with the
boundaryless organization theory, the furtherance of the digital
economy facilitates rapid inter-enterprise exchange of
information, resources, creativity, and energy. The acceleration of
flow and production of diverse components allows enterprises to
respond promptly to environmental variations, expedite the
digitization of production, operation, and management processes
in a more energy-efficient manner, ultimately saving energy
consumption related to temporal and spatial factors (Zhu et al.,
2022). This is beneficial for significantly enhancing energy efficiency
and helping to curb haze pollution (Ashkenas et al., 2002).
Furthermore, the digital economy has propelled the application
of cutting-edge digital technologies in energy companies (Chen and
Xu, 2023). Energy enterprises have the capability to implement real-
time collection of production data, as well as scheduling and
distribution of energy. This functionality serves to alleviate the
challenges associated with regulating conventional energy peak
demand. Moreover, it promotes the advancement of new energy
sources, optimizes energy operations, and contributes to a
substantial increase in energy efficiency while simultaneously
reducing reliance on traditional fossil fuels (Hao et al., 2022).
Therefore, these advancements lead to energy savings and further
mitigation of haze pollution.

From the perspective of local residents, technological
advancements involving big data and “Internet+” e-commerce
platforms, resulting from the growth of the digital economy, have
significantly influenced their daily lives. These advancements have
not only significantly transformed their lifestyles, but also served as
catalysts for adopting more environmentally-friendly sustainable
practices (Wu et al., 2023; Yin et al., 2019). The advancement of
internet technology has propelled the ongoing growth of
e-commerce and smart logistics (Yang and Jia, 2022), rendering
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online shopping, e-learning, virtual tourism, and web conferencing
more accessible and trendy. To a certain extent, it has decreased
energy consumption and pollutant emissions. Furthermore, as
Internet technology continues to mature and Internet platforms
grow stronger, employees have the flexibility to work remotely from
their homes. This not only helps to save energy consumption in
office spaces but also contributes to a reduction in energy
consumption generated by commuting, thereby alleviating haze
pollution (Wang and Li, 2022). In addition, digital economy-
based shared mobility and intelligent transportation systems also
contribute to reducing haze pollution. By utilizing the Internet, these
systems can help lower vehicle energy consumption, enhance the
quality of public transportation services, and significantly improve
vehicle utilization and sharing rates (Yi et al., 2022). Simultaneously,
the real-time sharing of traffic information can reduce energy
consumption caused by traffic congestion, thereby helping to
alleviate haze pollution.

From the perspective of government regulation, the digital
economy has enhanced the oversight capabilities of
environmental regulatory authorities (Wu et al., 2023) and has
prompted the development of new strategies for haze pollution
management. Digital economy enable the dynamic and automatic
collection of data at every stage of the energy sector, allowing for
synchronized analysis. This facilitates the government’s
understanding of trends and price fluctuations in the energy
market (Bhattacharya et al., 2015). By implementing measures
such as pricing mechanism and subsidy programs, the
government effectively regulate energy consumption and reduce
the release of various air pollutants (Miao et al., 2022), thereby
curbing haze pollution. Additionally, the digital economy can
leverage information technology for real-time monitoring of a
wide range of pollutants, tracing their sources, and establishing
collaborative prevention and control measures. This strengthens the
supervision and regulation of enterprises’ daily production and
operations throughout the entire process and timeframe.
Consequently, it reduces the occurrence of companies concealing
pollution data to evade penalties and compels them to engage in
clean production activities, effectively curbing haze pollution (Sun
et al., 2022). Buiding upon the aforementioned analysis, the current
study posits the hypothesis below:

H1: The digital economy can substantially suppress haze pollution.

2.2 Digital economy, financial growth and
haze pollution

Within the digital economy, businesses are able to leverage
digital information to rapidly match the supply and demand of
funds, thus enhancing the efficiency of the financial supply-demand
matching (Shi and Sun, 2022), accelerating the flow of funds,
reducing transaction time and costs, and thus benefiting financial
development (Dong et al., 2022). Additionally, the digital economy
also utilizes artificial intelligence and big data to eliminate the ethical
hazards and adverse selection issues inherent in conventional
financial systems, enhancing the allocation of financial resources
and accelerating financial development. Following the reform and
amelioration of the financial sector, financial development has

emerged as a crucial component in the governance of regional
environmental pollution. Financial activities, particularly the
development of green finance, facilitates the effective transfer of
social resources between various sectors of society. It plays a critical
part in directing resources from high-pollution, high-energy
consumption industries to the environmental protection sector,
thereby becoming an important factor in restraining
environmental pollution (Nasir et al., 2019; Ren and Zhu, 2017).
Digital platforms are vital in assisting financial institutions to
identify companies and allocate financial resources towards
enterprises actively engaged in green research and development.
These platforms aid in excluding enterprises that have excessive
energy use and pollution, encouraging the adoption of clean energy
sources, decreasing reliance on coal, and enhancing energy and
industrial structures, ultimately contributing to the mitigation of
haze pollution (Teng and Ma, 2020; Zhu and Jing, 2020).
Meanwhile, financial development, especially in digital finance,
has broadened the coverage of financial services. By lowering the
threshold required for enterprises to access financing from
traditional financial institutions and markets, a large number of
customers previously excluded by traditional finance are now
integrated into the financial services system (Liu et al., 2021).
This inclusion facilitates enterprises in pursuing research and
development investments to enhance production processes, thus
assisting in the reduction of haze pollution through the adoption of
energy-saving technological advancements (Wan et al., 2023; Wu
et al., 2022) Based on the aforementioned information, a hypothesis
can be established:

H2: The digital economy can help mitigate haze pollution by
promoting financial development.

2.3 Digital economy, technological
innovation and haze pollution

The digital economy serves a pivotal part in boosting
technological innovation, particularly in the realm of green
technology (Hu, 2023). Specifically, it expands market
boundaries, stimulates the generation of novel ideas, fosters the
growth of emerging industries, services, and business strategies, and
accelerates the dissemination for fresh and explicit knowledge to
drive the rapid progress of technological innovation. In addition,
traditional economic forms have been ineffective in organizing
individuals’ scattered “tacit knowledge”. However, digital
economy offers an effective avenue for the dissemination of this
fragmented “tacit knowledge”, allowing more individuals to develop
new “tacit knowledge” and engage in technological innovation (Wu
et al., 2022). Alternatively, technological innovation can boost
productivity and resource employment efficiency, lessening the
input of production factors and mitigating the negative
environmental impacts of production (Lv et al., 2022).
Simultaneously, technological innovation can meliorate the
processing efficiency of contaminants through bolstering end-of-
pipe procedures. Overall, digital economy improves supply chain
efficiency, optimize resource allocation, incentivize enterprises to
allocate more resource for autonomous research and development,
accelerate the transformation of the industrial chain towards a low-
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carbon and environmentally friendly green chain, and thereby
promote technological innovation while indirectly curbing haze
pollution (Wang et al., 2022; Yu et al., 2021). Given the
aforementioned reasons, this paper posits the ensuing research
hypothesis:

H3: The digital economy can efficiently curb haze pollution through
the facilitation of technological innovation.

3 Research design

3.1 Model setting

In February 2016, the National Development and Reform
Commission, the Ministry of Industry and Information
Technology, and the Cyberspace Administration of China jointly
issued an approval letter for the establishment of a big data pilot
zone in Guizhou Province. Subsequently, in October of the same
year, approval was granted to initiate a second round of big data pilot
zones. The primary objective of setting up these big data pilot zones
is to expedite the implementation of the national big data strategy,
enhance coordination among regional big data infrastructures, and
promote the concentrated development of digital industrialization
and industrial digitalization, thereby allowing for an objective
assessment of the digital economy. In addition, the establishment
of big data experimental zones serves as a “natural experiment” in
the field of economics, which can alleviate potential endogeneity
issues and accurately identify the net effect of the digital economy on
haze pollution. Therefore, the study views the foundation of the big
data experimental zones as a quasi-natural experiment that can be
utilized to validate the effectiveness of the data-driven digital
economy in mitigating urban haze pollution in China. Drawing
on the research by Qiu and Zhou (2021) and Guo Y et al. (2022), and
considering that Guizhou Province officially launched the
construction of its big data pilot zone in September 2015, a multi
period DID model can be constructed to assess the net impact of the
digital economy on haze pollution. The specific baseline regression
model is described below:

Ln PM2.5it � β0 + β1DIGit + γZit + ηi + δt + εit (1)

In this model, the subscript “i” denotes various cities, while the
subscript “t” specifies the corresponding years. The variable LnPM2.5it
represents the magnitude of haze pollution in city i during year t. DIGit

represents a virtual variable signifying whether city i has established a
big data pilot zone in year t. The variable Zit signifies a collection of
control variables influencing urban haze pollution and change with city
i and time t. The variables ηi and δt indicate city fixed effects and year
fixed effects, respectively. The symbol εit represents the residual term.
The estimated coefficient β1 represents the policy impact of the big data
pilot zone on haze pollution. If β1 is substantially negative, it implies that
the digital economy has a substantial suppressive effect on
haze pollution.

Building upon the baseline regression, we adopt the mediation
effect testing method proposed by Wen and Liu (2020) to explore
the influence of the digital economy on haze pollution across the
pathways of financial development and technological innovation.
The following test equation is constructed:

Mit � α0 + α1DIGit + γZit + ηi + δt + εit (2)
Ln PM2.5it � φ0 + φ1DIGit + φ2Mit + γZit + ηi + δt + εit (3)

The mediating variable, denoted as M, comprises financial
development LnFIN and technological innovation LnPAT. The
remaining variables are explained as previously mentioned. If
both coefficients α1 and φ2 are significantly different from zero,
this implies that the validation of a mediation effect. If either α1 or φ2
is not significant, a Bootstrap test is conducted to ascertain whether
the equation α1×φ2 = 0 holds true. If α1×φ2 is significantly not equal
to zero, the mediation effect is established. Otherwise, the mediation
effect is not supported.

3.2 Variable setting

3.2.1 Explained variable
The explained variable in this study is haze pollution (LnPM2.5).

Common indicators used to measure haze pollution include SO2,
CO2, CO, TSP, API, PM2.5, or PM10. However, in the real scenario,
PM2.5, owing to its smaller diameter compared to PM10 and other
pollutants, is less likely to settle and is easier to observe using remote
sensing techniques (Song and Bian, 2019). It is also widely
recognized as a major contributor to haze pollution. Therefore,
this study selects PM2.5 as the measurement indicator for haze
pollution. Given the limited availability of comprehensive data on
PM2.5 concentrations in all prefecture-level cities in China and the
fact that the existing data only starts from 2012, it does not meet the
research requirements. Following the approach of Chen and Chen
(2018), this study utilized grid data on annual average
PM2.5 concentration in China from 2011 to 2020, as supplied by
the Atmospheric Composition Analysis Group at Washington
University in St. Louis. The data source can be accessed at the
following link: https://sites.wustl.edu/acag/datasets/surface-pm2-5/
#V5.GL.04. The data were then processed using ArcGIS software to
derive the annual average PM2.5 concentrations at the surface level
for 280 prefectural cities in China from 2011 to 2020.

3.2.2 Core explanatory variable
The core explanatory variable in this research is identified as the big

data pilot zone (DIG), where DIGit = treati×periodit. In this equation,
treati stands for a virtual variable for the experimental group, and
periodit represents a virtual variable indicating the establishment time of
the big data pilot zone. If a city is founded as a big data experimental
zone, the variable treati is set to a value of 1; otherwise, it is set to 0.
Given the actual construction progress of the big data pilot zone, this
paper assigns the policy time point for Guizhou Province to 2015 and
for other pilot provinces to 2016. Consequently, the time dummy
variable periodit for cities in Guizhou Province is set to 1 for the year
2015 and subsequent years, while the same variable for cities in other
pilot provinces is set to 1 starting in 2016 and thereafter. For all
remaining cities, periodit is assigned a value of 0.

3.2.3 Control variables
The pollution of urban haze is also influenced by various other

factors. To address the potential bias arising from omitted variables
in empirical studies and drawing from prior research, the following
control variables are selected: (1) economic development (LnGDP),
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assessed by the ratio of per capita GDP to total population in cities;
(2) population density (LnPOP), calculated by dividing the entire
urban population by the administrative area; (3) Industrial structure
(LnIND), quantified by the ratio of value added from the tertiary
industry to the secondary industry; (4) Government support
(LnGOV), assessed by the proportion of government public fiscal
expenditure to GDP; (5) Urbanization (LnURB), gauged by the ratio
of urban population to the total population; and (6) Openness to
international trade (LnTRD), measured by the overall value of goods
imported and exported by the city, converted into Chinese Yuan
based on the annual average exchange rate.

3.2.4 Mediator variables
According to the action mechanism theory, the study

incorporates two mediating variables: financial development
(LnFIN) and technological innovation (LnPAT). Financial
development is measured by analysing the year-end balance of
various RMB loans extended to financial institutions within the
city, while technological innovation is determined by the total
number of patent applications in the city.

The definitions of the aforementioned variables are illustrated
in Table 1.

3.3 Data sources and processing

Considering the availability of data, the research sample utilized in
this study consisted of panel data encompassing 280 prefecture-level
cities, covering the period from 2011 to 2020. The data employed in this
study mainly originated from various sources, including the annual
“China City Statistics Yearbook,” provincial statistical yearbooks,
certain cities’ National Economic and Social Development Statistical
Bulletins. Missing data were treated with linear interpolation to
supplement and complete the data. To address data dispersion and
minimize the detrimental effects of heteroscedasticity on equation
assessment, a logarithmic transformation was implemented for all
variables except the core explanatory variables. On one hand, the
Box-Cox test is utilized to evaluate the appropriateness of applying a
logarithmic transformation to the dependent variable. In this test, the

parameter θ has specific interpretations: a value of 1 indicates that no
transformation is applied; a value of 0 signifies that a logarithmic
transformation is used; and a value of −1 implies that a reciprocal
transformation is applied to the dependent variable. The Box-Cox test
rejects both θ=−1 and θ= 1while failing to reject θ= 0, thus supporting
the validity of taking a logarithmic transformation to the dependent
variable. On the other hand, the choice between a logarithmic and a
linear form for the right-hand side variables in the model primarily
depends on the goodness of fit, favoring themodel that exhibits a higher
adj. R2. The regression results reveal that when the right-hand side
variables are not transformed logarithmically, the adj. R2 is 0.9411.
Conversely, when a logarithmic transformation is applied, the adjusted
R2 rises to 0.9466. This suggests that employing the logarithmic
transformation for the right-hand side variables (excluding DIG) is
more appropriate.

4 Empirical test

4.1 Descriptive statistics

Following the defined variable settings mentioned above, the
experimental group comprised 57 prefecture-level cities in China
that established big data testing zones in 2016, while the control
group was composed of the remaining prefecture-level cities in the
research sample. Table 2 displays descriptive statistics for both the
explanatory and control variables. In the entire research sample,
consisting of 2,800 observations, there are 570 observations within
the experimental group and 2,230 observations within the control
group. Due to the substantial variations in city characteristics
between the two study samples, it is imperative to incorporate
control variables in the regression model to control these discrepancies.

4.2 Parallel trend test and dynamic
effects analysis

The primary requirement for applying the DID model is to meet
the parallel trends assumption, which stipulates that the trends of

TABLE 1 Definition of related variables.

Types of variables Variable name Variable
symbol

Variable description

Explained variable Haze pollution LnPM2.5 The average concentration of PM2.5

Explanatory variable Digital economy DIG Big data pilot zone

Control variable Economic development LnGDP The per capita GDP of a city

Population density LnPOP The ratio of total urban population to the administrative area

Industrial structure LnIND The ratio of value added from the tertiary industry to that of the secondary industry

Government support LnGOV The ratio of government public fiscal expenditure to GDP

Urbanization LnURB The ratio of urban population to total population

Openness to international trade LnTRD The city’s total imports and exports of goods

Mediator variable Financial development LnFIN The year-end balance of RMB loans from financial institutions

Technological innovation LnPAT The total number of patent applications

Frontiers in Environmental Science frontiersin.org06

Liu et al. 10.3389/fenvs.2024.1450448

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1450448


the explanatory variables for both the experimental and control
groups should be consistent before policy implementation Deng and
Zhang (2017). To investigate parallel trends and analyze dynamic
effects, we adopt the event study approach recommended by
Jacobson et al. (1993) and Lyu et al. (2019). Here is the explicit
model setting:

LnPM2.5it � β0 + ∑
5

k�−3
θktreati × yeark + γZit + ηi + δt + εit (4)

In this model, the variable yeark serves as a virtual variable
representing the year, where k is relative time of the big data pilot
zone establishment. The symbol θk represents the estimated
coefficient for the interaction term in the big data pilot area,
while the definitions of the remaining variables remain coherent
with those previously stated. Model (4) decomposes the interaction
term DIG in model (1) into the interaction between the

experimental group virtual variable “treat” and “year” for each
year within the study period. The coefficient θk captures the
differential effects between the treatment and control groups in
the big data pilot area compared to the base period. The coefficients
θ-1 to θ-3 indicate the effects from period 1 to period 3 prior to policy
implementation, θ0 represents the effect in the current period of
policy implementation, while θ1 to θ5 represent the effects from
period 1 to period 5 following policy implementation. According to
Equation 4, the parallel trend test, as depicted in Figure 1, was
conducted using regression analysis. The test uses the year 2011,
which represents the period prior to the establishment of the big data
experimental zone, as the base period. From Figure 1, it can be
observed that none of the evaluated coefficients of the interaction
terms θk before 2015 are statistically significant, revealing that prior
to the foundation of the big data pilot zone, the experimental and
control groups exhibited consistent trends in the explained variable,
without significant differences. Building upon the findings of the

TABLE 2 Descriptive statistics for the grouping of explained and control variables.

Variable Experimental group Control group Comparison of mean difference

N Mean SD N Mean SD

LnPM2.5 570 3.7461 0.4084 2,230 3.6045 0.3131 −0.1416***

LnGDP 570 10.8290 0.5508 2,230 10.6986 0.5319 −0.1304***

LnPOP 570 5.9910 1.1267 2,230 5.7112 0.8371 −0.2798***

LnIND 570 −.0565 0.4972 2,230 −.0805 0.4730 −0.0240

LnGOV 570 2.8368 0.3791 2,230 2.9252 0.4396 0.0884***

LnURB 570 4.0159 0.3247 2,230 3.9598 0.2590 −0.0561***

LnTRD 570 14.4768 2.3375 2,230 13.8275 2.0417 −0.6493***

Note: *** represent significance at the 1% level.

FIGURE 1
Parallel trend and dynamic effect.
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parallel trend test, it can be inferred that the research sample has met
the necessary requirement for the DID model. This outcome allows
for the opportunity to conduct further regression analysis.
Furthermore, the significance test revealed that the impact of
haze pollution in the year of the establishment of the big data
experimental zone, as well as in the subsequent 3 years, did not reach
statistical significance. This suggests that the suppressive effect of the
big data pilot zone on haze pollution may be delayed or have a time
lag. The estimated coefficient stabilized after 2018, suggesting that
the inhibition of haze pollution should have dynamic sustainability.

4.3 Baseline regression

Before conducting regression analysis, it is essential to test the
stability of the sample data to avoid spurious regression. Table 3

displays the results of the ADF Fisher PP test for the variables. All
variables, except for the policy dummy variable DIG, are significant
at the 1% level, which indicates the data is stationary. Furthermore,
this study utilizes Hausman test to determine whether a fixed effects
model or a random effects model is more appropriate. The test
results reveal that the Sargan-Hansen statistic is 174.602, with a
corresponding P-value less than 0.01. This allows for the rejection of
the null hypothesis in favor of the random effects model at the 1%
significance level. Therefore, this study opts for the fixed effects
model for the regression analysis.

Based to Equation 1, the regression results provided in columns
(1) to (7) of Table 4 showcase the assessment of the influence of the
digital economy on urban haze pollution using the DID model.
These columns consist of two cases: one case excludes control
variables, while the other employs a stepwise approach to
gradually incorporate control variables. To eliminate individual
and time variations, the DID model incorporates fixed effects for
cities and years. Moreover, cluster-robust standard errors are
employed to account for potential autocorrelation in the panel
data during the estimation of standard errors. In column (1),
which presents the estimation results without control variables,
the coefficient for the digital economy (DIG) is −0.0242. This
coefficient is statistically significant at the 5% level, which implies
that the decrease in haze pollution in the pilot cities is higher
compared to non-pilot cities. To ensure the robustness of the
findings, control variables including economic development level
(LnGDP), population density (LnPOP), industrial structure
(LnIND), government support (LnGOV), urbanization (LnURB),
and Openness to international trade (LnTRD) are gradually added
in columns (2) to (7). The DIG coefficient remains stable with
minimal variation and continues to be significantly negative.

TABLE 3 Stationarity test.

Variables ADF P-value Is it stable

LnPM2.5 1,698.9688 0 YES

LnGDP 1,062.1089 0 YES

LnPOP 1,099.6317 0 YES

LnIND 1,224.2821 0 YES

LnGOV 1,163.3743 0 YES

LnURB 1,040.6075 0 YES

LnTRD 1,362.4680 0 YES

TABLE 4 Baseline regression results on the influence of digital economy on haze pollution.

Variables (1) (2) (3) (4) (5) (6) (7) (8)

DIG −0.0242**
(0.0118)

−0.0283***
(0.0099)

−0.0193**
(0.0096)

−0.0189*
(0.0097)

−0.0191**
(0.0096)

−0.0211**
(0.0094)

−0.0210**
(0.0094)

−0.0198**
(0.0090)

LnGDP −0.1448***
(0.0172)

−0.1301***
(0.0174)

−0.1463***
(0.0188)

−0.1884***
(0.0274)

−0.1961***
(0.0270)

−0.1942***
(0.0279)

−0.1930***
(0.0274)

LnPOP −0.2852***
(0.0566)

−0.3077***
(0.0553)

−0.3207***
(0.0556)

−0.3198***
(0.0561)

−0.3187***
(0.0556)

−0.3563***
(0.0608)

LnIND −0.0343***
(0.0123)

−0.0323***
(0.0120)

−0.0341***
(0.0120)

−0.0344***
(0.0120)

−0.0357***
(0.0120)

LnGOV −0.0691**
(0.0327)

−0.0717**
(0.0326)

−0.0717**
(0.0324)

−0.0750**
(0.0329)

LnURB 0.0550 (0.0352) 0.0563 (0.0348) 0.0579*
(0.0342)

LnTRD −0.0030 (0.0052) −0.0030
(0.0049)

Constant 3.6358***
(0.0012)

5.1890***
(0.1845)

6.6756***
(0.3368)

6.9764***
(0.3456)

7.7047***
(0.4507)

7.5702***
(0.4722)

7.5811***
(0.4696)

7.7893***
(0.4893)

N 2,800 2,800 2,800 2,800 2,800 2,800 2,800 2,767

Adj. R2 0.940 0.9428 0.9438 0.9441 0.9445 0.9446 0.9446 0.9466

Note: *** indicates statistical significance at the 0.01 level, ** at the 0.05 level, and * at the 0.1 level. Robust standard errors are provided in parentheses. Subsequent tables are the same as this one.
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Additionally, the DID model may encounter issues of sample
selection bias, leading to biased estimation results. To enhance
the comparability between the treatment group and the control
group, we utilized propensity score matching (PSM), inspired by the
research ideas of Chen et al. (2024). This approach aimed to
eliminate sample selection bias, followed by regression analysis
using a multi period DID model (Zhang et al., 2022b). In this
analysis, control variables were treated as covariates, and the sample
data underwent caliper matching with a 1:2 ratio through PSM.
After the matching process, the bias rates for all covariates were
reduced to within 10%, demonstrating a robust matching effect.
Column (8) reports the regression results of the PSM-DID model,
showing that the estimated coefficient for DIG closely aligns with the
findings in column (7), and its significance remains unchanged.
Moreover, the application of the PSM method can lead to a reduced
sample size, potentially resulting in unbalanced panel data, which
may complicate further analyses. Thus, the subsequent research
utilizes a multi period DID model for the regression analysis. The
above results demonstrate that the growth of the digital economy
substantially suppresses urban haze pollution to some extent,
thereby confirming research hypothesis H1.

The regression analysis results in column (7) for the control
variables reveal the estimation coefficient for LnGDP is significantly
negative, providing evidence that as the level of regional economic
development rises, the public’s environmental awareness
strengthens. This finding aligns with the research conducted by
Deng and Zhang (2022). This, in turn, leads to constraints on
corporate pollution emissions through activities such as
purchasing green products and reporting environmental pollution
incidents. It also encourages government efforts in environmental
pollution control, thereby aiding in the mitigation of urban haze
pollution. Furthermore, the coefficient of estimation for LnPOP is
substantially negative, aligning with the findings reported by Liang
et al. (2017). This implies that increasing population density
promotes the positive externality of population agglomeration
effects, resulting in a decrease in urban haze pollution by means
of cost-saving measures and technological spillovers (Deng and
Zhang, 2022). The coefficient of estimation for LnIND is
substantially negative, suggesting that the technological spillover
effects resulting from the upgrading of industrial restructure can
foster energy efficiency and drive industries towards intelligent and
green development, ultimately contributing to the mitigation of haze
pollution. The estimated coefficient of LnGOV is significantly
negative, disclosing that government support plays a crucial role
in mitigating haze pollution. One plausible explanation for this
occurrence is that government support, under the constraint of
environmental performance assessment targets, has a discernible
effect in suppressing haze pollution. The coefficient of estimation for
LnURB is positive, but it does not reach statistical significance,
which suggests that increasing level of urbanization is linked to
aggravated haze pollution. However, whether urbanization
development can effectively mitigate haze pollution relies heavily
on the quality of urbanization. The long-standing characteristic of
urban industrial structure, which is predominantly composed of
secondary and heavy industries, remains challenging to completely
transform completely in the short term (Deng and Zhang, 2022).
The coefficient of estimation for LnTRD is negative, yet it is also not
statistically significant, which may be attributed to the possibility

that increasing foreign trade leads to an economic “lock-in effect”,
where urban economies remain stagnant in a cycle of processing
imported materials and exporting labor-intensive products (Zha
et al., 2022). Consequently, the slow progress in upgrading the
industrial structure inadequately alleviate urban haze pollution.

Linear regression predicts the mean of the dependent variable
given the independent variables. However, since the mean cannot
capture the properties of the entire distribution, modeling the mean
fails to adequately reflect the nonlinear relationships between the
independent and dependent variables. Furthermore, it cannot
account for how the influence of the independent variables on
the dependent variable varies across the overall distribution of
the dependent variable (Lee et al., 2023). Building on the
preceding analysis, this study further utilizes a panel quantile
regression model to investigate the nonlinear effects of the digital
economy on haze pollution. Table 5 presents the estimated results
for various quantiles within the distribution of haze pollution. The
estimated coefficients for DIG are significantly negative across the
30th to 90th quantiles of LnPM2.5, with their absolute values
increasing as the LnPM2.5 quantiles rise. This suggests that in
regions with more severe haze pollution, the digital economy has
a stronger effect on mitigating haze pollution.

4.4 Robustness test

4.4.1 Other matching methods
The results of the PSM-DID model estimation have been

reported in the baseline regression. However, variations in
estimated results may arise from the use of different matching
methods. To verify the robustness of the baseline regression
findings, we employ various matching methods for re-
examination. Given that PSM is ideal for cross-sectional data and
DID is more suitable for panel data, we follow the methodology
introduced by of Bai J et al. (2022), sequentially utilizing cross-
sectional matching and period-by-period matching to conduct
propensity score matching before estimating the DID model. The
cross-sectional matching method involves considering panel data as
cross-sectional data and directly matches the experimental cities
with the optimum control group that meets the shared sustainability
requirements, thereby creating a new dataset. Alternatively, the
technique of period-by-period matching matches the original
sample for each period and subsequently combines the matched
data vertically to generate a new panel dataset. Under the
aforementioned two matching methods, six new datasets are
obtained by using radius caliper matching, kernel matching, and
Mahalanobis distance matching. Using these datasets, the DID
model is estimated, and the PSM-DID regression results from
column (1) to column (6) in Table 6 are obtained. The findings
manifest that the DIG estimation coefficients under different
matching methods remain significantly negative, with only minor
differences compared to the baseline regression results. Thus, the
core conclusions remain robust.

4.4.2 Placebo test
According to counterfactual ideas, two placebo tests were

conducted. One approach entailed randomly assigning 57 cities
as the pseudo-experimental group, corresponding to the 57 pilot
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cities, while assigning the remaining cities as the control
group. Subsequently, a regression analysis was performed to
estimate the coefficient of DIG for the pseudo-treatment
group. To improve the efficacy of the placebo test, the procedure
was iterated 500 times, yielding 500 estimated coefficients of DIG for
the pseudo-treatment group and their corresponding P-values.

This allowed for the illustration of Figure 2, which depicts the
placebo test outcomes for the random pilot cities. From Figure 2, it
can be observed that the estimated coefficients of DIG for the
random pilot cities conform to a normal distribution, centered
around zero. The majority of the pseudo-treated cities show non-
significant DIG estimated coefficients. Additionally, the estimated
coefficients for DIG in column (7) of Table 4 are positioned at the
lower end of the distribution among the random pilot cities,
indicating a rare occurrence. Moreover, the baseline regression
model does not demonstrate significant issues related to omitted
variables, and the core conclusions remain robust. The other
approach is to randomly generate pilot cities and the
corresponding time when these cities are established. To delve
deeper into whether the outcomes of the baseline regression are
influenced by imperceptible factors, we followed the approach of Lu
et al. (2021) and randomly generated pilot cities along with their

corresponding establishment times. Through simulating the
randomization process of pilot cities as in the second approach,
we acquired the placebo test results depicted in Figure 3, mirroring
those in Figure 2. This suggests that the baseline regression model is
unaffected by unobservable factors, and the core conclusions
remain robust.

4.4.3 Addressing endogeneity concerns
To address potential endogeneity concerns, this study employs

instrumental variable method for analysis. Drawing on the existing
literature, urban topographical relief is selected as the instrumental
variable. Cities with more pronounced relief encounter elevated
costs and increased challenges in broadband deployment and 5G
base station construction, leading to weaker network signals and
diminishing the likelihood of the city evolving into a prominent data
experimental area.

However, topographical relief is a geographical condition not
directly related to haze pollution, meeting the exogeneity
requirement. Since topographical relief data is cross-sectional,
estimating model parameters is complex due to fixed effects.
Hence, the interaction term of topographical relief and year is
utilized as the instrumental variable for the big data experimental

TABLE 5 The results of panel quantile regression.

Variables
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90

DIG −0.0161
(0.0146)

−0.0175
(0.0117)

−0.0188*
(0.0097)

−0.0198**
(0.0084)

−0.0210***
(0.0079)

−0.0221***
(0.0083)

−0.0234**
(0.0098)

−0.0246**
(0.0118)

−0.0261*
(0.0148)

Control
variables

YES YES YES YES YES YES YES YES YES

City FE YES YES YES YES YES YES YES YES YES

Year FE YES YES YES YES YES YES YES YES YES

N 2,800 2,800 2,800 2,800 2,800 2,800 2,800 2,800 2,800

TABLE 6 PSM-DID robustness test results.

Variables
(1) (2) (3) (4) (5) (6)

Cross-sectional matching Period-by-period matching

Radius caliper
matching

Kernel
matching

Mahalanobis
distance matching

Radius caliper
matching

Kernel
matching

Mahalanobis
distance matching

DIG −0.0198** (0.0090) −0.0195**
(0.0090)

−0.0287** (0.0116) −0.0189** (0.0090) −0.0216**
(0.0091)

−0.0237** (0.0096)

Constant 7.7893*** (0.4893) 7.7908***
(0.4891)

8.0724*** (0.8581) 7.3488*** (0.4817) 7.5704***
(0.4833)

7.8714*** (0.5667)

Control
variables

YES YES YES YES YES YES

City FE YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

N 2,767 2,760 1,228 2,620 2,728 1,761

Adj.R2 0.9466 0.9467 0.9551 0.9476 0.9468 0.9508
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area or digital economy. Estimation is carried out using 2SLS, with
regression outcomes detailed in Table 7.

The F statistic for the first-stage regression is 17.98, which
exceeds 10, suggesting a vigorous correlation between the selected
instrumental variables and the endogenous variables, excluding the
weak instrumental variables problem. In the second-stage
regression, the estimated coefficient for DIG is −0.2453,
significant at the 5% level.

Furthermore, the P-value of the Kleibergen-Paap rk LM
statistic is 0.001, indicating no issue of weak instrument

identification. The Kleibergen-Paap rk Wald F statistic is
13.2210, exceeding the threshold value of 8.96 at the 15%
significance level, further confirming the vacancy of weak
instrumental variables. Based on these results, after
considering endogeneity issues, it is evident that the digital
economy still exhibit a significant inhibitory effect on haze
pollution. Additionally, the inhibitory effect is stronger
compared to the benchmark regression, suggesting that
neglecting endogeneity issues may underestimate the
inhibitory effect of digital economy on haze pollution.

FIGURE 2
Placebo test chart for random pilot city.

FIGURE 3
Placebo test chart for random pilot city and random pilot time.
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4.4.4 Testing for heterogeneous treatment effects
Recent research has identified that the estimation coefficients

derived from two-way fixed effects in multi period DID demonstrate
heterogeneous treatment effects. When treatment effects exhibit
heterogeneity, even if the parallel trend assumption is met, the
estimated results of the treatment effects may still be biased. In
recent years, several estimation methods have been developed to
address heterogeneous treatment effects. This paper builds on the
research of de Chaisemartin and D’Haultfoeuille (de Chaisemartin
and D’Haultfœuille, 2020) by designating individuals whose policy
treatment status changes before and after the implementation of the
policy as the treatment group, while those whose treatment status
remains unchanged are classified as the control group. By comparing
the actual outcomes of the treatment group after receiving the treatment
with their counterfactual outcomes, we can derive the treatment effect.
Following a weighting average, this analysis yields an unbiased estimate
of the policy switching effect (Xu and Sun, 2023). Utilizing the methods
of de Chaisemartin and D’Haultfoeuille, the average treatment effect of
the policy switch in the big data experimental zone is estimated to
be −0.0291, which is statistically significant. Figure 4 illustrates the
dynamic treatment effects of the big data experimental zone policy
across three periods preceding the pilot phase, the current period, and
the five subsequent periods. It is observed that the DIG estimated
coefficients are not significant prior to the implementation of the policy;
however, the effects of the policy gradually emerge following its
enactment. These findings are consistent with the magnitude of the
estimated coefficients obtained in the baseline regression.Moreover, the
dynamic effect graph of the estimated coefficients largely aligns with the
previously presented parallel trend graph, indicating the robustness of
the conclusions derived from the baseline regression.

4.4.5 Excluding the impacts of interference
principles

Other principles associated with the digital economy during the
observed period may have additionally influenced the haze pollution
in the pilot cities, thereby causing interference in the identification of

the haze pollution reduction effect in the big data experimental
zones. In addition to the big data pilot zones, the Smart City
established between 2012 and 2014, and the Broadband China
program executed in China between 2014 and 2016 is intricately
connected to the research. According to the methodology of Zhi and
Lu (2023), we simultaneously incorporate Smart City and
Broadband China experimental principles in the baseline
regression model and re-estimate the model parameters, as
demonstrated in the column (1) of Table 8. The coefficient of
estimation for DIG remains substantially negative at the 5% level,
while the estimated coefficients for the experimental principles of
Smart City and Broadband China are non-significant. This finding
suggests that the implementation of Smart City and Broadband
China pilot principles did not effectively reduce the impact on haze
pollution during the sample period.

4.4.6 Other robustness tests
This study categorizes other robustness tests into four aspects.

Firstly, we incorporate interaction terms between provincial fixed
effects and year fixed effects into the baseline regression to control
for the potential impact of imperceptible factors at the provincial
level that may vary over time and affect haze pollution. After
accounting for the potential impact of imperceptible elements at
the provincial level that may fluctuate with time, the outcomes of
estimation are presented in column (2) of Table 8. Secondly, we
adjusted the study interval to mitigate the potential influence of data
anomalies caused by the COVID-19 pandemic on our study
findings. Specifically, we narrowed the study period to cover the
years 2011–2019. The outcomes of estimation are exhibited in the
column (3) of Table 8. Thirdly, to further eliminate the impact of
outlier values of variables on the regression analysis, a two-tailed
winsorization was performed on the main variables, by truncating
them at the top and bottom 1% levels. The regression outcomes,
after applying winsorization to variables, are presented in column
(4) of Table 8. Fourthly, in light of the potential presence of weak
pre-existing parallel trends, we employ the synthetic control

TABLE 7 Endogeneity estimation results.

Variables
(1) (2)

First-stage Second-stage

IV −0.0070*** (0.0019)

DIG −0.2453** (0.1159)

Constant 4.6417* (2.6696) 6.1411*** (0.5740)

Control variables YES YES

City FE YES YES

Year FE YES YES

Kleibergen-Paap rk LM statistic 14.7060 [0.0001]

Kleibergen-Paap rk Wald F statistic 13.2210
{8.96}

N 2,800 2,800

Adj.R2 0.5350 0.9230

Note: The P-value for the Kleibergen-Paap rk LM, statistic is shown in square brackets, and the 15% critical value for the Stock-Yogo weak identification test is shown in curly brackets for the

Kleibergen-Paap rk Wald F statistic.
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difference-in-differences (SC-DID) model introduced by
Arkhangelsky et al. (2021). This model incorporates individual
and time weights to match the pre-trends of both the treatment
and control groups while simultaneously accounting for both pre-
and post-treatment periods. This approach mitigates the
dependence on the parallel trends assumption. The estimation
results from the SC-DID model can be found in column (5) of
Table 8. Fifthly, we replaced the dependent variable. Considering
that the causes of haze pollution and other pollutants share common
origins, the digital economy should also have similar policy effects
on the emissions of pollutants other than PM2.5. To further ensure
the robustness of the baseline regression, Table 9 presents the
regression results regarding the impact of the digital economy on
various indicators: industrial sulfur dioxide (LnSO2), carbon dioxide

(LnCO2), industrial smoke (LnSmoke), inhalable particulate matter
PM10 (LnPM10), and the air quality index (AQI) (LnAQI). It is
noteworthy that data for the air quality index (AQI) is relatively
complete only after 2015; therefore, the regression results in column
(5) of Table 9 are based on sample data from 2015 to 2020. The
coefficient of estimation for DIG in the regression results still
remains significantly negative, providing further evidence of the
robustness of the baseline regression outcomes.

4.5 Heterogeneity analysis

The aforementioned baseline regression outcomes reveal that
the digital economy substantially suppresses urban haze pollution.

FIGURE 4
Dynamic effect graph of the estimated coefficients.

TABLE 8 Elimination of simultaneous interference policies and other robustness test results.

Variables
(1) (2) (3) (4) (5)

Excluding interference
policies

Controlling provincial
time trends

Changing research
period

Two-sided
winsorization

SC-DID

DIG −0.0204** (0.0094) −0.0188* (0.0107) −0.0174** (0.0086) −0.0195** (0.0096) −0.0232***
(0.0079)

Smart City −0.0176 (0.0151)

Broadband
China

0.0019 (0.0094)

Constant 7.5894*** (0.4715) 3.8277*** (0.4272) 7.1788*** (0.4748) 7.5051*** (0.4993)

Control
variables

YES YES YES YES YES

City FE YES YES YES YES YES

Year FE YES YES YES YES YES

N 2,800 2,800 2,520 2,800 2,800

Adj. R2 0.9446 0.9823 0.9440 0.9429
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However, the influence caused by the digital economy on haze
pollution may differ according to city size, administrative level,
environmental preservation type, and degree of economic growth.

4.5.1 City size
Indeed, city size may indeed influence the suppressive effect

exerted by the digital economy on haze pollution. According to the
median population size of the cities in our sample, we categorize
cities with a population size above the median as large cities, and
those below the median as medium-small cities. Separate
econometric regressions were conducted for each category, and
the outcomes are demonstrated in columns (1) and (2) of
Table 10. According to the regression outcomes, the estimated
coefficient for DIG in large cities is substantially negative.
However, in small and medium-sized cities, the coefficient is
negative but not statistically significant. This implies that the
suppressive effect of the digital economy on haze pollution is
more pronounced in large cities when compared to small and
medium-sized cities. These findings can be attributed to the
actuality that larger cities possess inherent advantages in view of

technological innovation, institutional environment, and technical
support (Wang et al., 2023a), which facilitate greater economies of
scale and agglomeration effects. The expeditious growth of the
digital economy has consequently enabled larger cities to avail
themselves of enhanced digital infrastructure and a heightened
degree of networked and intelligent systems. This facilitates the
exchange and distribution of diverse data and information within
the urban environment, promoting continuous improvements in
environmental governance, and ultimately suppressing haze
pollution (Bai F et al., 2022).

4.5.2 Administrative level of city
The administrative level of a city reflects, to some degree, the

level of advancement in the digital economy. Considering the
considerable discrepancies in economic growth, industrial
structure, and technological innovation among municipalities
directly under the central government, provincial capitals, vice-
provincial cities, and regular cities (Guo B et al., 2022), the
strength of the influence exerted by the digital economy on haze
pollution may differ in view of the city’s administrative level. In this

TABLE 9 Replacing the dependent variable.

Variables
(1) (2) (3) (4) (5)

LnSO2 LnCO2 LnSmoke LnPM10 LnAQI

DIG −0.3680*** (0.0929) −0.0210** (0.0094) −0.2851*** (0.1047) −0.0267** (0.0114) −0.0253* (0.0152)

Constant 10.2350*** (2.4872) 7.5811*** (0.4696) 10.4605*** (3.7083) 6.3274*** (0.4770) 3.1456*** (0.7920)

Control variables YES YES YES YES YES

City FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

N 2,800 2,800 2,800 2,800 1,680

Adj. R2 0.8700 0.9446 0.7970 0.9554 0.9219

TABLE 10 Outcomes for heterogeneity analysis.

Variables
(1) (2) (3) (4) (5) (6) (7) (8)

City size Administrative level of
city

City environmental
protection type

Level of city economic
development

Large Medium-
small

High-
level

Low-
level

Key Non-key Developed Underdevel-
oped

DIG −0.0298**
(0.0128)

−0.0208 (0.0134) −0.0586**
(0.0259)

−0.0163*
(0.0096)

−0.0203*
(0.0107)

−0.0177
(0.0220)

−0.0286***
(0.0105)

−0.0160 (0.0150)

Constant 8.0699***
(0.8681)

7.4699***
(0.4989)

9.6205***
(1.8831)

7.7324***
(0.4632)

7.2753***
(0.7294)

7.8877***
(0.6236)

7.4843*** (0.5608) 8.2232*** (0.7994)

Control
variables

YES YES YES YES YES YES YES YES

City FE YES YES YES YES YES YES YES YES

Year FE YES YES YES YES YES YES YES YES

N 1,310 1,490 350 2,450 1,660 1,140 1,318 1,482

Adj. R2 0.7942 0.7821 0.7866 0.7921 0.9407 0.8975 0.7938 0.7856
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context, regular cities are categorized as low-level cities, whereas the
other cities are categorized as high-level cities. The outcomes from
the grouped regression analysis based on city administrative level are
demonstrated in columns (3) and (4) of Table 10. The regression
analysis reveals that the coefficient of estimation for DIG in high-
level and low-level cities is significantly negative. However, the
estimated coefficients for the digital economy in higher-level
cities are more significant. Moreover, the absolute magnitude of
the estimation coefficient for high-level cities is much greater than
that for low-level cities. This indicates that the inhibitory impact
exerted by the digital economy on haze pollution is likely to be
stronger in high-level cities rather than low-level cities. One possible
reason is that higher-level cities enjoy more favorable conditions and
support, including preferential policies from the central
government, the ability to integrate and aggregate data resources
to boost the growth of big data experimental zones. Therefore, they
are more conducive to the release of the suppressing effect exerted by
the digital economy on haze pollution.

4.5.3 City environmental preservation type
In 2018, the Chinese government released the Three-Year

Action Plan for Winning the Blue Sky Defense Battle. This
action plan identified 168 primary environmental protection
cities and developed a series of initiatives aimed at significantly
reducing PM2.5 concentrations, decreasing the number of heavily
polluted days, and improving the overall air quality within 3 years.
In light of this action plan, the question arises: Can the digital
economy efficiently decrease haze pollution in these primary
environmental preservation cities? In light of the action plan, the
research sample cities were classified into primary environmental
preservation cities and non-primary environmental preservation
cities. Columns (5) and (6) of Table 10 exhibit the outcomes of
heterogeneity regression in light of the environmental preservation
types of these cities. The results reveal that the estimation coefficient
for DIG in primary environmental preservation cities is substantially
negative, while in non-primary environmental preservation cities,
although the estimation coefficient for DIG is negative, it is
statistically non-significant. These findings demonstrate that the
digital economy can significantly mitigate haze pollution in primary
environmental preservation cities. However, its influence may not be
statistically significant in non-primary environmental preservation
cities. The possible explanation for these findings is that primary
environmental preservation cities have intensified efforts in regional
industrial layout adjustments, promoting industrial transformation
and upgrading. Consequently, the synthesis of the digital economy
with the growth of these new industries is higher, facilitating the
release for the inhibiting effects on haze pollution caused by the
digital economy.

4.5.4 Degree of city economic growth
Variations in the degree of urban economic growth can lead to

varying effects exerted by the digital economy on haze pollution. For
the purpose of this study, the sample cities were categorized into two
groups: economically developed cities and underdeveloped cities.
This categorization was in light of the median per capita gross
domestic product of each city. Cities with a per capitaGDP above the
median were classified as economically developed cities, while those
below the median were classified as underdeveloped cities. Separate

regression analyses were performed for each category, and the
corresponding outcomes are demonstrated in columns (7) and
(8) of Table 10. The estimation coefficients for DIG in
economically developed cities are substantially negative, implying
that the digital economy significantly decreases haze pollution in
these cities. However, the coefficients for underdeveloped cities,
although negative, do not demonstrate statistical significance,
suggesting that it is insignificant for the digital economy to
decrease haze pollution in underdeveloped cities. One plausible
explanation for these findings is that well-established digital
infrastructure and advanced technological capabilities in
economically developed cities enable them fully harness the
inhibiting impacts of the digital economy on haze pollution. This
is especially evident when these cities have ample access to abundant
digital innovation talents and capital. On the other hand,
underdeveloped cities have relatively limited digital infrastructure
and a slower pace of industrial structure upgrading. They are more
dependent on resource-intensive economic development and often
bear the burden of high-energy-consuming and polluting industries
transferred from economically developed regions. The combination
of these multiple detrimental factors results in the failure of the
digital economy to efficiently curb haze pollution in underdeveloped
areas (Kong et al., 2022).

5 Test of action mechanism

To further explore the underlying reasons for the haze pollution
mitigation effect achieved by the digital economy, an action effect
model was employed to probe the mechanisms by which the digital
economy influences haze pollution in cities, building upon the
theoretical framework proposed earlier. Specifically, we explored
two pathways: financial development and technological innovation.

The action mechanism of how the digital economy affects haze
pollution through financial development was tested according to
Equations 2, 3. The test outcomes were provided in columns (1) and
(2) of Table 11. The estimation coefficient for DIG in column (1) is
substantially positive at the 10% level, which implies that the digital
economy has the potential to significantly enhance financial
development. In the past few years, cutting-edge science and
technologies like big data, artificial intelligence, and cloud
computing have facilitated the expansion for financing channels
for businesses, reduced financing costs, and greatly accelerated
financial development. The coefficient estimate for LnFIN in
column (2) is substantially negative at the 5% level, implying that
a higher degree of financial growth has a positive fluence for
decreasing haze pollution. Furthermore, the coefficient estimate
for DIG in column (2) remains substantially negative at the 5%
level and exhibits the consistent sign with the product term between
the estimated coefficient for DIG in column (1) and LnFIN in
column (2). These findings suggest a significant partial mediation
effect of financial development between the digital economy and
haze pollution. Given these findings, hypothesis H2 is validated,
further bolstering the claim that the digital economy can effectively
decrease haze pollution through the facilitation of financial
development.

Similarly, Table 11 depicted the test results in columns (3) to (4),
which examine the usage of technological innovation as mediating
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variables to investigate the potential of technological innovation in
acting as a mediation for the fluence of the digital economy on haze
pollution. The estimation coefficients for DIG in columns (3) is
substantially positive severally at the 1% level, reflecting that the
digital economy has a beneficial influence on technological
innovation. The estimation coefficients for LnPAT in column (4)
is substantially negative at the 1% levels, reflecting that an increment
in technological innovation is beneficial for suppressing haze
pollution. Further analysis reveals that the estimation coefficient
for DIG in column (4) is substantially negative at the 10% level, and
it is consistent with the sign of the product term between the
estimation coefficient of DIG in column (3) and LnPAT in
column (4). These findings suggest a significant partial mediation
effect of technological innovation. Therefore, hypothesis H3 is
validated, supporting the claim that the digital economy can
effectively repress haze pollution through boosting technological
innovation.

Given that financial growth and technological innovation are not
entirely independent, there may be a certain correlation between them.
Therefore, conducting separate examinations for the mediation effects
of these two variables may lead to the contamination of the mediating
effect of the other variable. To enhance the precision of testing the net
mediating effects of financial growth and technological innovation,
financial growth and technological innovation are included in Equation
3 for estimation. The outcomes can be observed in columns (5) of
Table 11. In column (5), both the estimation coefficients of LnFIN and
LnPAT are substantially negative at the 1% level. Additionally, the DIG
coefficient is also substantially negative at the 5% level. These outcomes
imply that in the context of a multiple mediating effects model, the
actionmechanism bywhich the digital economy curb haze pollution via
financial growth and technological innovation still holds true, further
confirming research hypotheses H2 and H3.

6 Further research: analysis of spatial
spillover effects

Existing studies have indicated that there are significant spatial
correlation characteristics linking haze pollution and the digital

economy driven by Internet development (Li andWang, 2022; Zhao,
2021). Neglecting spatial factors may incur biased estimation results.
Accordingly, the study further applies a spatial econometric model
to inspect the impact of the digital economy on the spread of haze
pollution within the spatial domain. Considering that the spatial
correlation of haze pollution and digital economy development may
result from either the variables themselves or the error term of the
estimation outcomes, following Xu et al. (2022), we employ a
difference-in-difference spatial Durbin model (DIDSDM) to test
local and spatial spillover effects exerted by the digital economy on
haze pollution. The DIDSDM is illustrated below:

Ln PM2.5it � β0 + ρW × LnPM2.5it + β1DIGit + γZit

+ θ1W × DIGit + θ2W × Zit + ηi + δt + εit (5)

In the above equation, W depicts the spatial weight matrix,
comprising the neighbor weight matrix W1, geographic distance
weight matrix W2, economic distance weight matrix W3, and the
nested weight matrix that combines geographic distance and
economic distance, denoted as W4. The symbol ρ denotes the
spatial regression coefficient for the explanatory variable, haze
pollution, while θ1 and θ2 respectively stands for the spatial
regression coefficients for the DIG and the control variables.
All remaining symbols adhere to the previously
described notation.

In general, the presence of spatial correlation in the explained
variable is a fundamental prerequisite for adopting a spatial
econometric model. In view of this, we initially verify the
existence of spatial correlation for haze pollution. The global
Moran’s I for haze pollution obtained using the W1 neighbor
weight matrix can be seen in Table 12. The data in Table 12
pinpoints a substantially spatial positive correlation in annual
haze pollution. For a more in-depth exploration of the spatial
correlation characteristics for haze pollution, scatter plots
depicting the Moran’s I for haze pollution in 2011 and 2020 were
generated, as exhibited in Figures 5, 6. The scatter plots indicate that
the majority of cities in China are concentrated in the 1st and 3rd
quadrants, while just a minority are in the 2nd and 4th quadrants.
This suggests the existence of spatial dependence and heterogeneity

TABLE 11 Test outcomes of action mechanism.

Variables
(1) (2) (3) (4) (5)

LnFIN LnPM2.5 LnPAT LnPM2.5 LnPM2.5

DIG 0.0390* (0.0236) −0.0197** (0.0095) 0.1239*** (0.0469) −0.0169* (0.0098) −0.0159** (0.0076)

LnFIN −0.0344** (0.0173) −0.0295*** (0.0107)

LnPAT −0.0338*** (0.0078) −0.0326*** (0.0055)

Constant 10.3386*** (1.1490) 7.9372*** (0.4858) −7.6960*** (2.2582) 7.3213*** (0.4653) 7.6353*** (0.3354)

Controls variables YES YES YES YES YES

City FE YES YES YES YES YES

Year FE YES YES YES YES YES

N 2,800 2,800 2,800 2,800 2,800

Adj R2 0.9836 0.9448 0.9670 0.9454 0.9456
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in haze pollution, highlighting the necessity of considering spatial
factors and utilizing spatial econometric models for analysis.

Owing to the regression coefficients for the DIDSDM not
capturing the marginal effects of the explanatory variable or the
spatial spillover effects, interpreting these coefficients directly is
deemed meaningless. It is crucial to decompose the regression
coefficients into local effects, spatial spillover effects, and
overarching effects by adopting partial differential equations. In
line with this, the study does not discuss the regression coefficient for
the DIDSDM. Instead, based on the estimates from Equation 5 it
provides the decomposition results of the DIG estimation
coefficients as exhibited in Table 13, highlighting that irrespective
of the sort of spatial weight matrix utilized, the impact of the big data
experimental zone on urban haze pollution is markedly negative.
This finding implies that the local digital economy has a
considerable suppressing effect on haze pollution in the local city,
which aligns with the baseline regression outcomes mentioned

earlier. Concurrently, the spatial spillover effects are also
significantly negative, implying that the digital economy has a
notable suppressing effect on haze pollution in neighboring cities.
Moreover, the overarching effects are substantially negative as well,
signifying that the digital economy helps to curb regional haze
pollution as a whole.

7 Research conclusions, policy
implications and further research

7.1 Research conclusions

This study utilizes panel data from 280 prefecture-level
cities in China spanning from 2011 to 2020 to empirically
explore the impact and action mechanism caused by the
digital economy on haze pollution. Furthermore, it also
investigates the spatial spillover effects exerted by the digital
economy on haze pollution.

On the basis of the study conducted, the following
conclusions can be drawn: Firstly, research findings have
demonstrated that the digital economy plays a fundamental
part in significantly inhibiting haze pollution. The above
research findings still hold true after an array of robustness
examinations. Secondly, the influence caused by the digital
economy in descending haze pollution is more pronounced in
large cities, high-level administrative cities, key environmental
protection cities, and economically developed cities. Thirdly, the
digital economy can mitigate haze pollution through two
pathways: financial development and technological innovation.
Fourthly, in addition to its local reduction of haze pollution, the
digital economy also exhibits spatial spillover effects, which
implies that it considerably contributes to declining haze
pollution in neighboring cities. Accordingly, it plays a pivotal
part in diminishing regional haze pollution as a whole.

TABLE 12 The global Moran’s I for haze Pollution.

Year Moran’s I E(I) Sd(I) Z P-value

2011 0.7939 −0.0036 0.0406 19.6394 0.0000

2012 0.7663 −0.0036 0.0406 18.9556 0.0000

2013 0.7943 −0.0036 0.0406 19.6375 0.0000

2014 0.7431 −0.0036 0.0406 18.3816 0.0000

2015 0.7878 −0.0036 0.0406 19.4737 0.0000

2016 0.7908 −0.0036 0.0406 19.5483 0.0000

2017 0.7590 −0.0036 0.0406 18.7706 0.0000

2018 0.7801 −0.0036 0.0406 19.2847 0.0000

2019 0.7850 −0.0036 0.0406 19.4004 0.0000

2020 0.7670 −0.0036 0.0406 18.9603 0.0000

FIGURE 5
2011 years.
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7.2 Policy implications

In accordance with the aforementioned findings, the following
policy implication can be drawn.

Firstly, the potential of the digital economy for lessening haze
pollution should be fully leveraged. Consolidating the foundation for
the development of the digital economy, it is vital to accelerate the
development of new infrastructures like big data centers, 5th generation
base stations, artificial intelligence, and the industrial internet.
Accelerating the pace of digital industrialization and the
digitalization of industries provides a strong guarantee for
harnessing the benefits of the digital economy to abate haze pollution.

Secondly, due to the heterogeneity in the action of the digital
economy on haze pollution influenced by urban characteristics, the
Chinese government should focus on tailored measures in the
follow-up support for the development of the digital economy,
marked by the construction of big data experimental zones.

Based on comprehensive considerations of multiple factors such
as city size, administrative level, environmental protection type, and
economic development level, appropriate strategies and models for
reducing haze pollution for the digital economy should be cultivated
building upon local conditions and unique characteristics.

Thirdly, it is crucial to establish a multidimensional and multi-level
financial support system. This will expedite the development of resource-
efficient and environmentally friendly societies. Additionally, the
government should foster a conducive atmosphere for intellectual
property protection, provide tax incentives and financing channels for
companies’ research and development investments. These measures will
incentivize enterprises to increase their research, development,
application, and promotion of clean production technologies, thus
leading to the evident manifestation of haze pollution reduction
effects through technological innovation driven by the digital economy.

Finally, given the considerable spatial spillover effects generated
by the digital economy, there is a critical need to enhance

FIGURE 6
2020 years.

TABLE 13 Decomposition of marginal effects in the difference-in-difference spatial Durbin model.

Variables
(1) (2) (3) (4)

W1 W2 W3 W4

Local effect −0.0112** (0.0052) −0.0289*** (0.0076) −0.0207***
(0.0077)

−0.0297*** (0.0076)

Spatial spillover effect −0.1131*** (0.0410) −0.0964** (0.0395) −0.0240** (0.0101) −0.1088** (0.0446)

Total effect −0.1243*** (0.0431) −0.1253*** (0.0417) −0.0447*** (0.0121) −0.1386*** (0.0468)

Control variables YES YES YES YES

City FE YES YES YES YES

Year FE YES YES YES YES

N 2,800 2,800 2,800 2,800

R2 0.0574 0.0015 0.0378 0.0018
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communication and cooperation among cities through convenient
and efficient digital platform. This can facilitate the transfer of funds,
technology, knowledge, and experiences, harnessing the spatial
spillover effect of the digital economy to mitigate haze pollution.

7.3 Further research

While this study offers several valuable policy insights, it also has
space for further research. Firstly, this study considers the establishment
of big data pilot zones as a quasi-natural experiment, but it does not
measure the digital economy levels in the cities. Future research should
develop a scientifically sound indicator system and evaluation methods
to assess the digital economy in these urban areas and validate the
conclusions drawn in this study. Secondly, this study explores the
mechanisms by which the digital economy mitigates haze pollution,
focusing on financial development and technological innovation.
However, other transmission pathways may also exist. Future
research could investigate additional alternative mechanisms through
which the digital economy influences haze pollution. Finally, this study
utilizes panel data at the urban level in China as the research subject,
which limits its ability to reveal the mechanisms and heterogeneity of
the digital economy’s impact on haze pollution at the micro-enterprise
level. Future research could attempt to conduct relevant studies from
the perspective of micro-enterprises.
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