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Predicting carbon dioxide emissions is crucial for addressing climate change and
achieving environmental sustainability. Accurate emission forecasts provide
policymakers with a basis for evaluating the effectiveness of policies,
facilitating the design and implementation of emission reduction strategies,
and helping businesses adjust their operations to adapt to market changes.
Various methods, such as statistical models, machine learning, and grey
prediction models, have been widely used in carbon dioxide emission
prediction. However, existing research often lacks comparative analysis with
other forecasting techniques. This paper constructs a new Discrete Fractional
Accumulation Grey Gompertz Model (DFAGGM(1,1) based on grey system theory
and provides a detailed solution process. The Whale Optimization Algorithm
(WOA) is used to find the hyperparameters in themodel. By comparing it with five
benchmark models, the effectiveness of DFAGGM(1,1) in predicting carbon
dioxide emissions data for China and the United States is validated.
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1 Introduction

1.1 Background and motivation

Predicting Carbon dioxide emissions levels is of utmost importance due to its profound
implications for climate and environmental sustainability. Carbon dioxide is a primary
greenhouse gas responsible for trapping heat in the Earth atmosphere, leading to global
warming and climate disruption. Understanding and forecasting carbon dioxide
concentrations are critical for several reasons. Firstly, accurate carbon dioxide
predictions inform climate policymakers and governments about the effectiveness of
current mitigation strategies and the urgency of implementing furthe measures to curb
emissions. By forecasting future carbon dioxide levels, policymakers can design more
effective policies aimed at reducing green house gas emissions, transitioning to renewable
energy sources,and Promoting sustainable practices. Carbon dioxide forecasts are crucial
for industries and businesses, particularly those reliant on fossil fuels and heavy carbon
emissions. Anticipating future regulatory changes and market shifts related to carbon
pricing and emissions trading enables companies to adapt their operations, invest in cleaner
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technologies, and remain competitive in a rapidly evolving global
economy. Thirdly, predicting carbon dioxide levels helps scientists
and researchers better understand the complex dynamics of the
Earth’s climate system and assess the potential impacts of climate
change on ecosystems, biodiversity, and human societies. This
knowledge is essential for developing adaptation strategies to
mitigate the adverse effects of climate change and safeguard
vulnerable populations and ecosystems. Moreover, carbon dioxide
forecasts play a vital role in international climate negotiations and
agreements, providing countries with the necessary data to set
emission reduction targets, monitor progress, and hold each other
accountable for their commitments under global accords such as the
Paris Agreement. In summary, forecasting carbon dioxide levels is
indispensable for addressing climate change challenges effectively,
guiding policy interventions, fostering sustainable development, and
safeguarding the planet for future generations.

1.2 Literature review

To accurately predict carbon dioxide emissions, scholars have
conducted related research using various prediction methods,
mainly including statistical model predictions, machine learning
predictions, and grey model predictions. Traditional statistical
models primarily focus on time series models (Karakurt and
Aydin, 2023; Javanmard et al., 2023; Ding and Zhang, 2023; Rao
et al., 2023). For example, Cui et al. presents a SARIMA-based
federated learning method to enhance privacy, accuracy, and
efficiency in predicting industrial carbon emissions. By clustering
clients and applying federated averaging, the method significantly
improves prediction accuracy and convergence speed while
protecting data privacy, offering a robust approach for utilizing
multisource industrial data in environmental management (Cui
et al., 2023). Kour M et al. examines the rise of carbon dioxide
emissions in South Africa, a significant contributor to global
greenhouse gases and ecological imbalance. Using annual data
from 1980 to 2016, the researchers apply an ARIMA model to
forecast carbon dioxide emissions from 2015 to 2027. The model
predicts a steady increase in emissions over the next decade
(Kour, 2023).

Due to the flexibility and adaptability of machine learning
methods, as well as their ability to handle complex non-linear
relationships, they have been widely applied in the field of
carbon dioxide emission prediction (Bhatt et al., 2023; AlOmar
et al., 2023; Khajavi and Rastgoo, 2023; Lin et al., 2021). For example,
Qin et al. explores methods to calculate and reduce urban carbon
dioxide emissions in China. Using data from 2000 to 2019, an
inversion model for prefecture-level cities is created. Machine
learning identifies GDP, financial revenue, and foreign
investment as key emission factors. The study highlights the
highest emissions in economically developed and resource-
dependent regions and stresses the importance of continued low-
carbon initiatives and focusing on high-emission areas for
sustainable development (Qin and Gong, 2022). Zhang et al.
examines carbon emissions in China’s building and construction
sector from 2005 to 2021, focusing on 30 provincial regions. It
develops nine machine learning regression models to predict
emission trends, using various economic, technological, and

classification factors. The stacking ensemble regression model
proved to be the most effective (Zhang et al., 2024). Faruque
et al. believed that univariate predictions are difficult to capture
sudden changes in time series, so they explored multivariate
experiments based on four deep learning algorithms
(Convolutional Neural Network (CNN), CNN Long Short-Term
Memory (CNN-LSTM), Long Short-Term Memory (LSTM), and
Dense Neural Network (DNN)) and multiple linear regression. The
experimental results showed that DNN and multiple linear
regression achieved first and second performance rankings with
MAPE values of 3.678 and 5.541, respectively (Faruque et al., 2022).

Deng proposed the grey system theory in 1982, primarily to
solve the problem of analysis, prediction, decision, and control of
small data, poor information uncertain systems (JuLong, 1982). Guo
et al. designed a grey prediction model based on exponential
accumulation and applied it to the carbon dioxide emissions of
the BRICS countries (Guo et al., 2021). Although the experiments
showed that the model achieved good prediction performance, they
did not consider a comparison with existing carbon dioxide
emission models in their analysis. Therefore, the experiments
lack persuasiveness. Qiao et al. designed a fractional-order grey
GM(1,1) model and achieved the best performance in predicting
carbon dioxide emissions in APEC member countries (Qiao et al.,
2021). However, similar to the studies by Qiao et al. and Guo et al.,
the effectiveness of this method was not validated through
comparative analysis with other carbon dioxide emission
prediction techniques. Zeng et al. designed a fractional-order grey
Verhulst model for predicting China’s annual carbon dioxide
emissions and achieved the best test performance on the dataset
of China’s annual carbon dioxide emissions (Gao et al., 2022). The
aforementioned studies on carbon dioxide emission prediction hold
significant promise for global carbon reduction efforts. Nevertheless,
most of these studies require a substantial amount of data. Since
policy interventions influence carbon dioxide emissions, the value of
historical data for future forecasting is considerably diminished.
Following the principle that new information should take
precedence over old, it is more reasonable to use data from
recent years. This results in a smaller sample size. Compared to
mathematical statistics methods and big data technologies, grey
prediction has greater advantages in handling systems characterized
by “small data, poor information” uncertainty. Moreover, the carbon
dioxide emissions system exhibits both regularity and randomness,
typifying grey-cause, white-effect” uncertainty characteristics.

Reading through these studies, it becomes clear that
constructing a reliable model for predicting annual carbon
dioxide emissions is of paramount importance. While various
methodologies, such as statistical model predictions, grey
prediction models, deep learning techniques,have shown promise,
a common shortcoming is the lack of comparative analysis with
other prediction techniques. Accurate prediction models are crucial
for effective policy-making, environmental planning, and achieving
global climate goals. By addressing the current research gaps,
particularly through robust comparative analyses and the
integration of hyperparameters, future models can significantly
enhance the accuracy and reliability of carbon dioxide emission
predictions.

Based on the GM model, this paper constructs a New discrete
Fractional Accumulation Grey Gompertz model (DFAGGM(1,1)),
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provides the specific solution process for the model, and applies it to
the prediction of carbon dioxide emissions in China and the
United States. The subsequent sections of this paper are
structured as follows: The section 2 mainly introduces the
construction and solution process of the DFAGGM(1,1) model,
the section3 uses the DFAGGM(1,1) model to predict and analyze
carbon dioxide emissions data for China and the United States. The
conclusion and summary are provided at the end.

2 Methods

2.1 Grey gompertz model

The Fractional Accumulation Grey Gompertz model
(FAGGM(1,1)) is a grey forecasting technique proposed by Gao
et al. (Zeng et al., 2023). For predicting carbon dioxide emissions. Its
expression

dx r( ) t( )
dt

+ a · x r( ) t( ) � b · x r( ) t( ) · ln x r( ) t( )( ) (1)

where a is the development coefficient, and x(r)(t) belongs to a
primitive non-negative time series x(0)(1), . . . , x(0)(n){ }’s r-th
order cumulative generation sequence.

The parameter estimation values of FAGGM(1,1) are
provided by

p̂ � â, b̂( )T � BTB( )−1BTY, (2)

The definitions of B and Y in Equation 2 are as follows: Y �
x(r−1)(2)
x(r−1)(3)

..

.

x(r−1)(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ and B �

−z(r)(2) z(r)(2)ln(z(r)(2))
−z(r)(3) z(r)(3)ln(z(r)(3))

..

. ..
.

−z(r)(n) z(r)(n)ln(z(r)(n))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Respectively. z(r)(t) � o · x(r)(t) + (1 − o) · x(r)(t − 1), t �
1, 2, . . . , n.

The predicted values of FAGGM(1,1) are given by

x̂ 0( ) t( ) � x̂ r( ) t( )( ) −r( )
, t � 1, 2, . . . , n, (3)

where solving equation 1 yields the following Equation 4

x̂ r( ) t( ) � exp ln x 0( ) 1( )( ) − â

b̂
( )eb̂ t−1( ) + â

b̂
( ), t � 1, 2, . . . , n.

(4)
Based on the modeling process of FAGGM(1,1), the following

points can be understood.

(1) The parameter estimation formula of FAGGM(1,1) contains
errors, which may affect the results of the model. Typically, in
grey modeling processes, the integral form of the model is
used as the parameter estimation formula. However,
FAGGM(1,1) employs z(r)(t) instead of the definite
integral of the x(r)(t), which seems unreliable

(2) The parameter estimation formula of FAGGM(1,1) is
discrete, while the model’s prediction formula is

continuous, causing inconsistency that affects the model’s
rationality.

(3) There are no hyperparameters in the model that can adjust
the model structure, which may limit the performance of
the model.

2.2 New discrete fractional accumulation
grey gompertz model (DFAGGM(1,1))

By utilizing first-order forward differencing to amend
Equation 1,

x r( ) t + 1( ) � a′ · x r( ) t( ) + b · x r( ) t( ) · ln x r( ) t( )( ) (5)

can be obtained, where a′ � (1 − a).
By introducing a bias c and a hyperparameter α, Equation

5 becomes

x r( ) t + 1( ) � a′ · x r( ) t( ) + b · x r( ) t( )( )α · ln x r( ) t( )( ) + c. (6)

Based on Equation 6, the estimated value of ξ � [a′, b, c]T in
DFAGGM(1,1) can be obtained through

ξ̂ � kTk( )−1kTτ, (7)

The matrix in Equation 7 is defined as follows:

k � [ x(r)(1) (x(r)(1))α · ln(x(r)(1)) 1
..
. ..

. ..
.

x(r)(n − 1) (x(r)(n − 1))α · ln(x(r)(n − 1)) 1

], τ � [x(r)(2)
..
. x(r)(n)].

The prediction results of DFAGGM(1,1) are also obtained
through Equation 3. It should be noted that

x̂ r( ) t + 1( ) � â′( )t · x̂ r( ) 1( ) +∑t−1
i�0 â′( )i

· b · x̂ r( ) t − i( )( )α · ln x̂ r( ) t − i( )( ) + ĉ[ ]. (8)

2.3 The method for solving the model

Due to the presence of unknown hyperparameters in the
DFAGGM(1,1) model, it is challenging to apply the model
directly. To address such issues, constructing an optimization
model is a common approach. In this paper, we formulate an
optimization problem using the mean absolute percentage error

as the loss function, namely, min
α,r

fitness � Mean(∣∣∣∣∣∣ x̂ − x

x

∣∣∣∣∣∣) × 100%

s.t.

α ∈ [−3, 3], r ∈ [0, 2]
ξ̂ � (kTk)−1kTτ

k �
x(r)(1) (x(r)(1))α · ln(x(r)(1)) 1

..

. ..
. ..

.

x(r)(n − 1) (x(r)(n − 1))α · ln(x(r)(n − 1)) 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, τ �
x(r)(2)

..

.

x(r)(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x̂(r)(t + 1) � (â′)t · x̂(r)(1) +∑t−1
i�0(â′)i · [b · (x̂(r)(t − i))α ·

ln(x̂(r)(t − i)) + ĉ]. x̂(0)(t) � (x̂(r)(t))(−r), t � 1, 2, . . . , n

For nonlinear normalization models, ordinary mathematical
solving methods require a substantial amount of time. In
prediction problem solving, quick execution of predictions is
essential. Therefore, utilizing swarm intelligence algorithms is an
effective method for addressing such issues. This paper employs the
classical Whale optimization Algorithm (WOA) to solve for the
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optimal hyperparameters. The specific solving process of the WOA
algorithm is as follow.

2.3.1 Initialize parameters
· Set algorithm parameters: This includes the number of whales N,

maximum number of iterations T, dimension of the search spaced
d,and the lower and upper bounds of the search space [lb, ub].

· Initialize the positions of whale population: Randomly generate
N solutions (whale positions) within the search space, denoted as
�Xi(i � 1, 2, . . . , N).

2.3.2 Evaluate fitness
· Calculate the fitness value of each whale position to determine

the best solution �X*.

2.3.3 Update positions
In each generation, update the whale positions using the

following formulas:
· Encircling Prey.
When p< 0.5, whales simulate the behavior of encircling prey:
�D � | �C �X* − �X(t) |, �X(t + 1) � �X* − �A. �D

Where.
�A � 2 �a. �r − �a, �C � 2. �r

�a linearly decreases from two to 0 over the course of iterations.
�r is a random vector where each element is in the range [0,1] �X*

is the current best solution.
· Search for Prey.
When p≥ 0.5,whales simulate the search for prey:
�Xrand is a randomly chosen position from the whale population.
�D � | �C. �Xrand − �X(t) |, �X(t + 1) � �Xrand − �A. �D ·
Spiral Update Position.
When p< 0.5, an alternative spiral update can be chosen:
�D′ � | �X* − �X(t) |
�X(t + 1) � �D′cos(2πl) + �X*
Where
b is a constant defining the shape of the logarithmic spiral
l is a random number in the range [-1,1]

2.3.4 Check constraints
After updating positions, check each solution to ensure it

remains within the search space. If not, adjust the solution to
bring it back within bounds.

FIGURE 1
The application process of the proposed model.
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2.3.5 Iterate
Repeat steps 2-4 until the maximum number of iterations TT is

reached or a stopping criterion is met.

2.3.6 Output
Output the best solution �X* and its corresponding fitness value.
The solving process based on this algorithm is illustrated

in Figure 1.

3 Application

3.1 Raw data collection and
comparison model

The Carbon Dioxide Emissions from Energy in China from
1993 to 2022 and the energy-related carbon dioxide emissions from
the total of states in the United States from 1970 to 2021 are taken as
the subjects of the study in this article. These two datasets are
sourced from https://www.energyinst.org/statistical-review and
https://www.eia.gov/environment/emissions/state/, as shown in
Table 1, 2. For each dataset, the last nine data points are used as
the test set.

To validate the effectiveness of the models presented in this
article, five recent carbon dioxide emission forecasting
techniques were selected, including FAGGM (Gao et al.,
2022), FN_Verhulst (Zeng et al., 2023), ELM (Rahman et al.,
2024), FANGBM (Yang and Wu, 2023), CFDGM (Zhu et al.,
2024) and ESN (Wang et al., 2018). It is particularly important to
note that the FAGGMmodel is the conceptual origin of the model
presented in this article. By performing a comparative analysis
between the method proposed in this article and FAGGM, the

rationality of the model presented in this article can be
further verified.

3.2 Evaluation indices of the
modelling accuracy

To evaluate the training and prediction performance of the
model, this paper adopts five commonly used evaluation
metrics, namely.

The mean absolute percentage error (MAPE), which is defined
as follows

MAPE � 1
n − 1

∑n
i�2

x̂ 0( ) t( ) − x 0( ) t( )
x 0( ) t( )

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ × 100%. (9)

Mean Squared Error, MSE

MSE � 1
n − 1

∑n
i�2

x̂ 0( ) t( ) − x 0( ) t( )( )2. (10)

Root Mean Squared Error, RMSE

RMSE �
�����������������������
1

n − 1
∑n
i�2

x̂ 0( ) t( ) − x 0( ) t( )( )2√
. (11)

Mean Absolute Error, MAE

MAE � 1
n − 1

∑n
i�2

x̂ 0( ) t( ) − x 0( ) t( )
∣∣∣∣ ∣∣∣∣. (12)

Index of agreement (IA)

IA � 1 − ∑n
i�1 x 0( ) i( ) − x̂ 0( ) i( )( )2∑n

i�1 x 0( ) i( ) − �x
∣∣∣∣ ∣∣∣∣ + x̂ 0( ) i( ) − x̂

∣∣∣∣ ∣∣∣∣( )2. (13)

TABLE 1 Carbon dioxide emissions from energy in China from 1993 to 2022.

Year Data Year Data

1993 2769.6144 2008 7356.5599

1994 2921.3577 2009 7685.0202

1995 3009.1634 2010 8121.6879

1996 3156.6550 2011 8793.4911

1997 3142.3315 2012 8977.5597

1998 3139.8079 2013 9214.0861

1999 3268.4740 2014 9235.5298

2000 3327.9839 2015 9171.2830

2001 3489.7271 2016 9014.6386

2002 3809.2640 2017 9270.2826

2003 4494.1359 2018 9610.7037

2004 5317.1677 2019 9933.6878

2005 6079.2593 2020 10130.8681

2006 6659.9736 2021 10563.4736

2007 7217.1392 2022 10550.2477
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3.3 Numerical results

Based on the data provided, we can compare the
performance of various forecasting methods (DFAGGM,
FAGGM, FN_Verhulst, ELM, ESN, FANGBM, and CFDGM)
against the raw data for the years 2014–2022. The evaluation

metrics include Mean Absolute Percentage Error (MAPE), Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and Index of Agreement (IA). The
simulation results and evaluation metrics of the models in the
case study are shown in Table 2, and the fitting curves are shown
in Figure 2.

TABLE 2 Energy-related carbon dioxide emissions from the total of states in the United States from 1970 to 2021.

Year Data Year Data Year Data Year Data

1970 4254.944 1983 4377.932 1996 5505.307 2009 5395.696

1971 4300.108 1984 4602.973 1997 5577.345 2010 5585.185

1972 4520.093 1985 4607.575 1998 5613.136 2011 5449.900

1973 4717.033 1986 4610.094 1999 5677.636 2012 5229.593

1974 4545.822 1987 4760.180 2000 5867.593 2013 5361.092

1975 4422.045 1988 4989.158 2001 5757.735 2014 5417.286

1976 4691.655 1989 5064.486 2002 5795.657 2015 5267.386

1977 4830.290 1990 5024.335 2003 5866.708 2016 5179.781

1978 4871.458 1991 4973.488 2004 5965.352 2017 5143.669

1979 4931.041 1992 5065.670 2005 5990.726 2018 5295.586

1980 4756.542 1993 5168.096 2006 5907.949 2019 5159.726

1981 4632.965 1994 5242.648 2007 5998.173 2020 4594.716

1982 4391.312 1995 5307.259 2008 5803.539 2021 4911.228

FIGURE 2
Fitting curves of the models for the case of China.
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In Table 3, DFAGGM shows the best performance in terms of
MAPE (4.863%) and has relatively low MSE (431560.106), RMSE
(656.932), and MAE (494.342). However, its IA is moderate (0.512).
ESN performs well with a MAPE of 5.674%, MSE of 383743.009,
RMSE of 619.470, MAE of 537.370. and IA of 0.733. ELM
also performs well with a MAPE of 6.152%, MSE of
458231.666, RMSE of 676.928, and MAE of 577.109. Its IA is
the highest among all models at 0.668, indicating a good
agreement with the raw data. FANGBM has a reasonable
MAPE of 7.149%, moderate MSE (548771.933), RMSE
(740.791), and MAE (681.960). Its IA is also relatively
high at 0.681. CFDGM has the highest MAPE (47.944%),
MSE (27197966.706), RMSE (5215.167), and MAE
(4757.708), making it the least accurate model. FN_Verhulst
also performs poorly with a high MAPE (36.103%) and
the lowest IA (0.100), indicating poor predictive accuracy
and agreement with the raw data. According to Figure 2, it
can be seen that the differences in the fitting abilities of the
models during the training phase are not significant. However,
in the testing phase, the overall trends of the red curve and
the black curve are the closest. This phenomenon indicates that
the model presented in this paper has strong generalization
ability. DFAGGM and ESN are the most effective models
based on the given metrics, with DFAGGM having slightly
better error metrics and ESN showing the highest index of
agreement. FANGBM also shows reasonable performance
but is slightly less accurate than DFAGGM and ELM.
CFDGM and FN_Verhulst are the least effective models for
forecasting in this context. Although the ELM performance
closely approaches the model proposed in this paper, it is
important to note that the structure of machine learning
algorithms is much more complex than the method

presented in this paper. Therefore, the practicality of the
method in this paper is stronger.

In Table 4, DFAGGM demonstrates the strongest
performance with a MAPE of 2.674%, the lowest MSE
(27790.780), RMSE (166.706), and MAE (135.296), along
with a high Index of Agreement (IA) of 0.885. This indicates
that DFAGGM closely matches the actual CO2 emissions data,
making it the most accurate model among those evaluated. ESN
also performs well, with a MAPE of 3.544%, MSE of 54806.406,
RMSE of 234.108, and MAE of 176.529. Its IA of 0.652 suggests a
strong agreement with the raw data, though slightly less
accurate than DFAGGM. Despite the good performance, ESN
complexity as a machine learning model contrasts with the
simpler yet effective DFAGGM. ELM and ESN performed
slightly worse, with a MAPE of 3.681, MSE of 59236.875,
RMSE of 243.386, MAE of 181.468, and IA of 0.655. In
contrast, FAGGM, FANGBM, and CFDGM exhibit higher
errors and lower IA values. FAGGM has a MAPE of 7.842%
and an IA of 0.372, indicating moderate performance.
FANGBM and CFDGM show significant deviations with
MAPEs of 21.426% and 20.143%, respectively, and low IAs,
reflecting poor predictive accuracy. According to Figure 3, the
training phase differences in model fitting are minimal, but
during the testing phase, the red and black curves, representing
DFAGGM and ELM, closely follow the actual data trends. This
suggests that these models have robust generalization abilities.
Overall, DFAGGM and ELM are the most effective models, with
DFAGGM being slightly superior in terms of error metrics and
practical simplicity. In fact,The main source of error in the
carbon emission prediction process is the model’s expressive
capability. The reason DFAGGM outperforms FAGGM lies in
its structural expression, which includes an additional adaptive

TABLE 3 Simulation results and evaluation metrics of the models in the case of China.

Year Raw data DFAGGM FAGGM FN_Verhulst ELM FANGBM CFDGM ESN

2014 9235.530 9190.906 9816.882 8780.679 9858.872 9586.740 10686.717 9454.535

2015 9171.283 9258.588 10233.568 8220.048 10107.556 9873.037 11480.419 9964.732

2016 9014.639 9302.673 10642.179 7519.318 10188.015 10122.944 12333.070 10016.107

2017 9270.283 9331.000 11041.655 6758.092 10201.514 10336.400 13249.046 10138.529

2018 9610.704 9348.960 11431.047 6000.484 10199.185 10514.200 14233.052 10301.402

2019 9933.688 9360.172 11809.523 5288.615 10264.771 10657.852 15290.141 10452.807

2020 10130.868 9367.026 12176.362 4644.602 10402.715 10769.419 16425.739 10388.388

2021 10563.474 9371.080 12530.951 4076.062 10614.635 10851.365 17645.678 10597.115

2022 10550.248 9373.349 12872.784 3581.702 10837.431 10906.403 18956.221 11003.432

MAPE (%) 4.863 17.077 36.103 6.152 7.149 47.944 5.674

MSE 431560.106 3059406.978 18335050.130 458231.666 548771.933 27197966.706 383743.009

RMSE 656.932 1749.116 4281.945 676.928 740.791 5215.167 619.470

MAE 494.342 1674.915 3623.457 577.109 681.960 4757.708 537.370

IA 0.512 0.483 0.100 0.668 0.681 0.230 0.733
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hyperparameter α. This allows it to better adjust its structure to
fit the time series, resulting in improved prediction accuracy.
The inferior performance of FN_Verhulst and CFDGM
compared to DFAGGM can be anticipated due to the overly
simplistic structures of these two models. Although FANGBM

exhibits good nonlinear fitting capabilities, its grey action
quantity is relatively simple, indicating that there is room for
further improvement in its fitting ability. ELM and ESN
performed worse compared to DFAGGM, possibly because
the dataset is too small to allow for perfect training.

TABLE 4 Simulation results and evaluation metrics of the models in the case of the United States.

Year Raw data DFAGGM FAGGM FN_Verhulst ELM FANGBM CFDGM ESN

2013 5361.092 5493.747 5497.584 5171.038 5265.826 6041.233 5990.483 5184.389

2014 5417.286 5420.340 5508.715 5054.103 5385.694 6087.905 6033.670 5294.469

2015 5267.386 5337.928 5519.358 4928.648 5436.180 6134.977 6077.169 5356.937

2016 5179.781 5246.674 5529.533 4795.680 5300.532 6182.450 6120.980 5228.111

2017 5143.669 5146.812 5539.258 4656.272 5219.786 6230.326 6165.108 5135.780

2018 5295.586 5038.637 5548.551 4511.531 5186.189 6278.607 6209.554 5087.149

2019 5159.726 4922.513 5557.430 4362.579 5326.292 6327.296 6254.320 5231.882

2020 4594.716 4798.860 5565.910 4210.526 5201.154 6376.394 6299.409 5114.471

2021 4911.228 4668.160 5574.009 4056.445 4652.939 6425.904 6344.823 4568.102

MAPE (%) 2.674 7.842 9.955 3.681 21.426 20.143 3.554

MSE 27790.780 219328.060 310699.642 59236.875 1294374.911 1,150,627.816 54806.406

RMSE 166.706 468.325 557.404 243.386 1137.706 1072.673 234.108

MAE 135.296 389.986 509.294 181.468 1083.847 1018.338 176.529

IA 0.885 0.372 0.529 0.655 0.210 0.220 0.652

FIGURE 3
Fitting curves of the models for the case of the United States.
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4 Conclusion and future work

To achieve sustainable development, countries around the world
are striving to reach carbon peak and carbon neutrality goals while
developing their economies. Accurate prediction of carbon
emissions provides valuable references for decision-makers to
manage effectively. However, due to the complexity of carbon
emission data series, achieving high-precision carbon emission
forecasts remains challenging. Through experiments and
comparative analysis, the DFAGGM model proposed in this
paper demonstrates high accuracy in annual carbon emission
predictions and strong interpretability, making it a reliable model
for decision-makers.

At the same time, it is worth noting that DFAGGM still has
some shortcomings and room for improvement. Firstly, the model
has a univariate limitation as it is a univariate grey prediction
model and does not consider the impact of other factors on the
main variable. Secondly, while the model performs well in
handling short-term or medium-term time series data, it may
lack the ability to capture cyclical changes and respond to sudden
changes in the time series. Lastly, this study mainly uses carbon
emission data from China and the United States to validate the
model. Whether the model is applicable to data from other
countries and regions still needs further verification. In the
future, this research proposes several directions for further
study. Firstly, the model proposed in this paper can be
combined with other grey prediction model optimization
methods to enhance the model’s adaptability. Additionally, due
to the complexity of carbon emission predictions, it is necessary to
consider more influencing factors, such as economic scale,
industrial structure, and carbon emission intensity. A
multivariate grey prediction model can be constructed based on
the analysis of these influencing factors and the model proposed in
this paper. Finally, it is necessary to apply the DFAGGM model
and its optimized model to carbon emission predictions in more
countries and regions to test its generalization capability.
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