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Investigating the evolution of land use and its impact on carbon storage is of
significant importance for mitigating regional climate change and promoting
green low-carbon development. Ningwu County is located in the source region
of the Fenhe and Sanggan River, and its ecological status significantly influences
the carbon storage (CS) of the watershed ecosystem. In this study, the PLUS-
InVEST model was employed to analyze the land use evolution from 1990 to
2020 in Ningwu County, Shanxi Province, as well as their impacts on CS.
Additionally, the study simulated and predicted land use changes in Ningwu
County by 2040 under four scenarios: natural development (NDS), ecological
protection (EPS), cultivated land protection (CLPS), and urban development
(UDS), while estimating the corresponding changes in ecosystem CS.
Furthermore, the study utilized optimal parameters-based geographical
detector to explore the mechanisms underlying the spatial differentiation of
CS. The results indicated that the areas of forest land and construction land in the
study area consistently increased from 1990 to 2020, whereas the area of
cultivated land continuously declined, with grassland, water bodies, and
unused land exhibiting a fluctuating increasing trend. The spatial distribution
of CSwas highest in the northwest, second highest in the southeast, and lowest in
the middle region. Over these 3 decades, CS had shown a continuous increase. It
is projected that by 2040, the areas of forest and grassland will experience the
most significant increase under the EPS; cultivated land only increase under the
CLPS; while construction land display the greatest increase under the UDS.
Compared to 2020, these four scenarios for 2040 indicate an increase in
regional CS, with the EPS showing the largest increment. The primary factors
influencing the spatial differentiation of CS in Ningwu County are human
activities, followed by topography and climate change; the interactions among
these factors exhibit a reinforcing relationship, with the interaction between the
distance from construction land and slope having the most substantial impact on
the spatial differentiation of CS.
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1 Introduction

With the acceleration of China’s industrialization and population
growth, greenhouse gas emissions are increasing, exacerbating global
climate issues (Voumik et al., 2023; Xiao et al., 2023; Adnan et al.,
2024). Deforestation, biomass burning, significant changes in land use
patterns, and rapid industrialization have led to higher atmospheric
CO2 concentrations (Nunes, 2023; Dass et al., 2024). The carbon
storage (CS) function of terrestrial ecosystems is an effective method
to reduce atmospheric CO2 and is a crucial CS approach in China
(Qiu et al., 2023; Zhang et al., 2023). Therefore, an in-depth analysis of
the factors contributing to changes in CS in terrestrial ecosystems is
vital for enhancing the CS potential of these lands and promoting
regional low-carbon development.

Changes in land-use pattern are the main drivers of variations in
CS in terrestrial ecosystems (Mendoza-Ponce et al., 2018). These
changes affect the structure, material circulation and energy flow of
the ecosystem, thus affecting the carbon cycle process within the
ecosystem (Hasan et al., 2020; Bhatt et al., 2022). The Yellow River
Basin (YRB), a critical ecological and economic zone in China, serves
as an essential carbon sink and plays a key role in economic and
social development and ecological security (Wang et al., 2024). In
2020, the CS in the YRB will be about 3.15 × 109 t, accounting for
35% of China’s CS (Zhang et al., 2024; Yu et al., 2022). Due to long-
term rapid urbanization expansion and insufficient carrying
capacity of resources and environment, the YRB is facing serious
ecological problems, including soil erosion and desertification.
There are some differences in the judgment of the overall trend
of land use change in the YRB due to the different research periods.
For example, Wang et al. (2010) investigated land use changes in the
YRB from 1990 to 2000, and found that the proportion of cultivated
land increased from 26.25% to 26.60%, construction land increased
from 1.98% to 2.15%, and unused land increased from 8.53% to
8.67%. On the contrary, the proportion of grassland decreased from
48.49% to 47.90%. The proportion of forest land remained
unchanged. Liu et al. (2021) indicated that land use change in
the YRB rose before 2000 but declined thereafter. Xu et al. (2023)
analyzed the land use change in the Shanxi section of the Yellow
River Basin from 2000 to 2020, and found that cultivated land was
mainly transformed into forest land, grassland and construction
land, forest land was transformed into grassland, and unused land
was transformed into grassland. In the past 20 years, forest land
increased by 3.23%, grassland increased by 1.11%, water body
increased by 10.03%, and construction land increased by 62.82%.
However, cultivated land and unused land continued to decrease,
decreasing by − 5.85% and 11.21%, respectively. They also predicted
an upward trend in CS from 2000 to 2040, with an average annual
increase of 1.93 × 106 Mg C, attributed to increased forest land. The
source of the Fen River and Sanggan River are located within
Ningwu County of Shanxi Province, where serve as an ecological
barrier for the YRB and constitute the most significant water
conservation area in Shanxi (He et al., 2020). These areas are
characterized by its rich biodiversity and hold a crucial position
in the national ecological security framework. In recent years, coal
mining disrupts soil structure, alters land use methods, and leads to a
continuous decline in regional CS. Shanxi Province has made efforts
to build an ecological barrier through the implementation of large-
scale ecological restoration projects (e.g., construction of the Three-

North Shelterbelt Project Region, river management, and wetland
restoration). However, the ecological environment has not
undergone fundamental improvement. The ecosystem is sensitive
and fragile, leading to a series of ecological issues such as the decline
of ecosystem services and severe landscape fragmentation. Several
studies on CS, such as forest biomass CS (Yu et al., 2008), grassland
storage (Kuang-hu et al., 2017), and ecosystem services variation
(Hu et al., 2021), have been conducted in Shanxi Province. However,
few studies have focused on the small and key ecological functional
areas in the Shanxi section of the YRB.

With the advancement of remote sensing technology and the
accumulation of carbon density research, the InVEST model has
become a widely used tool for estimating CS. This model offers
advantages such as low data requirements, high operational speed,
and strong applicability (Piyathilake et al., 2022; Ismaili Alaoui et al.,
2023). At present, the commonly used spatial prediction models
include Cellular Automaton-Markov (CA-Markov), Future Land
Use Simulation (FLUS), and Patch-Generating Land Use Simulation
(PLUS). Among them, the CA-Markov model combines the
advantages of cellular automata (CA) in simulating spatial
complexity and Markov chain in time series prediction, and can
effectively simulate and predict spatial dynamic processes such as
land use change. The FLUS model improves the accuracy and
efficiency of simulation by introducing adaptive inertia
competition mechanism and wheel selection strategy, which is
especially suitable for simulating and predicting multi-type land
use change. The PLUS model further integrates multi-source data
and machine learning algorithms to achieve more detailed and
accurate simulation and prediction of land use change. By
integrating the CA-Markov, FLUS, PLUS, and InVEST models,
CS under different land use scenarios can be assessed, and the
relationship between land use and CS can be elucidated. For
instance, Zhu et al. (2021) used the CA-Markov model to predict
land-use patterns in arid regions of China from 2020 to 2050 and
employed the InVEST model to estimate and forecast ecosystem CS
over the past 35 years and the next 30 years, considering the impact
of land use changes on terrestrial ecosystem CS. Similarly, Xiang
et al. (2022) utilized the Markov-FLUS model to project land use in
the main urban area of Chongqing for 2035 and used the InVEST
model to evaluate CS under different scenarios. Hernández-Guzmán
et al. (2019) applied the Markov model to predict land use in four
reservoirs in the western coast of central Mexico from 2017 to
2050 and the InVEST model to estimate CS from 1986 to 2050.
Research indicated that the PLUS model, as an improved version of
the FLUS model, demonstrated higher accuracy compared to other
models due to its more detailed patch generation mechanism and a
more comprehensive consideration of driving factors (Liang et al.,
2021). Li et al. (2023) effectively predicted land use changes in
Liaoning Province, China, for 2050 using the InVEST-PLUS Model.
Despite significant progress in existing research regarding the
relationship between land use change and CS, previous studies
have primarily focused on exploring the contributions of driving
factors to land use, lacking in-depth investigations into the
relationship between land use and the distribution of CS.
Furthermore, in establishing development scenarios, most of
these studies have not taken into account the impact of land use
spatial planning policies on land use change and CS, which affects
the formulation of effective future carbon management strategies.
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Therefore, the analysis and prediction of land use and CS
changes in Ningwu County not only contribute to the
understanding of the current land use conditions and ecological
quality, but also provide crucial support for local governments in
formulating scientifically sound land use planning. This study aims
to: 1) analyze land-use change patterns in Ningwu County from
1990 to 2020; 2) predict land use and CS in 2040 under four
scenarios: natural development (NDS), ecological protection
(EPS), cultivated land protection (CLPS), and urban development
(UDS), using the PLUS and InVEST models; and 3) identify factors
affecting CS in the study area.

2 Materials and methods

2.1 Study area

Ningwu County (Shanxi Province), situated in the eastern
foothills of the Loess Plateau, serves as the source area for the
Fen River and Sanggan River (Figure 1). Ningwu County has a total
area of 1,987.7 km2, with an average elevation of 1,600 m. The
annual average temperature is 6.2°C and annual average
precipitation is 430 mm. According to the Statistical Yearbook of
Shanxi Province 2023 (http://tjj.shanxi.gov.cn/), the resident
population of Ningwu County is 133,694. The area has a high
vegetation cover, in which the forests consist mainly of broadleaf
forests, coniferous forests, and mixed coniferous and broadleaf
forests. The study area is predominantly mountainous (95%),

with the terrain running from northeast to southwest and sloping
from west to east. Numerous small, closed freshwater lakes are
scattered on the quasi-planation surface between Guancen
Mountain and Yunzhong Mountain at altitudes above 1,700 m,
which are collectively known as the “Tianchi Lake Group.”

2.2 Data sources

The land use data required are from the 30 m land cover dataset
(CLCD) from 1990 to 2021. In order to facilitate the calculation of
regional CS using the InVEST model, the original land use data are
reclassified into six land use categories including cultivated land,
forest land, grassland, water area, construction land, and unused
land. Other data processing mainly includes: 1) using digital
elevation (DEM) data to generate slope data; 2) using Euclidean
distance tools to obtain distances from major roads and railways; 3)
converting monthly precipitation and temperature data into TIFF
format and the data are calculated using the band combination tool
to obtain the annual average precipitation and annual average
temperature data (Table 1).

2.3 Methods

2.3.1 Research strategy
Land use in 2040 was predicted using land use data from 2000,

2010, and 2020 with the PLUS model (Figure 2). Eight driving

FIGURE 1
Study area.
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factors—temperature, precipitation, elevation, slope, distance from
the railway, distance from the road, population size, and GDP—were
selected, with their contribution values set for inclusion in the land
use prediction through the Land Expansion Analysis Strategy
(LEAS) in PLUS. Four scenarios were proposed to predict land
use changes in 2040 using the Future Land Use Change Simulation
Model (CARS) within PLUS. The InVEST model assesses and
predicts CS from 2000 to 2040 based on projected land use.
Additionally, the effects of these eight driving factors on CS
were analyzed.

2.3.2 Prediction by PLUS model
The PLUS model integrates the LEAS and the CARS using a

multi-classification random patch-sowing cellular automata model
(Wang et al., 2023). Combining the current development situation of
Ningwu County with related research, a total of eight categories of
land use change drivers were screened from both the natural
environment and socio-economic aspects such as temperature,
precipitation, elevation, slope, distance from railway, distance
from road, population, and GDP.

The neighbourhood weight is utilized to reflect the expansion
ability of each type of land use, with a parameter range of 0–1, where
values closer to 1 indicate a stronger capacity for expansion of the
land use type. Using patch area and patch number as the
measurement basis, the neighborhood weight is determined by
the Equation 1 (Li et al., 2021):

Wi � TAi − TAmin

TAmax − TAmin
(1)

whereWi is the domain weight of land type i. TAi is the area of land
use expansion in category i. TAmin is the minimum area of expansion
for each type of land use. TAmax is the maximum area of expansion
for each type of land use.

In this study, we compared the land use data for 2020 with the
data predicted for 2020 by the PLUS model. The simulation
results indicated a Kappa index of 0.73 and an overall accuracy of

0.84. This demonstrates that the constraint conditions and
influencing factors have substantial explanatory power and can
be utilized for further multi-scenario land-use prediction
(Beroho et al., 2023).

2.3.3 Multi-scenario land use prediction
Based on different development needs and related literature

(Bijalwan et al., 2010; Liu et al., 2023), we consider the following
scenarios. (1) Natural development scenario (NDS). This scenario
does not take into account the influence of various factors.
According to the current development trends and transition
probabilities, simulate and predict land use types for 2040. (2)
Ecological protection scenario (EPS). This scenario is aimed at
protecting the ecological environment. Based on the NDS, the
probability of converting forest land, grassland, and water area
into construction land decreases by 20%. Conversely, the
probability of converting cultivated land into forest land
increases by 40%, while the likelihood of converting cultivated
land into grassland rises by 50%. Additionally, the probability of
transforming construction land into forest land increases by 30%.
These changes align with local ecological protection requirements
and green development strategies. (3) Cultivated land protection
scenario (CLPS). This scenario protects cultivated land by slowing
the rate of conversion of agricultural land to other land use and
restraining the expansion rate of construction land. Based on
China’s stringent cultivated land protection policies and the
requirements for promoting high-standard farmland construction
in Ningwu County, the upgrading of existing cultivated land and the
development of suitable cultivated land will reduce the probability of
converting cultivated land into grassland and construction land by
50%, respectively. (4) Urban development scenario (UDS). This
scenario focuses on urban development. Considering the
comprehensive development planning for urban and rural
construction in Ningwu County, the likelihood of converting
cultivated land, grassland, and unused land into construction
land will increase by 10%, whereas the probability of converting

TABLE 1 Datasets used in the study.

Data type Data name Data source Resolution

Land use Annual China land cover dataset https://essd.copernicus.org/articles/13/3907/2021/ 30 m

Socio-economic

Population size https://hub.worldpop.org/geodata/listing?id=77 1 km

Gross domestic product https://www.resdc.cn/DOI/doi.aspx?DOIid=33&WebShieldSessionVerify=
Hj9ajWuOmMQM4del0wVT

1 km

Vector road data https://www.openstreetmap.org

A prolonged artificial nighttime-light dataset of
China

https://poles.tpdc.ac.cn/zh-hans/data/e755f1ba-9cd1-4e43-98ca-
cd081b5a0b3e/

1 km

China annual NDVI, EVI 1 KM dataset https://www.resdc.cn/DOI/DOI.aspx?DOIID=49 1 km

Climate and
Environmental

Monthly average precipitation dataset https://doi.org/10.5281/zenodo.3185722 1 km

Monthly average temperature dataset https://doi.org/10.11888/Meteoro.tpdc.270961 1 km

DEM https://www.gscloud.cn/search 30 m

A dataset of carbon density in Chinese terrestrial
ecosystems (2010s)

http://www.nesdc.org.cn/sdo/detail?id=5fa53685042ebb70d0c8340b

Spatial distribution of soil types in China https://www.resdc.cn/data.aspx?DATAID=145 1 km
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construction land into cultivated land, forest land, grassland, and
water bodies will decrease by 60%. “1” indicates that the two land use
types can be mutually converted, while “0” signifies that the two land
use types cannot be mutually converted (Table 2).

2.3.4 Carbon density calculation and correction
Carbon density (CS per unit area) is a crucial input parameter in

the InVESTmodel and varies with climate, soil properties, and land-
use type (Nel et al., 2022; Ersoy Mirici and Berberoglu, 2024). Initial

FIGURE 2
Research strategy.

TABLE 2 Land-use transfer matrix for different scenarios in 2020–2040.

NDS EPS CLPS UDS

A B C D E F A B C D E F A B C D E F A B C D E F

A 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1

B 0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1

C 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

D 0 0 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0

E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1

A, cultivated land; B, forest land; C, grassland; D, water area; E, construction land; F, unused land. A-F in columns are the current land use types for 2020 and A-F in rows are the land use types

for the different scenarios in 2040.
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carbon density data were set concerning relevant literature (Ren
et al., 2021; Yang et al., 2021). Carbon density corrections were made
using equations from published studies (Alam et al., 2013; Giardina
and Ryan, 2000; Chen et al., 2007). The equations were presented as
(Equations 2–4):

CBP � 6.7981e0.00541P (2)
CBT � 28 × T + 398 (3)

CSP � 3.3968 × P + 3996.1 (4)
where CBP and CBT are the biomass carbon density obtained
according to the average annual precipitation and average annual
temperature, respectively; CSP is the soil carbon density obtained
according to the average annual precipitation; P is the average
annual precipitation (mm); and T is the average annual
temperature (°C).

Substituting the average annual temperature and average
annual precipitation in Ningwu County and China into the
above equations, respectively, the ratio between the two is the
carbon density correction coefficient, calculated by Formulas
5, 6:

KB � KBP · KBT � CNBP

CCBP
· CNBT

CCBT
(5)

KS � CNSP

CCSP
(6)

where KBP and KBT are the precipitation and temperature correction
coefficients of the vegetation carbon density, respectively. KB and KS

are the vegetation aboveground and underground carbon density
correction coefficients and soil carbon density correction
coefficients, respectively. CNBP and CCBP were obtained based on
the average annual precipitation. CNBT and CCBT are biocarbon
density data obtained from the average annual temperature. Lastly,
the results were further corrected by referring to the “2010s China
Terrestrial Ecosystem Soil 0–100 cm Carbon Density Dataset”
(http://csdata.org/en/p/194/) (Table 3).

2.3.5 Carbon storage estimation
The InVEST CS module uses a simplified carbon cycle model to

estimate static CS and dynamic sequestration of each cell within a
specific area. The total CS was calculated as Equation 7 (Sharp et al.,
2018; Adelisardou et al., 2022):

Ci � ∑
n

j�1
Aij × Caj + Cbj + Csj + Cdj( ) (7)

where Ci is the total CS (t) of region i;Aij is the area (hm
2) of land use

type j in region i; and Caj, Cbj, Csj, and Cdj are the aboveground
biocarbon density, underground biocarbon density, soil carbon
density, and dead organic matter carbon density (t/hm2) of land
use type j, respectively; n is the number of land-use types.

2.3.6 Spatial autocorrelation analysis
Spatial autocorrelation is typically used to determine whether

there is potential interdependence between variables in the same
distribution area (Qiao et al., 2023). Spatial autocorrelation includes
global spatial autocorrelation (Global Moran’s I) and local spatial
autocorrelation (LISA) (Juliani and Nasution, 2024). The global
Moran’s I can reveal the overall spatial structure, distribution
patterns, and potential causes of regional variables within the
entire study area. In contrast, the LISA focuses on the correlation
between attributes within a localized area and its neighboring
regions, thereby providing insights into spatial heterogeneity at a
finer scale. The specific formulas are as Equations 8, 9:

GI �
∑n
i�1
∑n
j�1
Wij xi − �x( ) xj − �x( )

∑n
i�1
∑n
j�1
Wij∑

n

i�1
xi − �x( )2

(8)

LI � Zi∑WijZj (9)

where GI is the global spatial autocorrelation. xi and xj are the CS in
cells i and j of the grid, respectively. n is the total number of cells in
the global grid. Wij is the matrix of spatial weights. �x is the mean
value of CS. LI is the local spatial autocorrelation. Zi and Zj are the
normalised values of CS in spatial cells i and j.

2.3.7 Cold and hot spot analysis
Based on the Getis-OrdGi* tool in ArcGIS10.8 software, the

high- and low-value spatial aggregation positions of CS changes in
the study area were identified. Hot spots represent high-value
aggregations of CS changes and cold spots represent low-value
aggregations (Isazade et al., 2024). The Getis-OrdGi* formula is
as Equations 10, 11:

Gi* �
∑n
j
Wij d( )Xi

∑n
j
Xj

(10)

Z Gi*( ) � Gi − E Gi*( )�������
var Gi*( )√ (11)

TABLE 3 Carbon density of different land cover types in Ningwu County (kg/m2).

Land use Above-ground Underground Soil Dead organic matter

Cultivated land 0.13 1.86 2.03 0.00

Forest land 2.60 0.70 4.93 0.00

Grassland 0.21 0.63 5.42 0.00

Water area 0.07 0.00 0.00 0.00

Construction land 0.06 0.00 0.00 0.00

Unused land 0.03 0.00 1.89 0.00
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where E (Gi*) and var (Gi*) are the Gi* mathematical expectation
and variance, respectively; Wij is the weight; and d is the critical
distance between the ith and jth elements. In addition, to measure
the spatial distribution intensity of the change in CS, the cold hot
spots were further divided into 99% and 95% confidence intervals;
the rest of the grid areas were not statistically significant.

2.3.8 Optimal parameters-based geographical
detector model

The optimal parameters-based geographical detector can help to
identify the best combination of continuous data discretization
classification methods (Song et al., 2020), and provide a scientific
basis for accurately revealing the correlation between dependent
variables and independent variables. In this study, 12 driving factors
were selected: elevation (X1), slope (X2), annual average
precipitation (X3), annual average temperature (X4), soil type
(X5), annual average NDVI (X6), night light (X7), GDP (X8),
population density (X9), distance from construction land (X1),
distance from railway (X11), and distance from highway (X12).
ArcGIS10.8 was used to create ‘fishing nets’ and marker points, and
the grid pixel values of the corresponding points were extracted.
After eliminating outliers, 1864 valid values were extracted for
calculation. The calculation formula is as Equation 12:

q � 1 −
∑L
h�1

Nhσh2

Nσ2
� 1 − SSW

SST
(12)

where h is the stratification of variable Y or factor X. Nh and N are
the number of cells in layer h and the whole district. σh

2 and σ2 are

the variance of Y values in layer h and the whole district. SSW and
SST are the sum of the intra-layer variance and the total variance in
the whole district, respectively. q is the influence of the influencing
factors on the ecological resilience of the city, which takes the value
in the range of 0–1, and the bigger the value of q indicates the more
obvious influence.

The q-values of the two factors were calculated separately,
denoted as q (x1) and q (x2), and then the q-values of the two
factors superimposed on each other were calculated, denoted as q
(x1∩x2), and then the relationships between q (x1), q (x2), and q
(x1∩x2) were compared to obtain the five types of
interactions (Table 4).

3 Results

3.1 Analysis of land use change in
Ningwu County

From 1990 to 2020, grassland was the main land use type,
accounting for more than 46% of the land in Ningwu County
(Figures 3, 4). Cultivated land and forest land occupy
approximately 50% of the land area of the study area, and
construction land, water area, and unused land was less than 2%
of the study area. The distribution of construction land is
concentrated in the northern part of the study area, while forest
land is continuously situated in the high-altitude regions of the
western to southwestern sections of the study area. Forests and
grasslands are primarily located in the eastern part of the study area,
whereas cultivated land is found in the relatively flat central region of
the study area. From 1990 to 2000, the area of cultivated land
decreased from 25.55% to 23.28%, while the area of forest increased
from 25.06% to 29.56%. In contrast, after 2010, the proportion of
cultivated land decreased significantly, whereas that of forest land
increased significantly. Compared to 1990, the area of forest land
experienced the most significant increase in 2020, expanding by
227.48 km2. This was followed by an increase in constructed land,
which rose by 11.11 km2. In contrast, the area of cultivated land
continued to decline, decreasing by 246.33 km2. The remaining land
use types exhibited a fluctuating upward trend.

Over the past 30 years, 28.55% of the land in the study area,
including 14.70% of cultivated land, 0.78% of forest land and 13.06%

TABLE 4 Type of interaction of two independent variables on the
dependent variable.

Basis of judgement Interaction

q (x1 ∩ x2) <min [q (x1), q (x2)] Nonlinear attenuation

Min [q (x1), q (x2)] <q (x1 ∩ x2) <max [q (x1),
q (x2)]

Single-factor nonlinear
attenuation

Max [q (x1), q (x2)] <q (x1 ∩ x2) Two-factor enhancement

q (x1 ∩ x2)>q (x1) +q (x2) Independence

q (x1 ∩ x2) = q (x1) +q (x2) Nonlinear enhancement

FIGURE 3
Land use distribution pattern in Ningwu County from 1990 to 2020.
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of grassland, has been converted to other land use types (Figure 5).
Grassland has mainly been converted to forest land, accounting for
38.28% of the total converted area. This increase in forest and
grassland areas is most notable in Guancen Mountain in the west
and Yunzhong Mountain in the east of the study area. Since 2000,
initiatives such as natural forest protection, the conversion of
cultivated land to forest, and the Three-North Shelterbelt
construction project in Ningwu County have led to rapid
recovery of forestry ecology, along with effective protection of
wetlands and biodiversity. Cultivated land continues to be
converted, primarily to grassland, which constitutes 44.44% of
the total converted area. A significant portion of cultivated land is
situated on the alluvial plains at the sources of the Fen River and
Sanggan River. To promote ecological restoration, the
government has encouraged the conversion of cultivated
land—characterized by severe soil erosion, low yield, and
desertification—to natural grassland. The Tianchi Lake Group,

located in the eastern part of the study area, is unique in northern
China. Through a series of effective ecological protection policies,
the water area of the Tianchi Lake Group has increased from
0.71 to 1.36 km2.

3.2 Contribution of driving factors

Human activity constitutes the primary catalyst for land use
change, influenced within the bounds of natural factors (Xie et al.,
2023). The impacts of these driving factors on the expansion of
cultivated land, forestland, and grassland exhibit similarities.
Precipitation exerts a marginally greater influence on
cultivated land (0.17) and grassland (0.18) expansion
compared to that of other factors (Figure 6). Conversely,
elevation and slope (both 0.16) exert a slightly higher
influence on forestland expansion than other factors. Changes
in water area display a significant correlation with the
precipitation factor (0.46), while elevation predominantly
influences unused land (0.44). Urbanization, inherently tied to
human activities, is chiefly influenced by population (0.37) and
GDP (0.14), emerging as the most influential drivers of
construction land expansion.

3.3 Prediction of land use changes

According to the NDS, it is projected that by 2040, forest land,
water area, and construction land will increase by 197.02, 0.05, and
8.25 km2, respectively (Figure 7). Conversely, cultivated land,
grassland, and unused land are anticipated to decrease by 51.95,
153.23, and 0.13 km2, respectively. These projections align closely
with the actual trends observed from 1990 to 2020. In the EPS
scenario, the conversion of cultivated land and construction land is
anticipated to be limited by 2040, with cultivated land experiencing
the greatest reduction, a decrease of 106.91 km2. In contrast, forest
land is expected to see the highest increase, reaching 203.58 km2.
Notably, the projected increase in construction land is minimal

FIGURE 4
Land use change from 1990 to 2020.

FIGURE 5
Land use transfers from 1990 to 2020.
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(0.81 km2) in the EPS, indicating effective control over the
expansion of construction land under ecological protection
priority. In contrast, under the CLPS scenario, the area of
cultivated land is predicted to increase by 16.39 km2 by 2040,
while grassland is expected to undergo a significant decrease to
217.05 km2. This decline is attributed to the conversion of a
substantial area of grassland to cultivated land and forest land.
Compared to other scenarios, under the UDS, the area of
construction land increases by 9.08 km2, but there is no rapid
expansion of urbanization. This phenomenon may be attributed to
the region’s topographical constraints and the local government’s

efforts to implement policies focused on ecological restoration and
green development.

3.4 Carbon storage in Ningwu County from
1990 to 2020

From 1990 to 2020, CS spatial distribution in Ningwu
County was highest in the northwest, second highest in the
southeast, and lowest in the middle region (Figure 8). In 1990,
the mountainous area west of the study area consisted mainly of

FIGURE 6
Contribution of each driver factor to the different land-use types.
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cultivated land, grassland, and forest land, and their CS was
higher than that of the plains in the middle of the study area.
Under the effective supervision policies and protection measures
of the relevant local governments, the area of cultivated land in
the west of the study area continued to transfer to other land use
types, until 2020, and forest land and grassland further

increased, leading to an increase in carbon reserves in the
west of the study area.

The carbon density of the study area increased by 0.49 t/hm2

from 1990 to 2020. CS in 1990, 2000, 2010, and 2020 was 1.20 ×
106, 1.22 × 106, 1.26 × 106, and 1.29 × 106 t, respectively. There is an
increase of 9.47 × 104 t from 1990 to 2020 (Figure 9). CS in forest

FIGURE 7
Land use change in different scenarios from 2020 to 2040.

FIGURE 8
Spatial distribution of carbon storage from 1990 to 2020 and four development scenarios in 2040.
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and construction land continued to rise from 1990 to 2020, while
that of cultivated land continued to decline, and CS in grassland
fluctuated during this period (Figure 9B). In 2020, land-use types
contributed to total CS in the following order: grassland > forest
land > cultivated land > construction land. Among these, forest
land and grassland accounted for 85.82% of the area of the county,
with their CS representing 91.83% of the total CS. Therefore, forest
and grassland are the primary carbon reservoirs in the study area.
CS in water areas and unused land can be disregarded due to their
small areas.

3.5 Carbon storage under different
prediction scenarios in Ningwu County

The CS in the study area showed a similar trend with an
obvious increase under the four prediction scenarios (Figure 8).
In the western of the study area, carbon reserves increased
obviously, while there were obvious differences in vegetation
distribution and CS capacity between hillsides and valleys in the
eastern, because under long-term ecological protection and
supervision, vegetation on mountain slopes had good soil and
water conservation functions and CS capacity became stronger.
Compared to 2020, the CS in the study area showed an upward
trend in each of the four land-use scenarios in 2040 (Figure 9A).
The total CS in the EPS was 1.36 × 106 t, an increase of 6.39 ×
103 t, which was the largest increase compared to the other
scenarios. In the EPS, the predicted carbon density was 6.97 t/
hm2, which is an increase of 0.33 t/hm2. The last increase in CS
was under the CLPS, with 1.33 × 106 t of carbon and carbon
density 6.80 t/hm2, representing an increase of 3.22 × 104 t and
0.17 t/hm2 respectively (Figure 9A). Therefore, EPS can be
considered the best development model for enhancing the CS
of ecosystems in Ningwu County.

In the four land use scenarios, the CS of construction land,
unused land, and water area was less than 10% of the total CS;
whereas forest land accounted for more than 55% of the CS and
grassland more than 30% (Figure 10). Compared with the values in
2020, the CS of cultivated land increased by 6.59 × 103 t under the

CLPS; in contrast, the CS decreased under the other three scenarios.
Due to the massive transfer of grassland to cultivated land under the
CLPS, grassland CS decreased the most among the four scenarios. In
contrast, the CS of forest land increased the most under the EPS,
with an increment of 1.68 × 105 t.

3.6 Spatial autocorrelation analysis of
carbon storage

Moran’s I values of the CS distribution from 2020 to 2040 in the
study area were all greater than zero (Table 5), indicating a certain
global spatial autocorrelation. Compared to 2020, the spatial
agglomeration effect of CS in the NDS, EPS, CLPS, and UDS in
2040 was enhanced, and areas with high and low values tended to
gradually clump together in the spatial distribution.

Local spatial autocorrelation analysis showed that the spatial
distribution of CS under the NDS, EPS, CLPS, and UDS in 2040 was
similar to that in the study area in 2020 (Figure 11). The spatial

FIGURE 9
(A) Change of carbon storage from 1990 to 2040. (B) Carbon storage in different land use types from 1990 to 2020.

FIGURE 10
The change of carbon storage in different scenarios from
2020 to 2040.
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distribution of CS is closely related to land use. The high-value
accumulation area of CS was mostly located in the western part of
the study area with rich forest resources and high vegetation
coverage. The low-value accumulation area of CS was
concentrated with the distribution of construction land in the
north of the study area, where human activities were
relatively intensive.

3.7 Spatial distribution of cold and hot spots
in carbon storage

Getis-Ord Gi* analysis showed that the proportion of cold spots
under NDS, CLPS, and UDS in 2040 was 4.11, 3.99, and 4.32%,
respectively. Note the decrease in low CS accumulation areas in EPS
(Figure 12). These low-value CS accumulation areas showed more
than 95% confidence and they were mainly distributed in the
construction land-intensive areas in the north of the study area.
Under the four development scenarios, there were no significant
differences in the agglomeration distribution of high-CS. The total

area proportions of the hot spots were 6.05, 5.12, 5.07, and 6.60%,
respectively. Some hot spots were significantly concentrated at the
forest edge of the study area, and the rest were more evenly
distributed in the plains of the study area.

4 Discussion

4.1 Driving factors on the carbon storage

The implementation of ecological protection measures can
better realize the CS in the YRB. Previous research (Yang et al.,
2021) suggested that the CS increased obviously under the EPS in
the southern, eastern and Qinling regions of the Loess Plateau,
Lvliang Mountain and Taihang Mountain, and changed from
“spot” high value region to “area” high value region. The
mountainous areas on the east and west of the study area
were mainly forest land and grassland, which provided unique
natural conditions for the growth of natural forests because of its
steep mountain topography and high elevation (Ma et al., 2021).

TABLE 5 Moran’s I of carbon storage in Ningwu County.

Index 2020 NDS in 2040 EPS in 2040 CLPS in 2040 UDS in 2040

Moran’s I 0.425 0.544 0.492 0.527 0.547

FIGURE 11
Local spatial autocorrelation analysis of carbon reserves in Ningwu County.

FIGURE 12
Spatial distribution of cold and hot spots of carbon storage.
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Shanxi Province attaches great importance to resource
protection and the management of natural forests, with high
forest land coverage, low degradation, and strong CS capacity
(Chu et al., 2019). The central part of the study area is flat and is
the most affected by human activities. The main land uses are
construction and cultivation, and the overall CS capacity is poor
(Chuai et al., 2015). Tianchi Lake Group, as a key ecological
management project and key tourism project in Ningwu County,
had undergone a certain degree of tourism development after
ecological protection, and the regional CS showed a trend of
initial increase followed by a decrease. However, the distribution
of carbon sources in the Fen River and Sanggan River Basin is
concentrated and plays a key role in the carbon cycle. By 2040,
the source of Fen River and Sanggan River Basin will have the
largest CS capacity in the YRB because of its large area of
forestland (Crockett et al., 2021; Xu et al., 2023). Xi et al.
(2023) also suggested that forest land, grassland, and
cultivated land were important land use types that determine
regional carbon balance.

Under the combined action of GDP, population size, annual
average precipitation and annual average temperature, the type of
land use in the YRB changed obviously (Xu et al., 2023). In this
study, there were some differences in the explanatory power of
the different factors driving the changes in CS, and the difference
in the spatial distribution of CS was affected by both natural and
socioeconomic factors (Duarte-Guardia et al., 2020). The
explanatory power of different driving factors on CS of the
study area in 2020 was in the following order (Table 6):
X10>X1>X4>X2>X3>X6>X8>X9>X12>X5>X7. The distance
from construction land, elevation, annual average temperature,
slope, and annual average precipitation were the main factors
affecting CS and also inferred that human activities were the
main factors affecting CS, followed by topography and climate
change. The study of CS in the YRB showed that elevation,
temperature, and precipitation are the main factors that affect
the spatial pattern of CS (Sun et al., 2023). In addition to human

activity factors, it is basically consistent with this study. In the
future development, we should pay attention to the relationship
between urbanization and ecological environment protection,
and should not blindly carry out urban expansion and
development.

The interaction between the two factors was mainly
manifested as two-factor enhancement (Table 4), and only the
interaction between the slope and the distance factor from the
road was nonlinear enhancement, indicating that the spatial
differentiation of CS in the study area was the result of
different driving factors (Figure 13). Among them, the q value
of the interaction between GDP and population density was only
0.097, whereas that of the interaction of the other factors was
greater than 0.10. The q value of the interaction between distance
from construction land and slope of the dominant factor was
0.314, and the explanatory power is the highest. The distance
from construction land reflects the influence of human activity
intensity, while the slope directly affects the natural processes
such as topography and soil erosion, which together promote the
spatial differentiation of CS in the study area. Moreover, the
interaction between the distance from the construction land and
other factors is also relatively strong, and the explanatory power
is about 30%. In addition, the interaction between elevation and
slope, as well as between slope and annual average temperature
was also strong. High elevation and large slopes lead to a
reduction in human activities, and abundant precipitation can
enhance the vegetation coverage and plant growth capacity of the
study area, thus increasing CS in the study area (Chen et al.,
2023). From the view of network topology, increasing the
ecological corridor between ecological nodes can realize the
optimization of vegetation ecological space network and
provide the CS capacity of vegetation (Fang et al., 2021). In
addition, some land management measures such as tending
thinning, closing, fertilization, and returning farmland to
grassland can also increase the CS of forest or grassland
(Bustamante et al., 2014).

4.2 Limitations

In this study, we adopted the PLUS model to simulate future
land use changes based on historical changes in land use in the
study area. To a certain extent, the simulation results can
objectively infer the future trend of land use change; however,
some problems have to do with subjectivity in the model
parameters and scenario setting. In a follow-up study, future
climate change and socioeconomic development should be
considered, as well as scenarios of increased development. The
carbon density data in this study are mainly determined by
relevant literature, and there may be errors in the results of
calculation and simulation. In the future, the accuracy of
carbon density can be improved through small-scale
experiments: 1) the carbon density parameters of land use types
can be corrected; 2) the dynamic change trend of carbon density of
regional land use type is determined by sampling in different years,
the future carbon density change is predicted, and the more
accurate carbon density parameter setting is corrected and
determined to improve the accuracy of prediction.

TABLE 6 Detection results of spatial differentiation driving factors of
carbon storage of Ningwu County in 2020.

Driving factors q value p-value Order

X1 0.204 0.000 2

X2 0.142 0.000 4

X3 0.134 0.000 5

X4 0.195 0.000 3

X5 0.066 0.000 11

X6 0.121 0.000 6

X7 0.050 0.000 12

X8 0.096 0.000 8

X9 0.096 0.000 9

X10 0.278 0.000 1

X11 0.111 0.000 7

X12 0.080 0.000 10
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5 Conclusion

In this study, the PLUS-InVEST model was employed to
investigate the impact of land use changes on CS in Ningwu
County, Shanxi Province, from 1990 to 2020. By constructing
various development scenarios (NDS, EPS, CLPS, UDS), this
study predicts changes in land use and their potential impacts on
CS. Furthermore, the research elucidates the spatiotemporal
distribution trends of CS and the primary driving factors. The
conclusions are as follows:

(1) The main land use type in Ningwu County is grassland,
followed by forest land, cultivated land and construction
land, and the proportion of unused land and water area is
very small. From 1990 to 2020, the area of forest land and
construction land shows a yearly increasing trend, while the
area of cultivated land decreases year by year; a total of
28.55% of the land is transferred to other land use types
during the 30-year period, and the transfer of land types
mainly occurs between cultivated land, forest land and
grassland. Cultivated land has been continuously
transferred out, with grassland as the main type of land
transferred out, while the main type of land transferred out
of grassland is forest land, indicating that the relevant
departments in Ningwu County are continuously
promoting ecological restoration work.

(2) In the four future scenarios projected for 2040, there is an
overall increasing trend in forest land, water area and
construction land, and a decreasing trend in grassland and

unused land. Only the area of cultivated land continues to
grow under CLPS compared to the other three development
scenarios. Under the NDS scenario, forest land increases the
most and grassland area decreases the least. Under the UDS
scenario, construction land increased the most. By
comprehensively analysing a total of eight categories of
driving factors from socio-economic and climatic
environments, this study reveals that changes in land use
patterns are jointly influenced by natural and economic
factors. Among them, population growth and economic
development are important drivers for the expansion of
construction land.

(3) From 1990 to 2020, the total CS in Ningwu County
continues to increase, from 1.20 × 106 t to 1.29 × 106 t.
The CS in Ningwu County under all four future
development scenarios is higher than that in 2020, and
the CS is highest under the EPS scenario at 1.36 × 106 t,
and lowest under the CLPS scenario at 1.33 × 106 t, which
suggests that the ecological protection measures
implementation can improve the CS rate in Ningwu
County. By detecting the influencing factors, the factors
with the main influence on the CS in the region were the
distance from construction land, elevation, annual average
temperature, slope, and annual average precipitation, while
the interaction between distance from construction land and
slope had the greatest influence on the spatial differentiation
of CS. These indicated that human activities, topography,
and climate change jointly affect the distribution of CS in
the study area.

FIGURE 13
Interaction detection of the driving factors on carbon storage in Ningwu County.
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