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Accurate mapping of above-ground biomass (AGB) is essential for carbon stock
quantification and climate change impact assessment, particularly in
mountainous areas. This study applies a random forest (RF) regression model
to predict the spatial distribution of AGB in Usho (site A) and Utror (site B) forests
located in the northern mountainous region of Pakistan. The predicted maps
elucidate AGB variations across these sites, with non-forest areas excluded based
on an normalized difference vegetation index (NDVI) threshold value of <0.4.
Three different combinations of input datasets were used to predict the biomass,
including spectral bands (SBs) only, vegetation indexes (VIs) only, and a
combination of both spectral bands and vegetation indexes (SBVIs). Utilizing
SBs, the biomass ranged between 150 and 286 mg/ha in site A and 99 and
376 mg/ha in site B. Meanwhile, using VIs indicated a biomass range of 163 Mg/
ha–337 Mg/ha and 131–392 Mg/ha for sites A and B, respectively. The
combination of spectral bands and vegetation indexes yielded AGB values of
145–290 Mg/ha in site A and 116–389 Mg/ha in site B. The northern and western
regions of site A, characterized by higher altitudes and lower forest density,
notably showed lower biomass values than other regions. Conversely, similar
regions in site B, situated at lower latitudes, demonstrated different biomass
ranges. The RF model exhibited robust accuracy, with R2 values of 0.74 and
0.83 for spectral bands and vegetation indexes, respectively. However, with a
combination of both, an R2 of 0.79 was achieved. Furthermore, altitudinal
gradients significantly influence the biomass distribution across both sites,
with specific elevation ranges yielding optimal results. The AGB variation along
the slope further corroborated these findings. In both sites, the western aspects
showed the highest biomass across all combinations of input datasets. The
variable importance analysis highlighted that ARVI8a, NDI45, Band12, Band11,
TSAVI8, and ARVI8a are significant predictors in sites A and B. This comprehensive
analysis enhances our understanding of AGB distribution in the mountainous
forests of Pakistan, offering valuable insights for forest management and
ecological studies.
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Introduction

Forest biomass constitutes the basis of forest ecosystems and is
crucial for halting climate change and obtaining a better
understanding of the carbon cycle (Beer et al., 2010; Ploton et al.,
2017; Maia et al., 2020; Qin et al., 2022). The traditional techniques
for quantifying forest biomass are expensive, inefficient, and
detrimental to the environment. In comparison, remote sensing
has become a vital technique for forest biomass estimation,
providing several advantages such as ecofriendliness,
effectiveness, large area coverage, and the capability to collect
undisturbed data (McRoberts and Tomppo, 2007; Peng et al.,
2019). Due to uncertainty resulting from numerous causes, it is
difficult to estimate the above-ground biomass (AGB) accurately in
forest ecosystems on a wide scale, particularly in high mountainous
regions (Friedl et al., 2001; Lu et al., 2012). Pakistan has a small
amount of forest land. Woods and planted trees cover
approximately 4.549 million hectares, or 5.01%, of the land area
(Ahmad et al., 2015; Badshah et al., 2020). Numerous studies have
estimated the AGB in various geographic locations using remote
sensing-based information (Frampton et al., 2013; Wijaya et al.,
2013; Lu et al., 2016; Guanglong et al., 2019; Sun et al., 2021).

Random forest (RF) is a machine learning (ML) algorithm
(introduced by Breiman (2001)) that establishes the relationship
between independent variables (i.e., input spectral bands [SBs] and
vegetation indexes [VIs]) and their corresponding dependent
variables (e.g., forest AGB) and harnesses the strengths of binary
rule-based decisions. RF’s key strength lies in its ability to adeptly
capture intricate relationships existing within datasets, particularly
in scenarios involving complex ecological systems and diverse
environmental variables (Fu et al., 2017; Badshah et al., 2024).
This method proves advantageous in scenarios where traditional
models might struggle to effectively represent the multifaceted
interactions between various independent factors and the
dependent variable. The RF approach enhances the modelling of
complex relationships, making it a valuable tool for understanding
and analyzing intricate ecological and environmental systems.
However, there are not many studies that have made thorough
comparisons to identify the primary and secondary influencing
factors among different variables for various forest types in
topographically complex sites with high levels of widespread
forest heterogeneity (Sun et al., 2021; Ur Rehman et al., 2021). In
order to estimate forest biomass using remote sensing data,
modeling is a crucial procedure that significantly affects the
uncertainty of the estimations. The accuracy and consistency of
biomass estimations directly depend on the careful selection and
efficient application of models (Lu, 2006; Shettles et al., 2015).
Currently, the assessment of forest biomass using integrated
methods and a variety of remote sensing data sources is an
evolving research domain (Wijaya et al., 2013; Lu et al., 2016).
Despite this, problems such as noise, interference, and redundant
information are presented by integrating many remote sensing data
sources. Consequently, a crucial step in constructing a model is the
strategic choice of the best feature variables (Pham et al., 2020; Rasel
et al., 2021). Therefore, it is essential to carefully choose an
appropriate algorithm for estimating the AGB. The main
advantage of machine learning algorithms is their ability to
interpret complex, nonlinear relationships between variables from

remote sensing data and forest AGB. This feature alone can
significantly improve the accuracy when compared to traditional
methods (Lu et al., 2016). Following an evaluation of remote sensing,
it is suggested to utilize freely accessible multispectral optical sensor
data like Landsat and Sentinel-2 imagery. With their extensive
coverage, these resources facilitate timely and efficient AGB and
carbon assessment across local and regional scales (Hall et al., 2011;
Laurin et al., 2014). As a result, a wide range of machine learning
techniques have been applied to estimate the AGB for different kinds
of forests (Ronoud et al., 2021). Limited research has been done on
evaluating model performance and variable relevance within
complex and varied terrains of dry temperate forests, particularly
in Pakistan, to quantify the AGB in forests. The current study
combined Sentinel-2 spectral bands and vegetation indexes to fill
this research gap. These data were combined with ground truth data
(i.e., field survey) to thoroughly examine and estimate the AGB in
such complicated terrains. The main objectives of this research were
to evaluate the effectiveness of Sentinel-2 spectral bands and
vegetation indexes and the machine learning random forest
regression technique for biomass mapping in high-altitude dry
temperate forests. Furthermore, the study investigates the
relationship between altitudinal gradients and biomass
distribution in the study areas.

Data and methods

Study area

Our study was conducted in the Kalam valley, Swat District,
located in northern Pakistan (Figure 1). The Kalam valley is a
mountainous green valley, which lies between 34°–40° to 35′ N
latitude and 72°–74° to 60′ E longitude with an elevation ranging
between 2,000 and 3,900 m above sea level. The total area of the
Kalam valley is approximately 1,600 km2. The highest temperature
recorded is 38°C in July and the lowest is −4°C in January. Kalam is a
spacious sub-valley of Swat known for its beautiful landscape, which
includes lakes, waterfalls, and lush green hills, and it is a popular
tourist destination. The inlaid map shows the location, habitat type,
and elevation of the large carnivore signs found in each study area
site for tourists. The climate is harsh during winter (November,
December, January, and February), with frequent snowfall, and
moderate during summer (June, July, and August). Rain is
frequent in March and April, but summer (June–August) and
autumn (September and October) are relatively dry seasons
(Hamayun et al., 2006). Approximately 160 km2 of the forest
area is dominated by silver fir (Abies pindrow), spruce (Picea
smithiana), deodar (Cedrus deodara), and kail or blue pine
(Pinus wallichiana) (Stucki and Khan, 1999).

Inventory data

To collect the field inventory data for biomass modeling, the
survey was conducted in July–August 2022. We selected a
representative mountain from all the surrounding forested
mountains having most of the major ecological, edaphic, and
topographical features in common. We divided the dry temperate
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forest zone into site A and site B, where site A represents the Usho
Forest and site B represents the Utror Forest. The area maps,
topographic sheets, and growing stock data were obtained from
the respective forest department office and available literature. We
established 120 sample plots of (20 × 20 m) 400 m. A total area of
16,000 m (1.6 ha) was sampled at each altitudinal zone to analyze the
composition and structure of the trees. Furthermore, with an area of
(1 m × 1 m), 40 quadrates on each altitudinal zone in every sampled
plot were taken to determine the biodiversity of herbs and shrubs. A
geographic positioning system (GPS) was used to record the
coordinates of each plot. In each plot, tree diameter (cm) and
height (m), along with stem density, were measured. The tree
diameter (cm) in each sample plot was measured by using a
calibrated diameter tape at the breast height of trees. The
standard diameter at breast height (DBH) was taken 4.5 feet
above the ground from the uphill side. By dividing the
circumference of trees by Pi (3.14), the circumference of the trees
was converted into a diameter. Stem density is the number of trees
per area. The stem density in each plot was calculated by counting
the number of trees. The vertical distance between the highest tip of
the tree and the base of the tree was taken as the tree height. Tree
heights were measured by using the Haga altimeter. The total sample
plots (120) were randomly split into a ratio of 80:20, where 80%
(96 sample plots) were used for training the model and 20%
(24 sample plots) were used for validation of the model (Table 1).

Digital elevation data

In this study, the SRTM digital elevation model (DEM) data
were used to estimate the altitudinal gradients. The DEM was

utilized to estimate the slope and aspect of the study area. Based
on the natural break classification method, the elevation was
classified into different ranges with an interval of 200 m in site A
and site B. The obtained elevation ranges in site A were E1 =
2,009–2,061 m, E2 = 2,061–2,078 m, and E3 = 2,078–2,129 m and in
site B, E1 = 2,200–2,400 m, E2 = 2,401–2,600m, E3 = 2,601–2,800 m,
and E4 = 2,801–3,000 m. Furthermore, the slope ranges were also
classified in both sites; in site A, four slope ranges were calculated
(S1 = 0.001–3.86; S2 = 3.86–7.36; S3 = 7.36–18.63; and S4 =
18.63–35.20), and for site B, four slope ranges were obtained
(S1 = 4.9–19.2; S2 = 19.2–26.85; S3 = 26.85–34.16; and S4 =
34.16–48.95). In both sites, the different aspect ranges were
checked (flat, north, northeast, east, southeast, south, southwest,
west, and northwest).

Sentinel-2 data

In this study, the freely available high-resolution Sentinel-2 (S2)
Level-2A product acquired on 16 October 2022 coincides with the
survey month used. The S2 dataset was downloaded from the
Copernicus Open Access Hub website (https://scihub.copernicus.
eu/dhus). Sentinel-2 allows vegetation monitoring on regional and
global scales at various spatial resolutions (10, 20, and 60 m) with a
revisit frequency of 5 days and 12 spectral bands. There are four
visible and near-infrared (NIR) bands with a spatial resolution of
10 m, six red-edge and short-wave infrared bands with a spatial
resolution of 20 m, and two atmospheric bands with a spatial
resolution of 60 m (Askar et al., 2018).

The Sentinel-2 Level-2 product underwent atmospheric
correction and radiometric calibration, and to avoid the influence

FIGURE 1
Map of the study area.
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of cloud coverage on biomass modeling, images with a cloud
coverage of less than 10% were selected for analysis. Band 1
(coastal aerosol), band 9 (water vapor), and band 10 (cirrus)
were excluded and not considered in this research. The bands
with spatial resolutions of 20 m were resampled to 10 m to
ensure that all bands were in the same spatial resolution with
aligned pixels.

Vegetation indexes

Based on prior biomass modeling research, 21 widely used
vegetation indices were calculated using SNAP software. As
Sentinel-2 has two NIR bands, the vegetation indices utilizing the
NIR band were estimated with each NIR band separately. For
example, the NDVI utilizes RED and NIR bands; therefore, one

FIGURE 2
(A) Spatial AGB prediction map using Sentinel-2 data on (a) bands, (b) indices, and (c) bands and indices in site A, Usho Forest. (B) Spatial AGB
prediction map using Sentinel-2 data on (a) bands, (b) indices, and (c) bands and indices in site B, Utror Forest.
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was calculated using NIR band 8 and another with NIR band 8a. In
this way, the total number of vegetation indices reached 44, and the
details of each index are given in Table 3.

Extraction of remote sensing parameters
from a field plot

Three different predictors were used in this study for biomass
modeling. These predictors were developed from different kinds of
spectral information, i.e., spectral bands only, vegetation indices
only, and a combination of both (Table 2). First, the center
coordinates of each plot were generated and used to extract the
representative pixel of each predictor. Finally, these predictor
features were used to train the RF model.

Random forest regression for AGB
prediction

Mostly AGB from satellite images was predicted using
regression models. In this study, to obtain the most suitable
model for AGB modeling by comparative analysis, we adopted a
machine learning random forest regression model (Breiman, 2001).
RF has been applied extensively as a classification algorithm and for
time-series forecasting in large-scale regression-based applications
(Liaw and Wiener, 2002).

In the RF algorithms, a bootstrap sample of the training data is
chosen, 80% of the training dataset is chosen randomly to build a
decision tree, and the remaining part of the training dataset is used
for estimating the out-of-bag error of each tree (Belgiu and Drăgu,
2016). At each node of the tree, a small sample of explanatory
variables is chosen randomly to determine the best split. The
coefficient of determination (R2) and the root mean square error
(RMSE) were used to evaluate the model performance.

Validation of model outcomes

In this study, a 10-fold cross-validation approach, which was
suggested by Tyralis, Papacharalampous, and Tantanee (2019), was
performed to validate the performance of the RF regression model.
Two error measurements, namely, R2 and RMSE, were used to
evaluate the performance of the RF model. In general, a higher R2

value and lower RMSE values indicate a better estimation
performance of the model (Equations 1, 2, 3) (Eckert, 2012).

RMSE:

RMSE �

����������������∑n
i�1

Oobs,i − Pmodel,i( )2
n

√√
. (1)

Pearson’s coefficient R2:

r �
∑n
i�1

Oi − �O( ) Pi − �P( )����������∑n
i�1

Oi − �O( )2√ ����������∑n
i�1

Pi − �P( )2√ . (2)

Mean absolute error (MAE) coefficient:

MAE � 1
n
× ∑n

i�1
Oi − Pi| |, (3)

where O and P represent observed and predicted values,
respectively.

Results and discussion

Biomass prediction in the study area

Utilizing vegetation indices, the maximum predicted AGB was
391 (Mg/ha), and the minimum predicted AGB was 131 (Mg/ha).
Similarly, a combination of each high predicted biomass was 389
(Mg/ha). The lower predicted AGB was 116 (Mg/ha). However, the
northern and western parts of site A were at higher altitudes, where
the forest was less dense and less productive, and the biomass in the
region was found to range from 150 to 286, 163 to 337, and 145 to
290 (Mg/ha) using spectral bands, vegetation indices, and a
combination of both, respectively. Similarly, the northern and
western parts of site B are at lower latitudes, despite the thinner
forest of mixed species, so primarily, the biomass was found to range
between 99.5 and 376, 131 and 391, and 116 and 389 (Mg/ha) using
spectral bands, vegetation indices, and a combination of both,
respectively in Figures 2A, B.

Model validation

The random forest regression was used in both sites A and B for
biomass prediction using the data on 120 sample plots. Based on the
proportion of predictors explained by the model, the RF algorithm,
using input variables of n = 10 for bands, n = 44 for vegetation
indices, and n = 54 for the combination of both bands and indices,
showed different levels of predictive performance. In site A R2,
RMSE, and MAE for the spectral bands were 0.83, 29.88, and 22.34,
respectively, while for the vegetation indices, they were 0.74, 43.36,
and 28.30, respectively. Similarly, R2, RMSE, and MAE for the
combination of bands and vegetation indices were 0.79, 30.71,
and 21.86, respectively. In site B, the R2, RMSE, and MAE for
the spectral bands were 0.75, 53.11, and 34.47, respectively; for the
vegetation indices, they were 0.83, 46.15, and 33.30, respectively, and
for a combination of both, they were 0.82, 46.47, and 31.67,
respectively. The scatterplots between the predicted and observed

TABLE 1 Details of the sample plots surveyed.

Parameter Details

Total sample plots 120

Plot size 20 × 20 m (400 m2)

Plots splitting ratio for
modeling

Randomly split into a ratio of 80:20

Training and validation 96 plots for training (80%) and 24 plots for
validation (20%)
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biomass values for both study sites using three combinations of
predictors are shown in Figures 3A,B.

Biomass variation along altitudinal gradients

Elevation effect on predicted biomass
In site A, the predicted biomass using bands only was 237.89,

225.91, and 217.25 (Mg/ha) for E1, E2, and E3, respectively. The

predicted biomass using vegetation indices was 255.44, 250.30, and
240.67 (Mg/ha) and a combination of bands and indices was 244.24,
231.47, and 214.11 (Mg/ha) for E1, E2, and E3, respectively. In site B,
the elevation was divided into four ranges: E1, E2, E3, and E4. The
predicted biomass using bands was 200.82, 195.60, 205.88, and
198.36 (Mg/ha) in E1, E2, E3, and E4, respectively. However, the
predicted biomass using vegetation indices was 199.46, 214.41,
223.12, and 220.42, and using a combination of bands and
vegetation indices, it was 188.39, 209.76, 221.79, and 221.79 in
E1, E2, E3, and E4 respectively. The best results obtained in different
elevation ranges for site A were for E1 for the vegetation indices,
which shows that high predicted biomass for site B was E1 for the
spectral bands, as shown in Figures 4A,B. Furthermore, the
correlation between the predicted biomass and elevation ranges
showed that the biomass is highly correlated with elevation range E3,
which is 0.91 in the predicted biomass band (PBB) in site A, while in
site B, the high correlation was found in E2, which is 0.87 in
PBB Figure 4C.

TABLE 3 Vegetation index compendium.

S. no Vegetation index Formula References

1 SAVI (1 + L) * (1 * NIR - 1 * RED)/(1 * NIR + 1 * RED + L) Huete (1988)

2 TSAVI s * (1 * NIR – s * 1 * RED - a)/(s * 1 * NIR + 1 * RED – A *S +
X * (1 + s *s))

Frederic, Guyot, and Major (1989)

3 MSAVI (1 + L) * (1 * NIR – 1* RED)/(1* NIR + 1 * RED + L) Qi et al. (1994)

4 MSAVI2 (1/2) * (2 * 1 * NIR + 1 – sqrt ((2 * 1 * NIR + 1) * (2 * 1 * NIR
+ 1) – 8 * (1 * MIR -1 * RED)) )

Qi et al. (1994)

5 DVI =(1 * NIR – 1 * RED) Jordan (1969)

6 RVI (1 * NIR)/(1 * RED) Jordan (1969)

7 PVI Sin(a) * 1 * NIR – cos (a) * 1 * RED Richardson and Wiegand (1977); Qi et al. (1994)

8 IPVI (1 * NIR)/(1 * NIR + 1 * RED) OR 1/2 * (NDVI + 1) Crippen (1990)

9 WDVI (1 * NIR – g * 1 * RED) Clevers and van Leeuwen (1996)

10 TNDVI Sqrt ((1 * NIR – 1 * RED)/(1 * NIR + 1 * RED) + 0.5) Senseman, Bagley, and Tweddale (1996)

11 GNDVI (1 * NIR – 1 * GREEN)/(1 * NIR + 1 * GREEN) Gitelson, Kaufman, and Merzlyak (1996)

12 GEMI Eta * (1–0.25 * eta) – (1 * RED – 0.125)/(1–1 *RED) Pinty et al. (1991)

13 ARVI (1 * NIR - rb)/(1 * NIR + rb) Kaufman and Tanre (1992)

14 NDI45 (1 * NIR – 1 * RED)/(1 * NIR + 1 * RED) Delegido et al. (2011)

15 MTCI (1 * NIR – 1 * RED2)/(1 * RED2 – 1 * RED1) Dash and Curran (2004)

16 MCARI ((1 - * RED2 -1 *RED1) – 0.2 * (1 * RED2 – 1 * GREEN)) * (1
* RED2/1 * RED1)

Daughtry et al. (2000)

17 REIP 700 + 400 * ((1 * RED1 + 1 * NIR)/2–1 * RED2)/(1 *
RED3 – 1 * RED2))

Guyot, Baret, and Jacquemoud (1992)

18 S2REP 705 + 35 * (( 1 * RED1 + 1 * NIR)/2–1 _RED2)/(1 * RED3 – 1
* RED2))

Dawson and Curran (1998)

19 IRECI (1 * NIR – 1 * RED1)/(1 * RED2/1 * RED3) Guyot and Baret (1988)

20 PSSRa (1 * NIR)/(1 * RED) Blackburn (1998)

21 NDVI (1 * NIR – 1 * RED)/(1 * NIR + 1 * RED) Senseman, Bagley, and Tweddale (1996)

TABLE 2 Predictor combinations.

Predictor combination Number of bands

Optical bands 10

Vegetation indices 44

Optical bands + vegetation indices 54
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FIGURE 3
(A) (a) observed AGB and band-predicted AGBMg/ha; (b) observed AGB and index-predicted AGBMg/ha, and (c) shows the observed AGB and band
+ index-predicted AGB Mg/ha, in site A. (B) (a) observed AGB and band-predicted AGB Mg/ha, (b) observed AGB and index-predicted AGB Mg/ha, and
(c) observed AGB and band + index-predicted AGB Mg/ha, in site B.
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Slope effect on predicted biomass

The predicted biomass in site A using bands was 230.20, 226.17,
230.11, and 219.73 (Mg/ha); using vegetation indices was 251.44,
247.41, 252.92, and 250.53; and using a combination of both was
233.34, 226.40, 229.24, and 233.64 (Mg/ha) for slope ranges S1, S2, S3,
and S4, respectively. The best biomass was predicted using a

combination of bands and vegetation indices in the slope S4 range
at site A. Similarly, the biomass predicted for the same slope ranges in
site B using bands was 201.56, 206.08, 196.22, and 196.67 (Mg/ha);
using vegetation indices was 210.87, 219.49, 219.75, and 220.60 (Mg/
ha); and using both spectral bands and vegetation indices was 208.58,
217.02, 213.91, and 215.65 (Mg/ha); the best results are shown in the
vegetation indices within the slope S4 range, as shown in Figures 5A,B.
In addition, the analysis revealed a strong correlation between the
expected biomass and slope range in both site A and site B. Specifically,
in site A, the biomass shows a significant correlation with slope range
S1, with a correlation coefficient of 0.67 in the PBB + I model. On the
other hand, in site B, the highest correlation was observed with slope
range S4, with a correlation level of 0.49 in the PBB simulation, as
shown in Figure 6A).

Effect of aspect on the predicted biomass

To further investigate the spatial distribution of biomass, different
slope aspects for both sites A andBwere estimated, including flat, north,
northeast, east, southeast, south, southwest, west, and northwest. In site
A, the highest biomass distribution using bands only was at east
followed by northwest, flat area, southeast, northeast, south, north,
west, and southwest. Similarly, using vegetation indices, the highest
predicted biomass was at northwest and lowest at southwest, while
using a combination of bands and indices, the highest was recorded in
the northwest and lowest in southwest. Furthermore, in site B, the
predicted biomass utilizing bands was 201.89, 200.81, 198.51, 187.68,
187.05, 189.71, 208.40, 201.74, and 203.09 (Mg/ha) for flat, north,
northeast, east, southeast, south, southwest, west, and northwest,
respectively. Similarly, using vegetation indices, the predicted
biomass was 225.11, 212.42, 205.78, 193.80, 174.53, 187.86, 223.64,
226.13, and 228.70 (Mg/ha), and using a combination of bands and
indices, it was 220.16, 213.56, 210.37, 192.69, 166.70, 183.01, 221.29,
218.70, and 221.92 (Mg/ha) in the flat, north, northeast, east, southeast,
south, southwest, west, and northwest aspects, respectively. The overall
results show that the west aspect has good predicted biomass in the
predictor combination, spectral bands, indices, and combination of
both, respectively, as shown in Figures 6B,C. The assessment indicated a
strong correlation between aspects and predicted biomass, using both
bands and indices. Specifically, the aspect ranges in the northwest of site
A showed a high correlation of 0.80 with the predicted biomass when
using bands and indices. In site B, the southwest aspect ranges showed a
correlation of 0.53 with the predicted biomass in the PBB (Figure 6D).

Variable importance in AGB modeling

In total, 54 variables were used in AGB modeling in the study
areas, i.e., 10 spectral bands and 44 vegetation indices. Random
forest has the capability to evaluate the variable importance during
modeling. The variable importance of all the spectral bands and
vegetation indices for each study site (A and B) was evaluated
separately, as shown in Figure 7. In site A, the top 10 important
variables were ARVI8A, NDI45, B12, S2REP, GEMI, PVI8A,
REIP8A, S2REIP8, MTCI8A, and IRECI8A. Similarly, for site B,
the highly important variables were B12 and B11, followed by
TSAVI8, ARVI8A, NDVI45, ARVI8, NDVI8A, B4, TNDVI8A,

FIGURE 4
(A) (a) effect of three elevations (E1, E2, and E3) on predicted AGB
Mg/ha of bands, (b) effect of three elevations on predicted AGBMg/ha
of indices, and (c) effect of three elevations on predicted AGB Mg/ha
bands + indices of site A. (B) (a) effect of four elevations (E1, E2,
E3, and E4) on predicted AGB Mg/ha of bands; (b) effect of four
elevations on predicted AGB Mg/ha of indices, and (c) effect of four
elevations on predicted AGBMg/ha bands + indices of site B. (C) PBB is
the predicted biomass band; PBI is the predicted biomass index; and
PBB + +I is the predicted biomass bands and indices.
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FIGURE 5
(A) (a) effect of four different slopes (S1, S2, S3, and S4) on predicted AGBMg/ha of bands; (b) effect of four different slopes on predicted AGBMg/ha
of indices; and (c) effect of four different slopes on predicted AGBMg/ha of bands and indices of site A. (B) (a) effect of four different slopes (S1, S2, S3, and
S4) on predicted AGB Mg/ha of bands; (b) effect of four different slopes on predicted AGB Mg/ha of indices; and (c) effect of four different slopes on
predicted AGB Mg/ha of bands and indices of site B.
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and TNDVI8. Furthermore, due to differences in the geography and
physical structure of forests in sites A and B, the variables’
importance is not same.

Discussion

Biomass distribution in the study area

The biomass prediction in site A (Usho Forest) and site B (Utror
Forest), using ground biomass and the random forest regression
model, aligns with contemporary research emphasizing the

significance of spatial and environmental factors in
comprehending forest biomass distribution. Previous studies
(Qadeer et al., 2024) carried out forest biomass estimation
through remote sensing and machine learning techniques,
corroborating the efficacy of random forest models in capturing
intricate relationships within diverse forest ecosystems. The
identified patterns of diminished forest density at higher altitudes
in site A and the influence of latitude and forest composition on
biomass in site B resonate with the findings obtained by Thapa et al.
(2023), who explored biomass variations in subtropical forests,
underscoring the role of topographical and climatic factors. The
study methodology, integrating advanced modeling techniques and

FIGURE 6
(Continued).
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FIGURE 6
(Continued). (A) PBB is the predicted biomass band, PBI is the predicted biomass index, and PBB + I is the predicted biomass band and index. (B)
Effect of aspect on the predicted biomass, where (a) shows the effect of different aspects on predicted AGB Mg/ha of bands; (b) shows the effect of four
different aspects on predicted AGBMg/ha of indices; and (c) shows the effect of different aspects on predicted AGBMg/ha of bands and indices of site A.
(C) Effect of aspect on predicted biomass where (a) shows the effect of different aspects on predicted AGB Mg/ha of bands; (b) shows the effect of
four different aspects on predicted AGB Mg/ha of indices, and (c) shows the effect of different aspects on predicted AGB Mg/ha of bands and indices of
site B. (D) PBB is the predicted biomass band, PBI is the predicted biomass indexes, and PBB + I is the predicted biomass band and index.
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ground data, contributes to the evolving landscape of forest biomass
research, advancing our understanding of the intricate interplay
between environmental variables and biomass patterns in different
forest ecosystems (Wijaya et al., 2013; Ploton et al., 2017; Guanglong
et al., 2019). The resulted AGB maps exhibit spatial distributions,
effectively masking non-forest areas. In site A, the study
discerns reduced forest density and productivity at higher
altitudes in the northern and western regions, resulting in
biomass ranges of 150–203, 163–220, and 145–204 Mg/ha.
Conversely, site B, characterized by lower latitudes and a mix
of thinner forests, displays biomass ranges of 99.5–185,
131–197, and 116–198 Mg/ha. This comprehensive approach
significantly contributes to current research efforts aimed at
unraveling the complexities of forest biomass dynamics in
varied environmental contexts.

In our study of biomass distribution in site A (Usho Forest) and
site B (Utror Forest), we employed ground biomass data and
random forest regression models, reflecting recent advancements
in forest biomass estimation. Random forest regression models
achieved high accuracy in estimating the forest biomass in
northern China, using Landsat 9 imagery, lending credibility to
our approach (Jiang et al., 2022). In site A, we observed reduced
forest density at higher altitudes, resulting in biomass ranges of
150–203, 163–220, and 145–204 Mg/ha. This finding is consistent
with that obtained by He et al. (2022), who quantified the effects of
stand and climate variables on biomass in larch plantations in China,
affirming the influence of altitude and environmental factors on
biomass. Conversely, site B, with lower latitudes and amix of thinner
forests, displayed biomass ranges of 99.5–185, 131–197, and
116–198 Mg/ha. This pattern aligns with the findings obtained

FIGURE 7
Importance of variables of bands and indices of sites A and B.
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by Liu et al. (2022), who explored biomass estimation in different
forest types, emphasizing the impact of forest composition on
biomass distribution. The effectiveness of recent studies such as
that by Li et al. (2022), which combined data from multiple
sensors to predict forest above-ground biomass with increased
accuracy and robustness, was replicated by our approach to AGB
mapping, which effectively obscured non-forest areas. Li et al.
(2023) investigated the influence of forest composition on
biomass distribution by examining biomass estimation in
various forest types.

Random forest for biomass modeling

The random forest regression model yielded promising
results. As mentioned above, Breiman (2001) invented the RF
machine learning method, which is a set of binary rule-based
decisions that determine how an input relates to its dependent
variable. One of the primary benefits of RF is its ability to
effectively depict complicated relationships between
independent factors and dependent variables, which are
frequently encountered when complex ecological systems and
environmental variables are added (Fu et al., 2017). In site A, the
model demonstrated notable R2 values of 0.83 for spectral bands,
0.74 for vegetation indices, and 0.79 for the combination of bands
and indices. Correspondingly, the RMSE values were 29.99,
34.36, and 30.71, while the MAE values stood at 22.34, 28.30,
and 21.86 for bands, indices, and a combination of both,
respectively. In site B, the model performance was robust,
evidenced by R2 values of 0.75 (spectral bands), 0.83
(vegetation indices), and 0.82 (bands and indices). The
associated RMSE values were 53.11, 46.15, and 46.47, and the
MAE values were 34.47, 33.30, and 31.67, respectively. These
outcomes align with those of contemporary research on the
efficacy of the random forest algorithm in biomass prediction,
as indicated by studies such as those by Pham et al. (2020) and
Rasel et al. (2021). The scatterplots depicting the agreement
between predicted and observed biomass values further
reinforce the robustness and practical utility of the model.

Biomass variation along the
altitudinal gradient

Effective forest biomass estimation through remote sensing
relies on meticulous model selection and application, directly
shaping the accuracy and minimizing the uncertainty in
estimations. The precision of biomass assessments hinges on the
strategic use of models, emphasizing their critical role in obtaining
reliable and consistent outcomes (Lu, 2006; Shettles et al., 2015). The
predicted biomass variations along altitudinal gradients in site A
(elevation ranges E1, E2, and E3) revealed distinct patterns for
spectral bands, vegetation indices, and their combination. For
instance, in E1, the predicted biomass for bands was 237.89 Mg/
ha, vegetation indices showed 255.44 Mg/ha, and the combination
yielded 244.24 Mg/ha. In site B (E1, E2, E3, and E4), the predicted
biomass ranged from 200.82 Mg/ha to 198.36 Mg/ha for bands and
199.46 Mg/ha to 220.42 Mg/ha for vegetation indices. Optimal

results were observed in E1 for site A, emphasizing the
importance of vegetation indices, while for site B, E1 exhibited
superior results for spectral bands (Pham et al., 2020). A similar
trend was observed in the slope effect analysis, where site A
S4 showed the best biomass predictions for both bands
(233.64 Mg/ha) and vegetation indices (250.53 Mg/ha). In site B,
the highest biomass for the slope effect occurred in vegetation
indices (215.65 Mg/ha) in S4. Furthermore, the analysis of aspect
on predicted biomass demonstrated varying results across different
aspects for both sites. Notably, Site-A’s flat aspect exhibited the
highest predicted biomass for bands (230.41 Mg/ha) and vegetation
indices (249.83 Mg/ha). In site B, the west aspect showed the best
results for spectral bands (203.09 Mg/ha), vegetation indices
(228.70 Mg/ha), and their combination (221.92 Mg/ha). In our
study, the meticulous validation of biomass prediction models for
site A and site B forests, using the RF algorithm with a dataset of
120 plot samples and a diverse set of input variables, yielded
promising results. The invention of the RF machine learning
method by Breiman (2001) has been a foundational development
in this field. The ability of RF to effectively depict complex
relationships between independent and dependent variables is
especially beneficial in ecological systems.

In site A, the model demonstrated strong R2 values (0.83 for
spectral bands, 0.74 for vegetation indices, and 0.79 for the
combination), with corresponding RMSE values of 29.99, 34.36,
and 30.71 andMAE values of 22.34, 28.30, and 21.86, respectively. In
site B, the model showed robust performance, with R2 values of 0.75,
0.83, and 0.82; RMSE values of 53.11, 46.15, and 46.47; and MAE
values of 34.47, 33.30, and 31.67. These outcomes align with those of
contemporary research, such as the study by Fassnacht et al. (2014),
who noted the high performance of RF in biomass prediction using
LiDAR data. Additionally, Esteban et al. (2019) highlighted the
increased precision of RF in forest volume and biomass predictions
using remotely sensed data.

However, the altitudinal gradients significantly influence
biomass distribution; optimal elevation ranges for AGB harvest
are 2,009–2,061 m for site A and 2,601–2,800 m for site B.
Similarly, among different aspects, the highest significance levels
observed are northwest and southwest aspects in sites A and B,
respectively.

Furthermore, the scatterplots depicting the agreement between
the predicted and observed biomass values reinforce the robustness
and practical utility of the RF model. This is supported by Bilous
et al. (2017), who reported high accuracy in estimating forest stock
volume and live biomass using RF. The efficacy of RF in handling
complex correlations between variables is also evidenced in the
study by Ullah et al. (2021), demonstrating the suitability of RF in
bio-oil yield prediction.

Variable importance in AGB modeling

The importance of variables in AGB modeling was assessed
using the random forest algorithm. In site A, the high-ranked
variables were ARVI8A, NDI45, and B12, while in site B, the
high-ranked variables include B11, TSAVI8, and ARVI8A.
Previous studies (Crippen, 1990; Moradi et al., 2022) also
highlight that variable ARVI8A is a key contributor in biomass
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modeling. Furthermore, due to differences in the physical structure
and density of forests in site A and site B, the variables’ ranking in
both sites was not same. These differences in the variables’ ranking
can be attributed to the fact that a forest with different ages,
structures, and densities has different spectral responses. In the
assessment of variable importance for AGB modeling using the
random forest algorithm, key contributors such as ARVI8A, NDI45,
and B12 in site A and B11, TSAVI8, and ARVI8A in site B were
identified. This highlights the importance of considering factors like
elevation, slope, aspect, and specific spectral variables in refining
biomass predictions for diverse forest ecosystems. The high
importance of ARVI8A, NDI45, and B12 in site A aligns with
the findings obtained by Lourenço et al. (2021), who identified
vegetation indices and spectral bands as the top variables for
estimating tree AGB in Mediterranean agroforestry systems. In
contrast, the variable rankings in site B reflect the different
spectral responses due to variations in forest age, structure,
and density.

Conclusion

This work utilized Sentinel-2 data and a random forest
regression model to accurately estimate and map the AGB in
the difficult terrain of the Usho and Utror forests in northern
Pakistan. The study utilized ground biomass data from specific
research locations in hilly areas to uncover detailed spatial
patterns of AGB. Non-forest areas were excluded from the
analysis using an NDVI threshold. The investigation, which
included the examination of spectral bands, vegetation
indexes, and machine learning approaches, yielded detailed
and subtle insights into the fluctuations in the AGB.
Altitudinal gradients were found to be important factors
affecting the distribution of biomass. This conclusion was
further supported by slope analysis. The western features
consistently exhibited the greatest biomass, and the analysis of
variable importance showed the main predictors. The
comprehensive methodology greatly enhances our
comprehension of the distribution of the AGB in arid
temperate ecosystems, providing valuable implications for the
implementation of sustainable forest management and
environmental preservation in the area. The comprehensive
methodology of the study and precise quantitative analysis
bolster its scientific legitimacy.
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