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Introduction:Mapping soil organic carbon (SOC) with high precision is useful for
controlling soil fertility and comprehending the global carbon cycle. Low-relief
locations are characterized by minimal variability in traditional soil-forming
elements, such as terrain and climatic conditions, which make it difficult to
reflect the spatial variation of soil properties. In the meantime, vegetation
cover makes it more difficult to obtain direct knowledge about agricultural
soil. Crop growth and biomass are reflected by the normalized difference
vegetation index (NDVI), a significant indicator. Rather than using conventional
soil-forming variables.

Methods: In this study, a novel model for predicting SOC was developed using
Landsat-8 Operational Land Imager (OLI) band data (Blue (B), Green (G), Red (R),
and Near Infrared (NIR), NDVI data as the supporting variables, and Artificial
Neural Networks (ANNs). A total of 120 surface soil samples were collected at a
depth of 25 cm in the northeastern Nile Delta near Damietta City. Of these, 80%
(96 samples) were randomly selected for model training, while the remaining
24 samples were used for testing and validation. Additionally, Gaussian Process
Regression (GPR) models were trained to estimate SOC levels using theMatern 5/
2 kernel within the Regression Learner framework.

Results and discussion: The results demonstrate that both the ANN with a
multilayer feedforward network and the GPR model offer effective
frameworks for SOC prediction. The ANN achieved an R2 value of 0.84, while
the GPR model with the Matern 5/2 kernel achieved a higher R2 value of 0.89.
These findings, supported by visual and statistical evaluations through cross-
validation, confirm the reliability and accuracy of the models.
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Conclusion: The systematic application of GPR within the Regression Learner
framework provides a robust tool for SOC prediction, contributing to sustainable
soil management and agricultural practices.
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1 Introduction

Soil organic carbon (SOC) is essential for both food security and
mitigating the effects of climate change due to, carbon sequestration
(Lal, 2004; Lal, 2019; Li et al., 2020). In an international context,
determining which land use/cover types may offer the best
opportunity for C sequestration to mitigate increases in
greenhouse gas concentrations or where soils are most vulnerable
to C losses requires a solid understanding of the global SOC mass
and its spatial distribution (Köchy et al., 2015). The United Nations
Food and Agriculture Organization (FAO) took the initiative to
declare 2015 the “International Year of Soils.” Fossil fuel combustion
releases 9.0 GtC annually into the atmosphere; this is where the term
“4 per thousand” (Minasny et al., 2017) came from. The programme
calls for the advancement of agronomic research to raise global soil
organic matter (SOM) stocks by 4 per 1,000 annually during the
COP 21 conference (Chenchouni and Neffar, 2022). Farmers and
scientists agree that one of the main markers of soil quality is SOC.
SOC is thought to be the primary carbon store on Earth, accounting
for around 58% of the structure of organic matter (OM) (Allory
et al., 2019; Gomez et al., 2020). According to estimates, there may be
up to three times as much carbon as there is in the atmosphere
(Houghton, 2007). With this perspective, the hypothesis that
increasing SOC content derives from increased organic matter
input into the medium is still in place (Lal, 2019). Higher OM
concentrations may enhance soil fertility because they store and
release nutrients (Raiesi, 2021), stabilize the physical structure and
other factors (Fontana et al., 2023). The technique of reflectance
spectroscopy has gained increasing prominence in evaluating SOC
(Gholizadeh et al., 2021) as an alternative to laboratory practices that
require longer times for analysis and the use of reagents that are
significantly harmful (Sithole et al., 2018). Quantitative evaluations
of SOC and its administration are required to comprehend its
pivotal function in the global C cycle (Viscarra Rossel et al.,
2019). Hyperspectral remote sensing (HRS) has made it possible
to detect soil elements and indirectly forecast soil qualities by
analyzing the electromagnetic radiation reflected by a sample’s
surface, using physical parameters like reflectance factors (ρ)
(Benedet et al., 2020; Sun et al., 2018). Soil spectroscopy can
serve as a foundation for additional soil identification and
recognition using satellite remote data. To create map models
that accurately reflect the spatial differentiation of target soil
properties at the field level, laboratory or in-situ field
spectrometry data is used to calibrate the models before moving
on to satellite data for the most informative wavelengths (Chinilin
et al., 2023). In response to the demand for sustainable development,
remote sensing (RS) methods in the 400–2,500 nm Visible–Near
Infrared–Shortwave Infrared (VNIR–SWIR) area could help more
quickly, affordably, and directly estimate key indicators for soil
monitoring needs (Angelopoulou et al., 2019).

From a methodological perspective, various soil properties,
including pH, organic carbon, electrical conductivity, texture,
nitrate-nitrogen, available phosphorus, exchangeable potassium,
cation exchange capacity, exchangeable calcium, and
exchangeable aluminium, can be distinguished using analytical
methods based on changes in specific reflectance (in the visible
range from 400 to 700 nm, and in the Near Infrared range from
700 to 2,500 nm (Islam et al., 2003; Rossel et al., 2006). Measurement
and monitoring techniques that are both practical and economical
are necessary for a quantitative evaluation of changes in the quantity
and composition of SOC that may result from alterations in the
types of land use and tillage practices. When dealing with multiple
samples, the typical analytical processes can be exceedingly costly
and time-consuming (Poppiel et al., 2022). Tracking changes in the
environment and agriculture has been made easier with the use of
remote sensing in recent years (Jiménez-Lao et al., 2020; Li et al.,
2020; Overpeck et al., 2011; Pavlovic et al., 2024). The system uses a
variety of platforms and sensors, including satellite constellations
and unmanned aerial systems (UAS), to collect data. This data is
then processed using sophisticated algorithms, many of which are
used in the fields of machine learning (ML) and deep learning (DL).

In recent years, ML and DL have been extensively used in
various fields to extract and predict information from high-
resolution aerial and satellite imagery. For example, in
agriculture, they are utilized for crop monitoring, disease
detection, and yield prediction. In urban planning, they help in
mapping land use, analyzing infrastructure, and monitoring urban
growth. In environmental science, these networks aid in tracking
deforestation, assessing natural disaster impacts, and studying
climate change (Orusa et al., 2024). Furthermore, ML and DL are
instrumental in estimating vegetation health, vegetation land cover,
fractional vegetation cover, and soil properties (Khanal et al., 2018;
Gao et al., 2020). Particularly for agricultural applications where the
interactions are complicated and multivariate, multiple regression
and machine learning models hold great potential to produce more
accurate predictions than those produced by standard regression
approaches (Farbo et al., 2024).

ML includes a range of algorithms capable of modeling and
predicting SOC using input data like soil properties, climate
variables, and remote sensing indices. Key algorithms include: a)
Gaussian Process Regression (GPR) is a non-parametric, Bayesian
method that models complex, nonlinear relationships and provides
uncertainty estimates, useful for risk assessment and decision-
making. b) Support Vector Machines (SVM) is a supervised
learning model for classification and regression, effective in SOC
prediction by separating data into classes or predicting continuous
values. Random Forests (RF): An ensemble method that builds
multiple decision trees, robust against overfitting and suitable for
high-dimensional data (Adeniyi et al., 2024; Mahmoudzadeh et al.,
2020) DL is a subset of ML, uses neural networks with multiple
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layers to learn data representations. The ability of deep neural
networks to learn complex patterns from large datasets makes
them invaluable for extracting meaningful insights from high-
resolution imagery DL excels in SOC estimation by capturing
intricate patterns and nonlinear relationships in large datasets.
Key DL architectures include: a) Multilayer Feed forward
Networks (MLFNs), which automatically learn relevant features
from data, handling large, diverse datasets and improving
prediction accuracy (Parvizi and Heshmati, 2015), b)
Convolutional Neural Networks (CNNs) is Ideal for spatial data
like remote sensing images, CNNs extract spatial features for SOC
prediction (Kattenborn, et al., 2021), c) Recurrent Neural Networks
(RNNs): Suitable for sequential data, RNNs capture temporal
dependencies, useful for analyzing time-series data of soil and
climate variables (Grossberg, 2013).

The development of a SOC model using ANNs apply a
sophisticated machine learning approach to predict SOC levels
based on various soil and environmental factors. ANNs consist of
interconnected neurons that process inputs through non-linear
functions, enabling the modeling of complex relationships within
the data (Figure 1). The model is trained on extensive datasets,
including soil properties and climatic conditions, where the network
adjusts its weights to capture underlying patterns in the data. The
advantage of ANNs lies in their ability to handle non-linear
relationships, which are challenging for traditional algorithms.
Techniques like backpropagation are used during training to
minimize prediction errors, while cross-validation ensures model
robustness and generalizability. The ANN’s performance is
evaluated using metrics and visual tools, demonstrating its
accuracy and utility in SOC prediction, aiding in sustainable soil
management.

Through the application of various ML approaches, Wang et al.
(2019) attempted to apply ML techniques to estimate SOC stock in
the semi-arid region with an emphasis on assessing the effect of
taking seasonal fractional cover into account onmodel performance.
On their dataset, the random forest (RF) method yielded the best
results, with an R2 of 0.47. The evaluation of soil parameters has also
benefited from advancements in instrumental engineering and
proximal soil sensing, particularly soil spectroscopy (Rossel et al.,
2006). To characterize the soil and the consequences of its
management, the amount of organic carbon in the soil across a
wide region must be quantified (Ribeiro et al., 2021). Based on the

correlation of environmental factors (NDVI, annual precipitation,
average temperature, and moisture index), Wang et al. (2019)
evaluated the SOC geographical distribution using a weighted
regression technique. These therefore demonstrate that robust
statistical links are produced between significant topographic
variance and significant changes in climate and other SOC-
related environmental variables. To improve our understanding
of and management of SOC for the benefit of all humanity, we
need to develop effective and efficient ways for continuous global
SOC monitoring (Pavlovic et al., 2024). Regrettably, conventional
methods used to track SOC are frequently labor-intensive,
expensive, and unworkable (Mäkipää et al., 2008). To get what
might be considered “ground truth” data, these processes involve
thorough soil collection, additional laboratory testing, and
considerable data processing (Ellert et al., 2007).

In this work, we used Landsat OLI imagery, to ascertain the SOC
in the in the northeastern part of the Nile Delta, Egypt. To
accomplish this, we trained and validated our models using a
dataset of satellite images and related SOC values obtained by
field sampling. This was done using ML and DL approaches.

2 Materials and methods

2.1 Investigated area

The study area spans the catchment basin in the northeastern
part of the Nile Delta, next to Damietta City. Geographical
coordinates are 31° 20′00° to 31° 27′00`` North in latitude and
31° 34 30`` to 31° 41 30 East in longitude (Figure 2A). The study area
covers 10,763 ha and is characterized by a variety of land uses, such
as croplands, urban areas, bare soils, and water bodies, which include
all of the local streams, as shown in Figure 2B. This region has a
Mediterranean climate, with seasonal and sporadic rainfall that
mostly falls during the winter. Based on records from the
Climatic Data of Port Said Meteorological Station, historical
rainfall data for January (TMS, 1986–2020) indicates an average
of 125 mm based on information from the Port Said Meteorological
Station’s Climatic Data. The region’s maximum recorded
temperature was 36°C, while the average temperature was 21.4°C.
Landsat8OLI (15/10/2023) was used to create a satellite image of the
research area with a spatial resolution of 30 m. A 30-m resolution

FIGURE 1
The architecture of the artificial neural network.
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digital elevation model (DEM) was acquired from publicly available
data, specifically from the Shuttle Radar Topography Mission
(SRTM). The majority of the study area’s geology is made up of
Nile silt deposits. Next come sand dunes that have stabilized, sand
dunes that deposits of sabkha and undifferentiated quaternary
materials (Egypt, 1987). Damietta is located in the arid zone,
with an aridity index (the annual P/annual ET) of 0.07, in
accordance with the UNESCO categorization of arid lands (MAB,
1979). The temperature and moisture regimes in soils are thermic
and aridic, respectively, according to soil classification, there is just
one soil order—Entisols—which has three suborders: aquents,
psamments, and fluvents (El-Gammal et al., 2014).

2.2 Collecting soil samples and lab. analysis

A total of sixty soil samples were gathered at a depth of 25 cm
during October/2023, representing a variety of land uses and soil
types. The precise location of every sampling station was ascertained
using a small, hand-held GPS device. Soil samples were air-dried,
ground until they could be passed through a 2 mm sieve, and then
kept in plastic bags at a temperature of about 4°C until analysis. The
dichromate oxidation method was used to assess SOC in accordance
with the Walkley and Black method (Schumacher, 2002). Sodium
hexametaphosphate was used as a dispersant during the mechanical
examination of the soil samples, in compliance with the
international procedure (Rowell, 2014).

2.3 Research methodology

2.3.1 Processing of digital image
A Landsat 8 OLI image was downloaded from the U.S.

Geological Survey (USGS) on15/10/2023.It is distinguished
by15 m panchromatic band and 30 m multi-spectral spatial
resolutions with nine spectral bands. After removing the thermal

bands, the images underwent georectification using UTM
coordinates. The scenes we have chosen has no cloud cover and
consists of six atmospherically corrected bands in surface reflectance
(SR) data from the Vis, NIR, and Shortwave Infrared (SWIR)
regions: B2 (450–510 nm), B3 (530–590 nm), B4 (640–670 nm),
B5 (850–880 nm), B6 (1,570–1,650 nm), and B7 (2,110–2,290 nm).
The process of mosaicking theimages involved fusing several images
together to create a single composite image inside of a dereferenced
output mosaic (Mohamed et al., 2020). We were able to determine
the best adjustments for Normalized Difference Vegetation Index
(NDVI) (de Castro Padilha et al., 2020) The FLAASH module was
then used to atmospherically correct OLI image, and depending on
the panchromatic band, the visible and NIR bands’ spatial resolution
was resampled to 15 m depending on the panchromatic band
(Mohamed et al., 2020). The data were converted to surface
reflectance after being calibrated to spectral radiance (Rukun,
1999). Lastly, a selective mask of the non-analysis zone was
applied in order to preserve only the pixels with the bare soil
(Bouasria et al., 2020). This study focuses on the Blue (B), Green
(G), Red (R), and Near Infrared (NIR) bands to develop a predictive
model for SOC.

2.3.2 Mapping SOC% using ordinary kriging
Predicted SOC% values were interpolated using ordinary

kriging. The OK geostatistical model predicts the value of a given
SOC% at an un-sampled site using a set of statistical methods. Using
normal QQPlots and the histogram tool, the data’s normal
distribution pattern was examined. The trend analysis served as a
SOC check.

The kriging estimator method’s general Equation 1 is as follows
(Otto et al., 2018; Biswas and Si, 2013).

Z x0( ) � ∑n

i�1λi × Z xi( ) (1)

Based on observed data (Z(xi)), weights of measured values (λi)
within a particular distance, and the number of predicted values (n)

FIGURE 2
(A) Location of research area and spatial distribution of soil samples; (B) LULC of study area.
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inside specific neighbor samples, the predicted value Z(x0)
is estimated.

2.3.3 Normalized difference vegetation
index (NDVI)

Based on the simulated red and NIR reflectance, this
dimensionless index, as presented in Equation 2, indicates the
existence and density of vegetation may discriminate between
different agricultural characteristics within a field, such as plant
height and yield. (Tucker, 1977; Leon et al., 2003).

NDVI � Band 5 − Band 4
Band 5 + Band 4

(2)

Vegetation and soil properties showed a substantial association,
according to the NDVI (Demattê et al., 2017). In this work, we
looked at the NDVI’s spatial variability to see whether the SOC
content that came from machine learning was in line with
the NDVI’s rise.

2.3.4 Machine learning and deep learning
ML is transforming the prediction and management of SOC,

crucial for soil health and agriculture. By using diverse datasets (soil
properties, climate, land use, remote sensing), ML algorithms can
accurately predict SOC levels. Techniques like Gaussian process
regression, neural networks, and support vector machines effectively
model SOC dynamics, revealing patterns traditional methods might
miss. ML also helps create detailed SOC maps for targeted soil
conservation. Integrating ML with geospatial tech allows continuous
monitoring and real-time SOC predictions, supporting adaptive
management strategies. This enhances soil health, carbon
sequestration, and sustainable agriculture amid climate change.

To systematically address challenges such as predicting SOC
using ML, a structured workflow is essential. This process typically
involves the following steps:1. Access and Load Data: Gather and
import relevant datasets, such as remote sensing imagery and soil
samples. 2. Preprocess Data: Clean, normalize, and transform the
data to ensure consistency and quality. 3. Derive Features: Extract
key variables (e.g., spectral indices, topographical attributes) that
influence SOC. 4. Train Models: Use these features to train ML
models, optimizing parameters to minimize prediction error. 5.
Iterate to Find the Best Model: Evaluate multiple models to

identify the most accurate one through techniques like cross-
validation. 6. Integrate the Best-Trained Model into a Production
System: Deploy the best model into a production system for
continuous SOC prediction. By following this systematic
workflow, ML can effectively address the complexities of SOC
prediction, enabling accurate and scalable solutions to
environmental monitoring challenges. The following flowchart
(Figure 3) explains the systematic ML workflow for tackling
challenges, especially in predicting SOC.

2.3.5 Development of a SOC model using the
gaussian process regression algorithms

A Gaussian Process (GP) characterizes a distribution over
functions, essentially producing a finite set of random variables
that adhere to a joint Gaussian distribution. Gaussian Process
Regression (GPR) is a non-linear regression technique that
employs non-parametric Bayesian modeling. It accounts for the
variance within the dataset and optimizes the marginal likelihood
during the training phase, utilizing a scaled anisotropic Gaussian
kernel function (Pérez-Planells et al., 2015; Van Wittenberghe et al.,
2014). The relationship between the input variable (B-variables) and
the output variable (SOC) (Equation 3):

ŷ � f x( ) � ∑n
i�1

∝ ik xi, x( ) (3)

Where (X)Ni�1: input bands or variables used in training, ∝ i:
weights assigned to the training bands or variables, and k:
sophisticated kernel function that assesses the similarity between
the test variable and all N bands or training variables.

Scaled anisotropic Gaussian kernel function (Equation 4):

K Xi,Xj( ) � ν exp −∑B
b�1

Xb
i − Xb

j( )2
2 σ2

b

⎛⎝ ⎞⎠ (4)

Where ν: scale factor, B: number of variables (bands), and σb:
factor that controls the propagation of the relationship for each of
the input variables b.

GPR is particularly adept at identifying critical features of the
input variables (Williams and Rasmussen, 2006) and assessing the
relative importance of different bands or parameters within the

FIGURE 3
Flowchart explains the systematic machine learning workflow.
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predictive model. This capability allows for the determination of key
input variables associated with SOC sequestration, ranking them by
their contribution to the model’s optimization. Through this
process, GPR can effectively prioritize the most influential SOC
predictors, thereby enhancing the accuracy and efficiency of the
resulting model. The development of a SOC model using GPR
algorithms involves employing sophisticated statistical and ML
techniques to accurately estimate SOC levels from various soil
and environmental variables. This process begins with the use of
specialized software, such as the Regression Learner, which is
designed to streamline the creation, training, and evaluation of
regression models. The software facilitates comprehensive dataset
management, allowing for the systematic selection of relevant
features and the definition of validation protocols. The
Regression Learner automates the training of multiple regression
models, including GPR, enabling the identification of the most
appropriate model type for the SOC prediction (Elshewy et al.,
2024). GPR is particularly advantageous in this context due to its
capability to manage non-linear relationships and provide
uncertainty estimates, making it a robust choice for dealing with
complex environmental datasets.

2.3.6 Development of a SOC model using the
artificial neural networks

The development of a SOC model using ANNs involves
employing a sophisticated ML approach to predict SOC levels
based on various soil and environmental factors. ANNs consist of
interconnected units called neurons, which are linked by weighted
connections that transmit information. Each neuron processes
inputs through complex, non-linear functions to generate
outputs, allowing the network to model intricate relationships
within the data. The ANN learns by adjusting the weights of the
connections between neurons through training on this data, where
known input and output variables (e.g., soil characteristics and
corresponding SOC levels) are provided. This training enables
the network to understand the underlying relationships between
the inputs and the target SOC levels, capturing patterns that are
often difficult to model using traditional algorithmic methods. The
significant advantage of using ANNs in SOCmodeling is their ability
to handle complex, non-linear relationships that are typically
challenging to define with conventional algorithms. During the
training phase, the ANN iteratively updates its weights to
minimize prediction errors, utilizing techniques like
backpropagation. Once trained, the ANN can accurately predict
SOC levels for new data, providing a powerful tool for soil
management and agricultural planning.

There are various models of ANN technique, including
multilayer feedforward network, radial basis network, generalized
regression network, probabilistic networks, etc (Ahmed et al., 2023).
In this study, a multilayer feedforward network option was chosen to
create a SOC model, because it has good representative capabilities.
ANNs were created by the MATLAB program using the neural
network tool (nftool). As a training function, the TRAINLM
function built into MATLAB was used, which trains the ANN
using the well-known Levenberg-Marquardt algorithm, the
TANSIG activation function in all layers and the data interval
normalized between [-1; 1] and two hidden layers with
20 neurons were used. The hyperparameters were selected based

on extensive experimental work aimed at optimizing model
performance, as well as guidance from previous studies. The
dataset was randomly divided into 80% for training, 10% for
validation, and 10% for testing. During training, the network
adjusted based on the error from the training data, while the
validation set was used to monitor generalization and halt
training when improvements ceased. The test set provided an
independent measure of performance. To minimize the error, the
Levenberg-Marquardt algorithm was used, which adaptively
changes the unknown parameters (weights and biases) between
the gradient descent update and the Gauss-Newton update
according to Equation 5, until the algorithm reaches a stable state.

ΔRk � − JTJ + μkI[ ]−1JT SOC − ^SOC( ) (5)

Where ΔRk is the theoretical difference between successive
estimates of the same unknown parameter; it is also called
performance index. JT is the transposed Jacobi matrix with
respect to the unknown parameters [∂Rk/(∂wi) j (∂b0)]

T. μk is a
scalar value used to make the Hessian matrix (JTJ)invertible. I -
identity matrix, the dimension of which is equal to the number of
unknown parameters. SOC represents the target response (in our
case, the estimated SOC at reference points), and ^SOC represents the
predicted SOC at any point calculated from Equations 6, 7:

^SOC � ∑n
i�1
alk W

1
i + b10 (6)

Where: alk � F nlk( ) � en
l
k − e−n

l
k

en
l
k + e−n

l
k

, (7)

where F(nlk) represents the transfer (activation) function.

2.3.7 Verify the evaluation of model performance
After the completion of training of GPR algorithms and ANNs,

model performance is evaluated using the Standard Deviation (STD)
and the determination coefficient (R-squared) (Equations 8–10).
STD plays a crucial role in the study as it measures how spread out
the predicted SOC values are. By analyzing the STD, we ensure that
the predicted values are more tightly clustered around the mean,
indicating that the models produce consistent and reliable
predictions. These metrics provide insights into the accuracy and
reliability of the models. The Standard Deviation measures the
dispersion of prediction errors, indicating how much the
predicted values deviate from the actual values. The R-squared
value, on the other hand, assesses the proportion of variance in
the dependent variable that is predictable from the independent
variable(s). These performance measures are mathematically
represented by specific equations, where (n) denotes the number
of data points used in the evaluation process. By analyzing these
metrics, one can determine the effectiveness of the created models
and their potential applicability to real-world scenarios.

R − squared � 1 − ∑i SOCactual i − SOCpredicted i( )2∑i SOCactual i − SOC( )2 , (8)

SOC � 1
n
∑n

i�1SOCactual i (9)

STD �
�������������������������
1

n − 1
∑n

i�1 SOCactual i − SOC( )2√
, (10)
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3 Results and discussion

3.1 Soil and vegetation characteristics of the
study area

The SOC%’s fundamental statistical data is displayed in the
Table 1. The research area’s texture varies from sandy to sand clay
loam. Within the research region, the SOC values vary from 0.00 to
1.10 percent, with an average of 0.56% ± 0.257% (Table 1). The
highest content of SOC was found in clay loam soil. Under same
climatic conditions, SOC levels typically rise with increasing clay
and silt content due to increased physicochemical protection
(Abdellatif et al., 2023; Li et al., 2022). The NDVI values ranges
from 0.1 to 0.94, the regions with high SOC values also had the
highest NDVI values (Figure 4A). There is a direct and indirect
correlation between soil organic matter and vegetation cover
according to the NDVI (Muster et al., 2015). A significant
positive correlation has been seen between the NDVI and SOC
content (Zhang et al., 2019). The effectiveness of the geostatistical
model for each SOC and the performance of ordinary kriging
interpolation were evaluated using metrics like the root means

square error (RMSE), mean standardized error (MSE), and root
means square standardized error (RMSSE) (Otto et al., 2018;
Hammam et al., 2022; Mustafa et al., 2024). We used the nugget
to sill ratio to assess the spatial dependency (SPD) of SOC. If this
ratio is below 0.25, between 0.25 and 0.75, and above 0.75,
respectively, the SPD is strong, moderate, and weak (Cambardella
et al., 1994). As a result, SOC displayed moderate SPD (0.35). The
exponential model was found to be appropriate for SOC as the
RMSSE = 1.1 and MSE is close to zero (0.003). The highest values of
SOC were found in the west of study area (Figure 4B).

3.2 Processing of image (stage 2)

The digital numbers ranges corresponding to the locations of the
SOC samples and were obtained by processing the satellite image
using the ERDAS Envision software, as indicated in Table 2.

3.3 Machine learning and deep learning

Using spectral data from the B, G, R, and NIR bands, the study
systematically evaluated three scenarios for SOC prediction: pairs of
bands, combinations of three bands, and all four bands together.
GPR algorithms and ANNs were applied in each scenario to identify
the optimal model for characterizing SOC values across the
study area (Figure 5).

3.3.1 Modeling using GPR algorithms and artificial
neural network

The study used the Regression Learner application to train
Gaussian process regression models for predicting SOC values.

TABLE 1 Descriptive statistics for the SOC% of the samples.

Statistics properties SOC (%)

Mean 0.566

Standard deviation 0.257

Range 1.102

Minimum 0.00

Maximum 1.102

FIGURE 4
(A) NDVI and, (B) spatial distribution of SOC within investigated area.
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Data, including the spectral bands and SOC values, were imported,
and independent (bands) and dependent (SOC) variables were
defined. A 5-fold cross-validation was applied, with the data split
into 80% training, 10% validation, and 10% testing to prevent
overfitting and enhance model generalizability. Various Gaussian
process models, including Rational Quadratic, Squared Exponential,
Matern 5/2, and Exponential, were trained. Model performance was
assessed using R2 and standard deviation, and the best model was
selected and exported for SOC predictions across the study area.

A multilayer feed-forward neural network was selected for SOC
modeling due to its strong representational capabilities. The ANN
model featured two hidden layers with 20 neurons each and was
trained for at least 1,000 epochs. To prevent overfitting, early
stopping was applied, halting training if the validation loss did

not improve for 6 consecutive epochs, with the best model saved
based on the lowest validation loss. The TANSIG function was used
as the transfer function, and the Levenberg-Marquardt algorithm
optimized the weights and biases (Figure 6). The model was
developed using MATLAB R2019a, with data split into 80% for
training, 10% for validation, and 10% for testing. The model’s
accuracy was independently assessed during testing.

During the training process, 96 points were randomly selected,
while 24 points were used for both validation and testing. Detailed
performance metrics and error analyses for these models are
provided in Tables 3–5, facilitating a comprehensive comparison
and assessment of each modeling approach.

The results from Tables 3–5 provide a comprehensive analysis of
the performance of ML algorithms in predicting SOC values,

FIGURE 5
Pick data from the workspace to begin a session.

TABLE 2 Bands statistics.

Bands max min mean Correlation with SOC

Blue (B) 1890 183 487.44 −0.498

Green (G) 2,532 329 844.183 −0.412

Red (R) 3,156 145 726.317 −0.525

Near Infrared (NIR) 5,456 1,072 3,409.967 0.597
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highlighting the strengths of Gaussian Process Regression (GPR)
with the Matern 5/2 kernel and ANNs. These models were evaluated
using different combinations of spectral bands, specifically focusing
on two, three, and four-band configurations. The mean R-squared
value and STD for all models using GPR are 0.77 and 0.18,
respectively. For models employing ANNs, the mean R-squared
value and STD are 0.75 and 0.19, respectively. It was observed that
models incorporating three bands consistently outperformed those
using two or four bands, indicating an optimal balance of
information that enhances model accuracy. The mean R-squared
values with GPR and ANNs when using three bands are 0.85 and
0.80, respectively. In contrast, using two bands resulted in mean
R-squared values of 0.71 and 0.72, while using four bands yielded
values of 0.79 and 0.73, respectively.

GPR with the Matern 5/2 kernel demonstrated superior
performance in predicting SOC values. This kernel’s smoothness

and flexibility allowed it to effectively capture the spatial
dependencies and variability inherent in SOC data. GPR’s
probabilistic nature provided not only accurate SOC estimates
but also quantified the prediction uncertainties, a critical feature
for applications in soil science where spatial variability can
significantly impact model reliability. Additionally, GPR’s non-
parametric approach enabled it to model complex, non-linear
relationships between SOC and its covariates without assuming a
specific functional form, thereby enhancing its predictive capability.
The graphical comparison of predicted versus actual SOC values
(Figure 7) when using the B and G and NIR bands with GPR
confirmed the model’s high accuracy, illustrating its effectiveness in
real-world applications.

ANNs, specifically the multilayer feedforward network, also
showed strong predictive performance for SOC. While slightly
less robust than GPR, ANN effectively captured the non-linear
interactions among the variables, providing reliable SOC
predictions. The regression charts for the training, validation, and
testing processes (Figure 8) demonstrated the ANN model’s ability
to generalize well across different datasets, underscoring its potential
for SOC prediction. The ANN’s performance was particularly
notable when using the same three-band combination (B and G
and NIR), reinforcing the conclusion that this band configuration is
optimal for SOC modeling.

In summary, both GPR with the Matern 5/2 kernel and ANN
with amultilayer feedforward network present powerful frameworks
for SOC prediction, with GPR showing a slight edge due to its
probabilistic outputs and ability to handle spatial variability
effectively. The use of three bands (B and G and NIR) emerged
as the most effective approach, providing the best balance of
information for accurate and reliable SOC predictions. The
R-squared value achieved with the Matern 5/2 kernel algorithm
was 0.89, while the multilayer feedforward network attained an
R-squared value of 0.84. These findings have significant implications
for soil management and agricultural practices, offering robust tools
for enhancing SOC estimation and contributing to sustainable land
use strategies.

3.4 Models comparison

Comparing and validating the results of using ML and DL to
predict SOC values from Landsat-8 satellite bands reveals significant
insights into the efficacy of these methodologies. Previous research
has established a strong correlation between soil reflectance and its
characteristics, such as salt and moisture concentration, mineral
composition, and overall moisture content (Bannari et al., 2008).
Remote sensing emerges as a highly promising method for cost-
effective and global SOC monitoring. However, studies that rely
exclusively on satellite imagery have often been limited in scope. In
this context, six relevant approaches were compared against the best
model developed, which utilizes the blue (B), green (G), and Near
Infrared (NIR) bands with the GPR Matern 5/2 kernel model. The
methodologies for SOC prediction and mapping across these studies
reveal diverse approaches: Our study uses Landsat-8 data, NDVI,
and models like ANNs and GPR, achieving R2 values of 0.84 and
0.89, respectively, for accurate SOC modeling. In comparison,
another study evaluates visible and Near Infrared (vis–NIR)

TABLE 3Model statistics of the models for the different cases of two bands.

Bands features
R-Squared STD

Testing points Testing points

ANN ML ANN ML

R and N 0.76 0.73 0.15 0.16

G and N 0.67 0.71 0.18 0.17

B and N 0.69 0.71 0.18 0.17

G and R 0.80 0.76 0.17 0.19

B and R 0.75 0.72 0.15 0.17

B and G 0.70 0.64 0.20 0.23

TABLE 4 Model statistics of the models for the different cases of three
bands.

Bands features
R-Squared STD

Testing points Testing points

ANN ML ANN ML

B and G and R 0.80 0.84 0.19 0.20

B and G and NIR 0.84 0.89 0.18 0.17

B and R and NIR 0.79 0.86 0.25 0.19

G and R and NIR 0.76 0.81 0.20 0.20

TABLE 5 Model statistics of the model from the four bands.

Bands features
R-Squared STD

Testing
points

Testing points

ANN ML ANN ML

B and G and R and NIR 0.73 0.79 0.21 0.18

Frontiers in Environmental Science frontiersin.org09

Gouda et al. 10.3389/fenvs.2024.1448601

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1448601


hyperspectral data, finding proximal data more accurate than
remote data through Partial Least Squares Regression (PLSR)
(Gomez, et al., 2008). A third study employs EnMAP satellite
data with semi-automatic Partial-Least-Squares (PLS) regression,
showing slightly lower accuracy compared to airborne data but

useful for regional mapping (Steinberg et al., 2016). The fourth
article assesses various machine learning algorithms, highlighting
Deep Neural Networks (DNN) as the most precise for SOC
predictions (Wang et al., 2018). In semi-arid rangelands, high-
resolution satellite data, seasonal fractional cover (SFC), and

FIGURE 6
Training window from the MATLAB Neural Network Toolbox.
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environmental variables used with Random Forest (RF) and Boosted
Regression Trees (BRT) improve SOC stock predictions (Emadi
et al., 2020). Another study uses Convolutional Neural Networks
(CNN) with 10 years of MODIS phenology data, outperforming
traditional models like Random Forest (RF) (Yang et al., 2021).
Finally, Sentinel-2 time series data combined with Quantile
Regression Forest (QRF) and Linear Mixed Effect Models
(LMEM) emphasizes the importance of spatial components and
optimized mosaicking for accurate SOC mapping (Castaldi et al.,
2023). Overall, these studies demonstrate the progression from
traditional methods to advanced machine learning and remote
sensing techniques in SOC prediction. Descriptive statistics of
these approaches, as shown in Table 6, indicate that while
various methods have been suggested for determining SOC
values from satellite bands, the proposed model with the B and
G and NIR bands and the Matern 5/2 kernel stands out as more
advanced, accurate, and reliable. This comparative validation
underscores the superiority of integrating specific spectral bands
and advanced kernel methods in enhancing the predictive accuracy
of SOC values from satellite data.

3.5Mapping SOC utilizing the optimal model

Accurate and swift mapping of SOC is crucial due to its
profound environmental implications (Radočaj et al., 2024; van
Wesemael et al., 2023). To address this need, a comprehensive
map representing SOC values throughout the study area has been

generated by integrating remote sensing data and ANNs. This model
incorporates data from the blue (B), green (G), and Near Infrared
(NIR) spectral bands, in conjunction with the Matern 5/2 kernel
model, to produce a detailed digital map of SOC for the study area,
as shown in Figure 9. The predicted SOC map for the northeastern
Nile Delta, adjacent to Damietta City, is essential for tracking
temporal variations in soil carbon. It plays a key role in
promoting sustainable land management, contributes to climate
change mitigation by enhancing carbon sequestration, and guides
policy-making. Furthermore, it offers a critical reference for future
research and regional assessments, aligning with Egypt’s broader
goals for sustainable development along the northern coast.

4 Conclusion

Due to the high cost and impracticality of generating
geographically continuous data, monitoring soil organic carbon
(SOC) traditionally relies on labor-intensive soil sampling and
laboratory analysis. In this study, we present a novel model for
predicting SOC using a combination of ML and remote sensing data
from Landsat 8 OLI. Our ML algorithms were trained using data
from the northeastern Nile Delta, near Damietta City, based on
120 surface soil samples. All spectral features derived from Landsat
8 OLI, particularly the B, G, R, and NIR bands, were initially
employed as inputs for the model.

Specifically, GPRmodels, including Rational Quadratic, Squared
Exponential, Matern 5/2, and Exponential kernels, were developed

FIGURE 7
Predicted vs actual plot from the model of B and G and NIR bands.
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using the Regression Learner framework. Additionally, a multilayer
feedforward neural network trained with the Levenberg-Marquardt
algorithm (TRAINLM function) was used to create an SOC model.
The findings indicate that both the GPR model with the Matern 5/
2 kernel and the artificial neural network (ANN) with a multilayer
feedforward structure are effective for SOC prediction, with the GPR
model having a slight advantage due to its probabilistic outputs and
ability to handle spatial variability. The use of three spectral bands
(B, G, and NIR) was found to be the most effective, providing a
strong balance of information for accurate and reliable SOC
predictions. Comparative analysis of six different approaches

against the developed model, which uses the B, G, and NIR
bands with the GPR Matern 5/2 kernel, revealed that while
numerous methods exist for SOC determination from satellite
data, the proposed model is more advanced, accurate, and
reliable. This underscores the effectiveness of integrating specific
spectral bands with advanced kernel methods for enhanced SOC
prediction. Further research should explore other interpolation
algorithms within this region and assess the applicability of deep
neural networks in other areas of Egypt with varying climates and
agro-ecological conditions. Moreover, it is recommended to
integrate artificial intelligence with more spatial resolution

FIGURE 8
The regression chart for the training, validation, and testing processes from the model of B and G and NIR bands.
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remote sensing images, such as the Sentinel 2 image, to enhance the
geographic interpretation and prediction of SOC. This studymarks a
significant advance toward global, cost-effective, and efficient SOC
monitoring. The successful integration of ML and satellite data for
SOC estimation opens new avenues for future research and practical
applications in environmental science and land management.
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Castaldi et al 53–131 0.67 0.152 Castaldi et al. (2023)

The developed model 120 0.80 0.17

FIGURE 9
The anticipated digital map of SOC derived from the optimal model.
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