
Inconspicuous taxa in citizen
science-based botanical
research: actual contribution,
limitations, and new opportunities
for non-vascular cryptogams

Carlos Cerrejón1,2*†, Marion Noualhaguet1†, Nicole J. Fenton1,
Marc-Frédéric Indorf1 and Mariano J. Feldman1,3

1Institut de Recherche sur les Forêts (IRF), Université du Québec en Abitibi-Témiscamingue (UQAT),
Rouyn-Noranda, QC, Canada, 2Conservation Research Group, Biodiversity and Global Change,
Universidad de Extremadura, Badajoz, Spain, 3Conservation Biology Group, Landscape Dynamics and
Biodiversity Program, Forest Science and Technology Center of Catalonia (CTFC), Solsona, Spain

Citizen science (CS) has gathered an impressive wealth of open biodiversity data
over the last decade, with demonstrated significant scientific contributions in
biology and conservation science. However, the contribution of CS in botanical
research, and more particularly regarding inconspicuous taxonomic groups such
as cryptogams remains largely unexplored. Here we assess the current status and
contribution of CS in botanical research, with a special focus on non-vascular
“cryptogams” (bryophytes, lichens, fungi, and algae). We conducted a literature
review for the period 2012 to 2022 to synthesize the use of CS in botanical
studies. We found an increasing trend in the use of CS for botanical research
(average annual increase of ~40%), although highly biased towards vascular plants
(246 papers). Cryptogams remained strongly underrepresented (58 papers),
although receiving slightly growing attention since 2018. The
inconspicuousness nature, high diversity, challenges with species
identification, and low public perception of cryptogams not only restrict the
contribution made by non-experts but raise concerns about the reliability and
robustness of generated data. This is fueled by the scarcity of foundational
methodological studies in cryptogams, which seems to undermine the
scientific confidence in engaging volunteers for their research or using open
data from CS platforms and tools. Despite this, our review showed a gradual
adoption of CS approaches for cryptogam research, which is particularly led by
mycologists. We highlight the versatility and potential of CS approaches for
advancing cryptogam knowledge across various research subjects at spatial
and temporal scales otherwise unfathomable by researchers, and provide
insights on the opportunities of application and possible solutions to the
discussed limitations. We hope our work motivates mycologists, phycologists,
bryologists, and lichenologists to further embrace CS, and increase public
awareness on these highly sensitive and ecologically important taxa.
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1 Introduction

The cumulative pressure on biodiversity driven by the increase
of anthropogenic activities and climate change has promoted the
development of new approaches to efficiently meet biodiversity
monitoring and conservation targets. In response, citizen science
(hereafter “CS”), which refers to the public involvement in scientific
research, has arisen as a powerful approach for generating scientific
knowledge from local to global scales across multiple taxa
(Dickinson et al., 2010; McKinley et al., 2017; Pocock et al.,
2015). This has been favored by the development and rapid
spread of new, user-friendly digital technologies and tools, such
as online platforms and smartphone applications, which have
fostered the participation of volunteers collaborating with the
scientific community in generating new data (Howe, 2006;
Maund et al., 2020; Wiggins, 2012). This collaborative approach
has led to the generation and storage of a large amount of open
biodiversity data (Ball-Damerow et al., 2019; Sullivan et al., 2014),
which have provided significant contributions in ecological
assessments concerning biodiversity monitoring (Chandler et al.,
2017), global change (Theobald et al., 2015), species distribution
models (Feldman et al., 2021) or invasive species distributions (Crall
et al., 2015).

However, CS contributions, regardless of the diverse nature of
volunteers’ motivations (Maund et al., 2020), have been
taxonomically biased, with an overrepresentation of zoological
studies and, more particularly, those focusing on charismatic
mammal and bird species, at the expense of most plants (Follett
and Strezov, 2015; McKinley et al., 2017). Regarding CS botanical
projects, most of them have primarily focused on vascular plants,
thus neglecting inconspicuous but highly diverse non-vascular
cryptogam taxa, namely, bryophytes, algae, lichens, and fungi
(herein referred to as “cryptogams”; Chandler et al., 2017;
Feldman et al., 2021). This botanical bias is highlighted within
the European CS biodiversity platform by the absence of
cryptogams in any of their botanical initiatives (Wagenknecht
et al., 2021). This also aligns with the historical lack of
recognition that cryptogams have received from conservation
authorities, managers, politicians, and civil society (Scheidegger
and Goward, 2002) despite their substantial contributions to
overall biodiversity and ecosystem functioning globally
(Hawksworth and Lücking, 2017; Li and Chang, 2021; Porada
et al., 2014; Porada et al., 2016; Porada et al., 2018), as well as
their high sensitivity to environmental disturbances and their
subsequent utility as bioindicators (Benítez et al., 2019; Bokhorst
et al., 2012). Recent significant efforts, such as IUCN Red Lists at
European (Hodgetts et al., 2023) or national level (e.g., Callaghan,
2022; Degtjarenko et al., 2024; Mueller and Dahlberg, 2013), are
however gradually increasing the recognition of the biological and
ecological value of cryptogams along with their representativeness in
conservation planning.

As a megadiverse yet poorly known group, cryptogam species
may face extinction before they are even documented, and
appropriate conservation actions can be implemented (Cornwell
et al., 2019; Theobald et al., 2015; Tulloch et al., 2013). In this sense,
CS can play a key role in advancing cryptogam research and
conservation efforts, not only by acquiring and generating
ecological knowledge but also by raising public awareness about

these ecologically important species; although volunteers’ initial
awareness or interest can also be essential to their recruitment. It
is then particularly important to explore how CS can assist in filling
knowledge gaps in botanical sciences to effectively address
conservation needs. However, to date, our understanding about
the extent to which CS data is being used and its impact on botanical
research, especially regarding inconspicuous cryptogam taxa, is still
limited. Therefore, the objective of this study is to explore the
current status and contribution of CS in botanical research, with
special emphasis on inconspicuous cryptogam groups, providing
insights on the opportunities of application, potential limitations
and possible solutions. Henceforth, we refer to “botany” in its
broadest sense, thus including lichens and fungi. To achieve our
objective, we assessed i) the temporal trend in the use of CS for
botanical studies over the last decade according to each taxonomic
group (vascular plants, bryophytes, algae, lichens, and fungi), ii) the
representation of these taxonomic groups, as well as the research
subjects, across the reviewed articles, and iii) the contribution made
by CS exclusively in cryptogam research regarding the type of citizen
participation, the type of samples or data provided or used and their
geographical scale.

2 Methods

We conducted a literature review of peer-reviewed articles that
used CS in botanical studies from 2012 to 2022 using the search
engine Scopus. Over the past decade, CS has been recognized and
widely accepted among academics as a valuable scientific data source
(Fraisl et al., 2022; Wagenknecht et al., 2021). Thus, the selected
timeframe encompasses the proliferation of open CS platforms and
major advancements in collecting, storing and benefiting from CS
data (Kullenberg and Kasperowski, 2016; Vohland et al., 2021).

The literature search was carried out by combining keywords
related to CS (“citizen science” OR “public participation” OR
“community science” OR “community monitoring program” OR
“participatory monitoring”) with terms related to the target taxa
(“plant”OR “tree”OR “cryptogam”OR “bryophyte”OR “moss”OR
“liverwort” OR sphagn* OR “hornwort” OR anthocero* OR
“fungus” OR “fungi” OR “lichen” OR “algae”). The search of
these terms was performed across articles’ titles, abstracts, and
keywords. This resulted in 891 articles matching our search
criteria. These articles were individually examined to identify
only those relevant for our research focus. Our article selection
was therefore restricted to articles using and/or generating any type
of CS data to investigate any aspect of the target taxa, excluding
reviews. A total of 294 articles were finally retained for analysis
(Supplementary Table S1). A PRISMA flow diagram reporting the
article selection process for this review can be found in the
supplementary material (Supplementary Figure S1).

In order to achieve our objectives, we extracted from each article
the year of publication, target taxa, and central research themes of
the study. The taxonomic groups considered were vascular plants
(tracheophytes), bryophytes, algae, lichens and fungi. The relative
proportion represented by each taxonomic group across the
reviewed CS-based articles was also assessed as an indicator of
the contribution of CS to the scientific research of the different
groups. To explore the various applications of CS in botanical
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research, both in general and across taxonomic groups, we classified
each paper according to 13 research subject categories (Table 1),
which were defined a posteriori by grouping their central themes.
Note that a given article can focus on multiple taxonomic groups
and/or address and thus be classified into multiple subject
categories.

To further evaluate the contribution of CS to cryptogam
research, we initially distinguished between two types of
cryptogam studies as follows: i) articles promoting and based on
new citizen contributions (hereafter “new citizen contribution
articles”), and ii) articles using publicly available CS data from
open data sources (“open CS data articles”). Regarding new
citizen contribution articles, we identified for each cryptogam
taxonomic group, the research steps in which citizens were
involved (new data collection, species identification, data analysis,
interpretation of results, or manuscript writing or revision), the type
of data (e.g., presence/absence, abundance) or samples contributed
(specimens vs. substrate), and the geographic scale of the study
(global, national, regional or local). For simplicity, we used the term
“biodiversity data” to refer jointly to presence-only, presence/
absence, abundance, ecology, diversity and functional trait data.
Likewise, the term “substrate samples”, which differs from specimen
samples, was used to collectively refer to substrate samples that
potentially contain the target species, including soil, dust, leaves,
water or skin. On the other hand, regarding open CS data articles, we
assessed, also by cryptogam taxonomic group, the type of CS data
used, their source platforms, the geographic scale of application, as
well as the scale covered by the CS platform data (e.g., iNaturalist
provides global coverage, allowing the development of studies from
local to global scales). This allowed us to investigate not only the role
that citizens can play in cryptogam research, but also the current and
potential use of the available CS data by the scientific community.
Moreover, by identifying the cryptogam CS databases used and the
type of data they provide, we were able to assess the tangible
contribution of CS to cryptogam research in terms of availability

and nature of the data. However, it should be noted that an
exhaustive review of all cryptogam CS data sources currently
available is beyond the scope of this review.

We did not conduct a similar detailed examination of CS
contribution to vascular plant research. This decision was based
on the existence of numerous ongoing global to national scale CS
projects and open sources dedicated exclusively to vascular plants.
Examples of such projects include Pl@ntNet (Joly et al., 2016), Flora
incognita (Mäder et al., 2021) Flora Capture (Boho et al., 2020), and
Plant Watch (http://www.naturewatch.ca/plantwatch), as well as
platforms like iNaturalist (Mesaglio et al., 2023; Wolf et al.,
2022). These projects and platforms already provide extensive
data on various aspects of vascular plants including distribution,
functional traits, animal interactions, invasive species, ecology, and
substrate, among others. Although we are aware that some less
conspicuous, and thus more difficult to identify vascular plant
groups (e.g., ferns and lycophytes, or even grasses, hedges or
rushes) can be underrepresented in vascular plant CS projects
compared to trees, shrubs, and flowering plants (e.g., Flensted
et al., 2016; Zuquim et al., 2022), this assessment is beyond the
scope of this review.

3 Results

3.1 Publication trends and spatial
distribution of citizen science-based
botanical studies

This review revealed a general increasing trend in the use of CS-
derived data for botanical research from 2012 to 2022 (Figure 1A).
Specifically, we found an average annual increase in the publication
of CS botanical studies of approximately 40%, with an average of
27 articles per year, and a maximum of 74 articles in 2022, which
vastly outpaces the increase in scientific articles in general, estimated

TABLE 1 Categories and description of the research subjects included in this review (n = 13).

Research subject Description

Biodiversity monitoring Temporal evolution of biodiversity aspects of the target taxa such as species richness or population characteristics

Biogeography Assessment of species distribution patterns and environmental features or ecological processes influencing them

Climate change Influence or effects of climate change on species attributes such as distribution, community composition, germination, or flowering

Environmental contamination Impacts of polluting compounds on target taxa, as well as the use of these taxa as indicators of environmental quality

Interspecific interactions Interaction of the target taxa with other plants or fungi (e.g., competition), animals (e.g., pollination) or pathogens (e.g., plant disease)

Land-use changes Impacts derived from land use changes on the target taxa such as habitat loss and fragmentation

Methodology and application Development or improvement of citizen-based sampling or statistical methods (including validation), tools, applications, programs, and
initiatives

Migration and dispersal Species migration and dispersion, as well as invasive, exotic, and non-native species

New species distribution Collection of new species records or the update of species distribution ranges

Phenology Phenology of life cycle events such as leaf out, flowering or fruiting

Species at risk Targeting rare (including endemic) and red-listed species or assessing species conservation status

Species identification Identification of species at any taxonomic or phylogenetic level, including the discovery of new species

Urban ecology Studies developed in urban environments
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at 9%–10% per year in 2010 (Bornmann and Mutz, 2015). This
increasing publication trend was driven by papers targeting vascular
plants (n = 246), with an average annual increase of 39% and an
average of 22 articles published each year (Figure 1A). In contrast,
studies focusing on cryptogams remain rare, with a total of 58 papers
and an average of five articles published by year. Specifically, very
few articles used CS for cryptogam research during the first half of
the study period, with only nine articles published before 2018. From
that date on, a gradual but consistent increase is observed
(Figure 1A). This slightly increasing trend was mainly supported
by studies focusing on fungi (Figure 1B), the most targeted
cryptogam group (n = 34), followed by algae, the second most
focused group (n = 14). Lichens and bryophytes were less frequently
targeted, with a total of eight articles each. Most of the reviewed
papers, either for vascular plants or cryptogams, included CS data
and projects carried out in the northern hemisphere, mainly in
United States, Canada and Europe (Supplementary Figure S2).
These are regions where economic resources available for
research and conservation allow greater efforts, and more
particularly regarding inconspicuous species such as cryptogams
(e.g., Canadian Endangered Species Conservation Council, 2016;
Garilleti and Albertos, 2012; Hodgetts et al., 2023).

3.2 Research subjects focused by citizen
science-based botanical studies

CS data has focused on a wide variety of research subjects within
botanical studies, although they have not been equally represented in
the literature. The general research subject patterns across all
reviewed articles were driven by vascular plant studies, whereas
the patterns identified for cryptograms exhibited more variation
(Figure 2). Regarding vascular plants, methodology and application

was the top research subject across all reviewed papers, followed by
phenology, interspecific interactions, urban ecology, migration and
dispersal, species identification, biodiversity monitoring, climate
change, new species distribution, and biogeography (Figure 2A).
The least studied subjects, were species at risk, land-use changes, and
environmental contamination (Figure 2A). For cryptogams, species
identification emerged as the main research subject (n = 19), being
primarily supported by fungal studies (Figure 2B). Methodology and
application was the second most targeted (n = 17), with fungi and
algae being the main contributors (Figure 2B), followed by
biodiversity monitoring, new species distribution, environmental
contamination and urban ecology. Biogeography, species at risk and
interspecific interactions were moderately targeted by cryptogam
literature, while land-use changes, climate change, migration and
dispersal, and phenology were marginally targeted. Environmental
contamination was the only subject were cryptogam papers (n = 12)
surpassed those focusing on vascular plants (n = 8; Figure 2A).

Vascular plants, fungi and algae were represented across all
research subject categories (n = 13). Bryophytes and lichens were the
least diversified in terms of subjects (n = 10 and 7, respectively), with
a lack of papers addressing phenology, migration and dispersal, and
climate change for either group, nor on interspecific interactions,
biogeography and land-use changes for lichens.

3.3 Citizen science contribution to
cryptogam studies

The characterization of both cryptogam new citizen
contribution articles and open CS data articles is illustrated in
Figure 3. Of the 58 cryptogam papers identified here,
41 consisted in new citizen contribution articles (Figure 3A),
which were primarily developed at local (n = 14), regional (n =

FIGURE 1
(A) Total number of citizen science-based botanical studies published per year for the period 2012–2022 (bars), as well as split by vascular plant vs.
cryptogam taxonomic groups (lines). (B) Number of citizen science-based botanical studies by cryptogam taxonomic group published during the
same period.
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9), and national scales (n = 15), with a few at global scale (n = 3).
Citizens were always involved in the collection of samples, either of
the specimens (n = 9) or their substrate (n = 12), biodiversity data
(n = 20), and marginally in algae and bryophyte specimen
identification (n = 3). Citizens were not further involved in later
research stages such as data analysis, interpretation of results, or
manuscript writing or revision. Citizen contributions have mostly
been in the form of specimen or substrate samples at local scales,
biodiversity data at regional scales, and substrate samples and
biodiversity data at both national and global scales. Samples were
either of the target specimens when dealing with macroorganisms,
or their substrates regarding microorganisms, namely, water for
algae (phytoplankton) and soil/dust, leaf and amphibian skin for
fungi. Biodiversity data comprised presence-only data for algae,
fungi and lichen, presence/absence data exclusively for algae, and
presence/absence either plus abundance regarding algae and lichen,
or ecology (habitat or substrate) for algae and fungi (Figure 3A). The
remaining new citizen contributions were pictures shared across all

cryptogam taxa, knowledge and social attitude on algae, diversity
and picture-basedmorphological measurements for bryophytes, and
picture-based parataxonomic units for lichens specimen samples.

The number of cryptogam studies using open CS data sources
was limited (n = 18), with a predominant focus on fungi (n = 16;
Figure 3B). These studies mostly used presence-only data (n = 17),
excepting for one article that used soil samples from a pre-existing
natural product collection (Anderson et al., 2021). Papers using CS
sources targeting lichens, bryophytes and algae have been marginal
or inexistent (2, 1 and 0 papers, respectively). A total of 11 different
CS open sources were identified across these studies focusing on
cryptogams, most of them providing spatial data coverage at
national scales (Figure 3B), except for the global platforms
iNaturalist and MyCoPortal, as well as the regional platform
NatureLynx. Six of the eight national CS platforms were
European, excepting for those from Australia and United States.
Most studies used national and global platforms to develop their
studies at national scales. Only two studies were carried out at either

FIGURE 2
(A) Total number of published citizen science-based botanical articles per research subject category (white bars), as well as by vascular plant (orange
bars) and cryptogam taxonomic groups (green bars). (B) Number of published citizen science-based botanical studies per research subject category
segmented by cryptogam taxonomic group.
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FIGURE 3
Alluvial diagram relating different aspects of the contribution of citizen science (CS) to cryptogams studies. (A) includes exclusively papers promoting
and based on new citizen contributions (i.e., new citizen contribution articles) and relates the cryptogram taxa, the type of contribution made by the
participants (or research steps in which they were involved), the type of data or samples they collected, and the scale of the study; note that citizens did
not contributed to research steps of data analysis, interpretation of results, and manuscript writing or revision); * in the CS data/sample type column
indicates that the data were derived from pictures. (B) includes exclusively the studies where open CS data sources were used, and relates the cryptogam
taxa, the type of data or samples used, the scale of the study, the scale covered by the open CS source platforms and the identity of those platforms. Note
that the values across the y-axes are sometimes increased due to the inclusion of doubloons, and thus not always correspond with the exact ones
presented in the text. Doubloons were included in order to show each cryptogam group independently in (A) by splitting multi-taxa papers, and ídem but
splitting multi-CS platform papers in (B). Abbrev.: CS, citizen science.
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local or regional scale. The most used CS platforms were Swedish
LifeWatch (n = 5), iNaturalist (n = 4), MyCoPortal (n = 3) and
Danish Fungal Atlas (n = 3).

4 Discussion

The increasing trend in publications on the contribution of CS in
botanical research was highly biased towards vascular plants.
Cryptogam groups remained strongly underrepresented, despite
their substantial contribution to global biodiversity, with
approximately 72,500 algae species (Guiry, 2012), 25,000 bryophyte
species (Li and Chang, 2021), 20,000 lichen species, and 148,000 fungal
species of an estimated total of 2.2–3.8 million species (Hawksworth
and Lücking, 2017), compared to around 350,000 vascular plants
species (Antonelli et al., 2020). This bias is not unexpected, not
only since many vascular plants are more conspicuous and
charismatic, but because CS cryptogam research consistently
requires a higher level of expertise and/or commitment. Efforts to
promote CS vascular plant research are highlighted by the high
number of methodology and application studies, offering insights
into its applicability and limitations (Follett and Strezov, 2015).
This has boosted botanists’ confidence in using CS vascular plant
data over the last decade, rising research across various subjects
(Supplementary Figure S3). We identified a slight growing trend in
CS-based cryptogam research since 2017, which was almost non-
existent before then. This reflects a gradual acceptance of CS by the
scientific community, which coincides with increased public interest in
cryptogams (Munzi and Giovanetti, 2021). However, CS contributions
to these inconspicuous species remains poor and skewed towards
fungi, which accounts for 59% of the CS cryptogam papers. Public
awareness on cryptogams is also negligible compared to conspicuous
taxa as vascular plants, birds, or large mammals (Cardoso et al., 2011;
Deacon et al., 2023; Scheidegger and Goward, 2002). This is
paradoxical, as CS can raise public perception of cryptogams and
bridge knowledge gaps on fundamental and crucially informative
parameters for their conservations such as diversity, ecology, and
distribution (Cerrejón, 2022). As evidenced here, fungi illustrate
how this paradox can be addressed. Mycologists have pioneered
innovative efforts involving participatory approaches coupled with
DNA barcoding to generate microfungal data across scales (Estensmo
et al., 2022; Grantham et al., 2020; Hou et al., 2020), or to detect
pathogenic fungi (EA et al., 2016; Ellingham et al., 2019; Garbelotto
et al., 2020). Furthermore, mycologists have particularly and almost
exclusively benefited from using diverse open data sources for their
research, which has been infrequent (bryophytes, lichens) or even
absent (algae) for other cryptogam groups. This underscores that
mycologists have particularly capitalized on the use of CS for
advancing fungal knowledge (e.g., Ellingham et al., 2019; Grantham
et al., 2020; Heilmann-Clausen et al., 2019).

Cryptogams pose great challenges for scientific research, since
they encompass highly diverse groups of small sized organisms that
require specialized training and tools for identification (Munzi et al.,
2023). This complexity hinders non-experts’ contributions, as
highlighted in this review, with public involvement often
restricted to early research stages related to data or sample
collection, with marginal participation in macro-specimen
identification. Public involvement in later research stages (data

analysis, interpretation of results, etc.) would require considerable
scientific and academic skills and/or knowledge of species
taxonomy, ecology, physiology, etc., which makes it even more
challenging. These limitations are not unique to cryptogams, but
can also apply to other inconspicuous or cryptic taxonomic groups
such as micro- or macroinvertebrates, or less conspicuous vascular
plants (e.g., ferns, lycophytes, grasses), which face similar issues
when implementing participatory approaches for their research
(e.g., Ashcroft et al., 2012; Deacon et al., 2023; Flensted et al.,
2016; Gąsiorek et al., 2024). Specifically in our review, citizens
normally collected biodiversity data such as presence/absence,
abundance, etc., for easily recognizable species (e.g., Ellul et al.,
2019), or contributed through photographs (e.g., Tucker and La
Farge, 2021), or by providing specimens (e.g., McMullin et al., 2018)
or substrate samples (e.g., Mascioni et al., 2019). Identification tasks
were only feasibly when volunteers were either specialists (Neyens
et al., 2019), had extensive experience (Verlaque and Breton, 2019),
or received prior identification training (Vye et al., 2020).

Despite such limitations, the wide range of research subjects
identified across the reviewed studies underscored the versatility of
CS in advancing cryptogam knowledge. CS allows for collection of
cryptogam-related data, such as their presence at easily recognizable
taxonomic levels, cover or abundance at wide spatial and temporal
scales, often exceeding the capacity of traditional research (Pocock
et al., 2014). This is particularly useful for studies on new species
distributions, biogeography, or climate change (Vye et al., 2020).
Using certain cryptogam species as bioindicators, CS supports
research on biodiversity monitoring, environmental
contamination, urban ecology, and land-use changes (Kondo
et al., 2022; Mair et al., 2018; Seed et al., 2013). Alternative CS
approaches to species-level data, such as parataxonomic units based
on external morphology (Krell, 2004) as proxies for species richness
(Casanovas et al., 2014; Oliver and Beattie, 1993), have proven
effective for environmental contamination and biodiversity
monitoring. Furthermore, CS can enhance research on species at
risk by detecting rare events (Pocock et al., 2014), which can help
identify new, vulnerable, or threatened cryptogam species
(McMullin et al., 2018). This can also benefit studies on species
identification regarding the discovery of new species (Giraldo et al.,
2019), and interspecific interactions studies focusing on cryptogam-
induced diseases (Crow et al., 2020; EA et al., 2016). The usefulness
of CS for discovering new species discovery and assessing
interspecific interactions is further demonstrated by a very recent
Danish CS project called “Mass Experiment, which successfully
assessed and mapped the diversity and distribution of
tardigrades, along and their bryophyte and lichen hosts across
Denmark, and led to the discovery of new tardigrade species
(Gąsiorek et al., 2024). Migration and dispersal could also take
advantage of CS in monitoring harmful invasions such as algal
blooms (Esenkulova et al., 2021) or the spread of invasive
bryophytes (Ewald et al., 2020). Furthermore, CS projects using
field photographs or digitized natural collections are valuable for
characterizing morphological and phenological traits falling into
species identification and phenology research subjects (Hedrick
et al., 2020; von Konrat et al., 2018). Phenology studies could be
further promoted by documenting cryptogam reproductive periods
(e.g., appearance of sporophytes in mosses) in areas frequented by
citizens. Through its wide range of applications, CS offers invaluable
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ecological insights into cryptogam biodiversity, with important
implications for management and conservation strategies.

Yet the inconspicuous nature and diversity of cryptogams raises
concerns about the reliability and robustness of CS data. Methodology
and application studies have been scarce and have yielded diverging
and sometimes discouraging results. McMullin and Allen (2022) and
Munzi et al. (2023) revealed a high rate (41% and 70%, respectively) of
misclassified lichen species in iNaturalist. In contrast, users correctly
identified 92.82% of macrobasidiomycete observations through the
FungiVision tool of the Atlas of Danish Fungi (Picek et al., 2022), with
which volunteer mycologists have traditionally shown a high degree of
commitment and training for their identification. Detection and
taxonomic biases in cryptogams in open CS data sources tend to
favor more common or conspicuous organisms, thereby limiting the
reliability of specific groups. For instance, within bryophytes, liverworts
and hornworts are usually overshadowed by mosses in CS platforms
(e.g., iNaturalist; accessed 6 March 2024), while microlichens are also
underrepresented compared to macrolichens (Munzi et al., 2023).
Likewise, CS contributions to rare and sparsely distributed habitat
specialists remain minimal (Lõhmus et al., 2023). Furthermore,
opportunistic CS can introduce spatial and temporal biases affecting
the quality of inferences, although methods are available to mitigate
these issues (Geldmann et al., 2016; Kosmala et al., 2016). While some
studies have shown consistency in drawing conclusions from spatially
biased CS data (Mair et al., 2017), others emphasized the need to
combine opportunistic data with spatially unbiased gold-standard data
for reliable results (Neyens et al., 2019). Addressing these biases from
the outset is crucial when designing CS projects (Geldmann et al.,
2016). All of this indicates that the low use of CS for cryptogam
research derives from the skepticism and caution of botanists in
trusting this data (Munzi et al., 2023; White et al., 2023).

To address these concerns, further foundational methodology and
application studies are critical to mitigate errors and biases (Follett
and Strezov, 2015) and establish best practises to ensure that data
quality (Lõhmus et al., 2023). As CS accuracy varies with task
complexity and data type (Kosmala et al., 2016), additional
research involving expert validation would clarify their potential
and limitations. New and ongoing CS initiatives and derived
research can benefit from i) revisiting research questions according
to the known limitations associated to the target organisms ii) the
design and standardization of data collection methods (Fraisl et al.,
2020; Schacher et al., 2023), iii) reinforcing volunteers’ sampling and
identification skills through training (e.g., EA et al., 2016; Tregidgo
et al., 2013; Vye et al., 2020), iv) the joint work of citizens and experts
during fieldwork (Heilmann-Clausen et al., 2016; Heilmann-Clausen
et al., 2019), and v) targeting easily identifiable indicator species (Seed
et al., 2013; Welden et al., 2018). On widely used platforms, shared
observations of difficult-to-identify taxa should be accompanied by
detailed information on relevant structures, key distinctive
characteristics, and habitat (McMullin and Allen, 2022). Stricter
requirements to validate observations for inconspicuous taxa in CS
platforms can enhance scientific confidence. Mandatory fields at
various taxonomic levels supported with expert validation are
crucial for ensuring data quality and provide continuous feedback
to increase usability in science. Since the proposed strategies require
greater commitment from volunteers, their implementation should
carefully consider the trade-off between the number of volunteers
willing to participate under these standards and the quality of the data

collected. Nonetheless, these collaborative approacheswould be a win-
win situation: volunteers can contribute to science and nature
conservation while gaining familiarity with poorly known
inconspicuous taxa, and the scientific community can benefit from
improved data quality for their research endeavors.

5 Conclusion

This review represents a significant effort in understanding and
highlighting the important role that CS is playing in botany, and
provides the first comprehensive assessment of its contribution to
cryptogam research. Vascular plants have increasingly benefited from
CS approaches over the past decade and this trend is likely to persist in
the future. The high diversity and inconspicuous nature of
cryptogams, however, hinder citizen involvement and compromise
data quality. The scarcity of methodological studies undermines
scientific confidence in engaging volunteers in cryptogam research
and using open CS data. Despite this, the adoption of CS for
cryptogam research is gradual increasing, particularly led by
mycologists. We hope our work will inspire mycologists,
phycologists, bryologists, and lichenologists to further embrace CS.
Strengthening the collaboration between citizens and researchers and
securing financial funding and institutional support are critical for
advancing our knowledge of these neglected organisms. Future
endeavors should focus on identifying existing cryptogam CS open
data sources, and elucidating the nature of the data they provide,
which would undoubtedly encourage the representation of these
inconspicuous taxa in CS-based botanical research.
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