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Jilin Province is a crucial region of interest for agricultural and forestry
development in China. The deterioration of its ecological environment could
have a severe impact on agricultural production and ecological conservation. A
systematic assessment of ecological environment quality in Jilin Province is
essential for its sustainable development. In this study, we utilized Landsat
data from 1990 to 2020 (every 5 years) to construct the Remote Sensing
Ecological Index (RSEI) for Jilin Province. We applied the Sen’s slope estimator
and the Mann-Kendall trend test to examine the spatiotemporal changes in
ecological environment quality over a 30-year period. Additionally, we
employed the Geo-detector to explore the socioeconomic and natural factors
influencing ecological environment quality. The results revealed: 1) From 1990 to
2020, the average RSEI index in Jilin Province ranged from 0.586 to 0.699,
indicating overall good ecological environment quality. Spatially, ecological
environment quality gradually declined from east to west. 2) The RSEI in Jilin
Province exhibited an initial increase, followed by a decrease, and then another
increase trend. This improvement can be attributed to the implementation of
government policies, which reversed the expansion of saline-alkali land.
Ecological environment quality significantly improved in the western region of
Jilin Province over the 30-year period. 3) Socioeconomic and natural factors both
influence ecological environment quality in Jilin Province. Among these factors,
vegetation coverage has the most significant impact on the ecological
environment quality in the study area, with natural factors exerting a more
significant influence than socioeconomic factors. Our research can provide
relevant data support for policy-making in Jilin Province.
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1 Introduction

Biosphere is the foundation for human survival and production,
and a healthy ecological environment within the biosphere is essential
for human development and fundamental wellbeing (Liu et al., 2017).
As human society has progressed, the ecological environment has
suffered serious damage (Wang et al., 2018; Zhu et al., 2022),
including but not limited to air pollution, water pollution, land
degradation, and diminishing vegetation coverage (Feng et al., 2021;
Shen et al., 2022; Wu et al., 2022). The IPCC Sixth Assessment Report
underscores the significant role of human activities in driving global
warming and the extensive changes occurring within the global climate
system (Allan et al., 2021). Consequently, the assessment of regional
ecological environment quality takes on paramount significance in the
pursuit of environmental protection (Gómez et al., 2018).

Remote sensing, with its unique characteristics of providing a
macroscopic view, multispectral capability and availability of multi-
temporal data, has proven to be indispensable in assessing regional
ecological environment quality (Zhou and He, 2014; Li J. et al., 2020;
Qian et al., 2022). Through remote sensing, critical insights into
ecosystem dynamics can be gained, aiding in environmental
monitoring and resource management. For instance, the creation
of indices such as the Normalized Difference Vegetation Index
(NDVI) or Leaf Area Index (LAI) has been pivotal in evaluating
vegetation coverage (Yu et al., 2019; Zuo et al., 2022), and the
development of the Net Primary Productivity (NPP) has facilitated
the assessment of wetland ecosystems (Li X.W. et al., 2020; Zhang T.
T. et al., 2022). Despite these individual indicators are significant,
these indicators may fall short in capturing the full complexity of
environmental conditions.

Remote Sensing Ecological Index (RSEI) is a comprehensive
ecological index constructed through principal component analysis
of four factors: greenness, wetness, dryness, and warmth (Xu,
2013b). RSEI serves as a valuable tool for evaluating the
ecological environment quality of a region. All the required
indicators for this index come from remote sensing imagery,
which not only overcomes spatial scale limitations but also allows
for the visualization of regional ecological conditions. Consequently,
RSEI has been widely applied in ecological environment quality
assessments (Yuan et al., 2021; An et al., 2022; Yang and Li, 2023).
Currently, RSEI has achieved positive results in ecosystem
monitoring and management, ecological environment assessment,
and biodiversity conservation (Ariken et al., 2020; Zhang M. M.
et al., 2022; Liu et al., 2023; Liu et al., 2024).

From the previous studies, the scale of ecological quality evaluation is
usually based on regions, for example, (Huang et al., 2024), conducted
research on ecological environment quality in the Beijing-Tianjin-Hebei
region; (LiN. et al., 2024); conducted research on ecological environment
quality in the Chaohu Lake Basin. These studies cover relatively large
areas, enabling policymakers to make recommendations from a macro
perspective. However, in the top-down policy implementation process of
macro-level ecological management policies, there is a policy lag. Every
district and county lacks freedom and initiative, which is not conducive
to the development of local conditions. Therefore, dividing the research
area into smaller administrative regions is conducive to the policy
formulation of the local government.

Jilin Province is a multifunctional region in northeastern China,
rich in agricultural and forest resources (Hou et al., 2010), with

significant industrial bases, and unique natural landscapes and
tourism resources. It plays a crucial role in both development and
ecological conservation in the northeastern region of China (Shuqing
and Qi, 2010). Based on the above background, this study utilizes the
Google Earth Engine (GEE) platform to assess the ecological
environment quality of Jilin Province over the past 30 years
objectively. Between 1990 and 2020, an image was selected every
5 years for RSEI index calculation.We subdivided Jilin province into
47 administrative units (county-level administrative units) to analyze
the variation of ecological environment quality. Additionally, eight
factors were chosen to explore their contributions and interactions.
Integrating these analyses, the main objectives of this study are as
follows: 1) Investigate the spatial distribution characteristics of
ecological environment quality in Jilin Province; 2) The county
administrative unit was taken as the research unit to studied the
changes of each county in Jilin Province in the past 30 years. 3)
Analyze the influencing factors of spatial differences in ecological
environment quality in Jilin Province. The main innovation of this
paper lies in dividing Jilin Province into regions by county and
analyzing the ecological environment quality of each county, with
the aim of providing valuable references for relevant departments.

2 Study area and data

2.1 Study area

Jilin Province located in the central part of Northeast China and
holds significant geographical importance. The provincial capital is
Changchun City. Jilin Province has a vast territory, with a total area of
approximately 187,400 square kilometers. The climate in Jilin Province
falls under a continental climate, characterized by cold and dry winters
and warm and humid summers, with an annual average temperature
ranging from 0°C to 7°C. The terrain of Jilin Province is diverse,
encompassing plains, hills, mountain ranges and lakes. From the
regional location, Jilin Province can be divided into eastern Jilin,
central Jilin and western Jilin. In the eastern, central, and western
regions of Jilin Province, each area has distinct characteristics. The
eastern region is primarily characterized by its connection to the
Changbai Mountains, which contributes to its predominant forest
coverage. The central region is an economically developed area of
Jilin Province. As for the western region, it is notable for its vast expanse
of saline-alkali land, being one of the concentrated distribution areas of
the world’s three major soda-saline land regions (Figure 1).

2.2 GEE and data Description

Google Earth Engine (GEE) is the world’s leading cloud-based
platform and geographic information processor, specializing in the
handling of remote sensing imagery and a myriad of Earth
observation data. Its exceptional convenience and visualization
features have rendered it a highly preferred choice.

The data utilized in this study include remote sensing data and
statistical data. Quantitative retrieval calculations of remote sensing
indices require atmospheric correction. GEE provides data from the
Landsat sensor, which has undergone atmospheric correction using the
Land Surface Reflectance Code (LaSRC) for all bands. Therefore, this
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paper selects Landsat surface reflectance data from GEE as the data
source for RSEI inversion, as listed in Table 1. The study selects imagery
from the months of July and August to represent the conditions of the
year. The reasons of this selection are as follows: 1) The Northeast region
experiences cold winters, and selecting imagery from July and August
ensures that there is no snow cover across Jilin Province. 2) As vegetation
is in its peak growing season during these months, it allows for better
differentiation of various land cover types in Jilin Province. During the
data acquisition process, it was noted that obtaining complete coverage of
Jilin Province for a full year’s worth of Landsat imagery is challenging.
Therefore, leveraging the advantages of the GEE platform, this study uses
the median values of remote sensing imagery from 1 year before and
after, totaling 3 years for analysis (Jia et al., 2021). The specific
methodology is illustrated in Figure 2.

This study selected eight factors influencing the ecological
environment from both socio-economic and natural perspectives.
Population density, agricultural output value, and forestry output

value data were sourced from the Jilin Provincial Statistical
Yearbook (http://tjj.jl.gov.cn/tjsj/tjnj/). Elevation, temperature,
and precipitation data were obtained directly from the GEE
platform. Slope was calculated in ArcGIS using elevation data,
and vegetation cover data were calculated using NDVI on the
GEE platform.

3 Methods

3.1 Remote sensing ecological index (RSEI)

RSEI is a comprehensive ecological indicator specifically
designed for assessing ecological conditions (Xu, 2013b). RSEI is
constructed by selecting four components that are closely related to
ecological and environmental quality: greenness, wetness, heat,
and dryness.

FIGURE 1
Land use types in the Study Area.

TABLE 1 Datasets used in this study.

Sensor type Landsat collections Data source Bands

Landsat 5 TM LANDSAT/LT05/C01/T1_SR Google Earth Engine B (1–7)

Landsat 8 OLI/TIRS LANDSAT/LC08/C01/T1_SR Google Earth Engine B (2–7,10)
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RSEI � f Greenness,Wetness,Dryness,Heat( )
The four remote sensing indices are as follows: Normalized

Difference Vegetation Index (NDVI) represents greenness; Wetness
(WET)represents wetness; WET is represented by the wet
component of a Tasseled Cap Transformation, different formulas
are used for different sensors (TM and OLI); Normalized Difference
Building Soil Index (NDBSI) represents dryness, where NDBSI is
generated by the Soil Index (SI) and Index-based Built-up Index
(IBI); Land Surface Temperature (LST) represents heat, which is
represented by the temperature corrected by the specific emissivity.

The presence of water bodies can have a notable effect on the
calculation of NDVI and various other index components,
consequently affecting the RSEI value determined via Principal
Component Analysis. Therefore, it is imperative to employ masking
techniques to exclude water bodies within the study area. In this paper,
we used the Modified Normalized Difference Water Index (MNDWI)
(Xu, 2006) to mask the water body. The formulas for calculating the
above remote sensing indices are provided in Table 2.

Principal Component Analysis (PCA) is used to combine the
four component indices mentioned above, and the first principal
component (PC1) is used to construct RSEI. Since each index has
different units and numerical ranges, it is necessary to normalize the
values of these indices to bring their ranges into a uniform scale
between 0 and 1. The normalization is expressed as:

NIi � Ii − Imin( )
Imax − Imin( )

Where NIi represents the normalized index value, Ii is the index
value at pixel i, Imin is the minimum value of the index, and Imax is
the maximum value of the index.

PC1 is the first principal component of four indicators, expressed as
RSEI0. RSEI is calculated from RSEI0 using a normalization method,
thefinal RSEI value represents the ecological condition of the study area.

RSEI ranges from [0, 1], A higher RSEI value indicates better ecological
environmental quality. In order to distinguish the ecological quality of
the study area, we use the equal interval classificationmethod categorize
the RSEI values into five levels: Excellent (0.8, 1], Good (0.6, 0.8],
Moderate (0.4, 0.6], Poor (0.2, 0.4], and Very Poor [0.0, 0.2] (Firozjaei
et al., 2021; Peng et al., 2023).

3.2 Geo-detector

Geographic detector assesses spatial heterogeneity by examining the
spatial consistency of two different variables, and the ultimate result of the
analysis is the detection of a potential causal relationship between these
two different variables. This research employs factor detectors and
interaction detectors to investigate the factors contributing to
differences in spatial pattern distribution (Wang and Xu, 2017). Prior
to modeling, data preprocessing was performed, and data integration
depended on spatial units.We set sampling points to enable use
geographic detectors. A grid of 5 km × 5 km was established within
the study area, and the central points of the grid cells were obtained as
sample points, totaling 9,854. After that, we used the Natural Breaks
method in ArcGIS 10.8 to categorize the independent variables.

Factor detection: Typically calculated by the q-value, the
purpose is to assess the extent to which factors explain
differences in attribute space. The formula is represented as:

q � 1 −
∑L
h�1

Nhσ2
h

Nσ2

In the equation: h = 1, . . . , L represents the strata or layers of
variable Y or factor X, which can be considered as categories or
zones; Nh and N are the numbers of units in stratum h and the entire
region, respectively; and σ2 and σ2h are the variances of Y values in
stratum h and the entire region, respectively. A higher q-value

FIGURE 2
Remote sensing data processing diagram.
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indicates a stronger influence of factors in explaining ecological
environmental quality.

Interaction Detection: The primary function of interaction
detectors is to identify interactions between different independent
variables. By calculating the q-statistic values for each independent
variable’s individual effect on the dependent variable and then
calculating the q-statistic values for their pairwise interactions on
the dependent variable, a comparison is made between the two. The
assessment of interactions is determined by the relative magnitudes.
The specific method for making judgments (Table 3) is illustrated
with factors X1 and X2 as examples. Firstly, two influencing factors
are selected as independent variables, and the explanatory power of
each selected independent variable on the dependent variable Y is
calculated, denoted as q(X1) and q(X2) respectively. Secondly, the
explanatory power of the two independent variables interacting with
each other on the dependent variable Y, denoted as q (X1 ∩ X2), is
computed. Finally, a comparison is made among these three results
to determine whether the interaction between the two factors
enhances or diminishes their influence on the dependent variable
compared to when considered individually.

3.3 Trend analysis

The combination of the Sen’s slope estimator and the Mann-
Kendall trend test has become an important method for assessing
trends in time series data and is gradually being applied in the analysis
of temporal changes. The Sen’s slope estimator is used to calculate the
Sen value by computing themedian of the sequence, but it alone cannot
determine the significance of the trend in the sequence. Significance
testing of the Sen value is carried out using theMann-Kendall test. This
method is suitable for analyzing data with missing values, reduces the
interference of outliers, has good robustness against outlier data and
measurement errors, and does not require specific data distribution
assumptions. The calculation of Sen’s slope estimator is as follows:

β � Median
xj − xi
j − i

( ) ∀j> i( )
In the equation: i and j represent the years i and j, respectively; xi

and xj represent the pixel values for year i and year j, respectively; β
represents the trend magnitude, and the β value is used to determine
whether the temporal vegetation trend is increasing or decreasing.
When β > 0, the time series exhibits an upward trend, and
conversely, it exhibits a downward trend.

Mann-Kendall Trend Test: For a sequence X = (x1, x2, . . ., xn),
first determine the ordering relationships (designated as Z) between
all pairs of values (xi, xj) for i < j. The test statistic Z is calculated
using the following formula:

Z �

S − 1�������
VAR S( )√ S> 0( )

0 S � 0( )
S + 1�������
VAR S( )√ S< 0( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

TABLE 2 WET, NDVI, NDBSI, LST and MNDWI calculation formulas.

Index Formula References

WET TM: 0.0315ρblue + 0.2021ρgreen + 0.3102ρred + 0.1594ρnir − 0.6806ρswir1 − 0.6109ρswir2 Crist (1985)

OLI: 0.1511ρblue + 0.1973ρgreen + 0.3283ρred + 0.3407ρnir − 0.7117ρswir1 − 0.4559ρswir2 Shan et al. (2019)

NDVI (ρnir − ρred)/(ρnir + ρred) Rouse et al. (1974)

NDBSI NDBSI � (SI + IBI)/2 Estoque et al. (2017)

SI � [( ρswir1+ ρred ) −( ρnir+ ρblue )]
[ ( ρswir1+ ρred )+(ρnir+ ρblue )]

IBI �
2ρswir1

(ρswir1+ ρnir )−[
ρnir

(ρnir+ ρred )+
ρgreen

(ρgreen+ ρswir1 )]{ }
2ρswir1

(ρswir1+ ρnir )+[
ρnir

(ρnir+ ρred )+
ρgreen

(ρgreen+ ρswir1 )]{ }
LST LST � Tb

1 +(λTb )ε/ρ − 273.15 Sobrino et al. (2004)

Tb � K2

(K1L6 + 1) Xu (2013a)

L6 � gain × DN + bias

MNDWI (ρgreen − ρswir1)/(ρgreen + ρswir1) Xu (2006)

ρblue, ρgreen, ρred, ρnir , ρswir1, ρswir2 represent Landsat Surface Reflectance; DN is the gray value of a pixel of the Landsat data; gain and bias are the band gain value and bias value, respectively; L6 is

the radiation value of the TM/TIRS thermal infrared band; K1 and K2 are calibration parameters; Tb is the brightness temperature; λ is the center wavelength of the 6th band of the TMdata, and

the center wavelength of the 10th band of the Landsat 8 data; ρ is equal to 1.438× 10−2 mk; ε is the specific emissivity.

TABLE 3 Interaction types and criteria for judgment.

Basis of judgment Interaction

q (X1 ∩ X2) < Min(q(X1), q(X2)) Non-linear weakening

Min(q(X1), q(X2)) < q (X1 ∩ X2) <
Max(q(X1), q(X2))

Single-factor nonlinear
attenuation

q (X1 ∩ X2) > Max(q(X1), q(X2)) Bivariate enhancement

q (X1 ∩ X2) = q(X1) + q(X2) Independent

q (X1 ∩ X2) > q(X1) + q(X2) Nonlinear enhancement
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S � ∑n−1
i�1

∑n
j�i+1

sgn xj − xi( ), sgn xj − xi( ) � +1 xj − xi > 0( )
0 xj − xi � 0( )
−1 xj − xi < 0( )

⎧⎪⎨⎪⎩
VAR S( ) � n n − 1( ) 2n + 5( )/18

In the equation, Z represents the standardized test statistic; S is the
test statistic; n is the sample size of the sequence; m is the number of

data groups with repeated values in the sequence. At the given
significance level α, the critical value ‘a’ is obtained from the normal
distribution table. When |Z| ≤ Z1−α

2
, the trend is not significant; when |

Z| >Z1−α
2
, the trend is significant. In this study, a significance level of α =

0.05 is used, and ’ Z1−α
2
’ is set to Z0.975 = 1.96. Due to the large size of the

30-m resolution RSEI data for Jilin Province, it was resampled to 500 m
to facilitate the Sen’s slope estimator and the Mann-Kendall trend test.

TABLE 4 First principal component of principal component analysis.

Year PC1 Eigenvalue Contribution rate (%)

Greenness Wetness Heat Dryness

(NDVI) (WET) (LST) (NDBSI)

1990 0.543 0.314 −0.209 −0.75 0.0455 87.53

1995 0.588 0.183 −0.355 −0.704 0.0416 84.6

2000 0.674 0.403 −0.202 −0.619 0.0539 93.14

2005 0.487 0.204 −0.229 −0.817 0.0453 90.52

2010 0.527 0.154 −0.124 −0.826 0.0442 93.57

2015 0.71 0.174 −0.385 −0.564 0.0527 89.6

2020 0.667 0.205 −0.37 −0.613 0.043 82.83

mean 0.50 0.18 −0.26 −0.75 0.04 89.07

FIGURE 3
Spatial distribution pattern of Jilin Province’s RSEI from 1990 to 2020.
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4 Results

4.1 Comprehensive evaluation of ecological
quality in Jilin Province

In the seven remote sensing images spanning from 1990 to
2020 in Jilin Province, the contribution rate of pc1 ranged from
82.83% to 93.57%, indicating that pc1 captures most characteristics
from the four component indices. In PC1, the eigenvalues of NDVI
and WET are positive, while the eigenvalues of NDBSI and LST are
negative. This indicates that there is a positive correlation between
RSEI and NDVI as well as WET, and a negative correlation between
RSEI and NDBSI as well as LST, which aligns with the actual
situation (Table 4).

The spatial distribution of RSEI in Jilin Province from 1990 to
2020 is depicted in the Figure 3. Two key characteristics of the spatial
distribution of ecological environmental quality in Jilin Province can
be observed. Firstly, in terms of spatial distribution a distinct
disparity in ecological environmental quality is evident between
the eastern and western regions of Jilin Province. The eastern
regions receive higher ecological environmental quality

assessments, whereas the western regions receive lower
assessments. Secondly, considering urban-rural disparities, urban
areas tend to exhibit less favorable ecological environmental quality
assessments compared to their rural counterparts. Notably, specific
urban areas, such as the city centers of Changchun and Jilin City,
demonstrate particularly low ecological environmental quality.

In Jilin Province, we selected representative land cover types
including agricultural, forested, saline-alkali, and urban areas, to
discern the variations in RSEI assessment outcomes (Figure 4). We
found that the water separated with MNDWI was consistent with
the actual situation. Subsequently, due to saline-alkali areas contend
with challenges such as soil quality degradation and limited water
resources, while urban regions are directly impacted by urbanization
and extensive land development, resulting in poor RSEI evaluations
for both these zones (Figures 4C,D). Conversely, agricultural areas,
characterized by crop cultivation, exhibited RSEI levels tending
towards moderate to high (Figure 4A). Forested regions
showcased dense vegetation, indicating superior ecological quality
(Figure 4C). The congruence between assessment outcomes and
ground realities underscores the efficacy of RSEI methodology in
appraising ecological quality across diverse land cover types.

FIGURE 4
Ecological quality under different land cover types. The left image is RSEI and the right image is a true color composite image. (A) Farmland area (B)
forest area (C) saline land area (D) urban area.
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4.2 Dynamic changes in ecological
environmental quality

Overall, the analysis of RSEI changes in Jilin Province from
1990 to 2020 reveals a trend of improvement in ecological
environmental quality (Figure 5). Notably, the average annual
growth rate estimated through linear regression analysis stands at
0.022 per decade, indicating a steady enhancement in ecological
conditions. Particularly, between 1990 and 2005, RSEI exhibited
an initial ascent followed by a temporary decline, reaching its
lowest point in 2005 at 0.655. However, from 2005 onwards, there
was a sustained upward tendency, indicating a gradual
enhancement in ecological environmental quality. By 2020,
significant progress was evident, with the highest recorded
RSEI value reaching 0.753. This trend reflects the positive
impact of ongoing efforts towards ecological conservation and
management in Jilin Province.

We divided Jilin Province into 47 regions based on county and
urban district demarcations. The average RSEI values for each
region from 1990 to 2020 were calculated and are presented in
Figure 6. The results showed that in the past 30 years, RSEI in
40 counties or urban areas showed an improving trend, while RSEI
in only 7 counties or urban areas showed a worsening trend. On the
whole, ecological environment quality in Jilin Province was
improving. In the eight administrative districts of Baicheng City,
Fuyu City, Zhenlai County, Dehui City, Nongan County, Shuangliao
City and Yushu City, the RSEI improvement trend is the most
significant, and the growth rate is more than 0.05 units per decade.
Therefore, the whole western region of Jilin Province has shown an
obvious positive trend in the past 30 years. In contrast, the RSEI of
Tonghua County, Tumen City, Antu County, Helong City and

Jingyu County remained stable in the past 30 years, with a
change rate of no more than 0.002 units per 10 years. These
regions are mainly located in the eastern part of Jilin Province.

The regions with different quality levels were counted (Table 5).
The ecological quality in Jilin Province predominantly characterized
by the prevalence of ‘good’ grades, followed by ’ moderate’, and the
other three grades are relatively small proportion. Examining the
trends across these grades (Figure 7), over the span of 30 years, there
has been a consistent expansion in the area covered by ‘excellent’
grade regions, accompanied by a gradual reduction in the extent of
other graded areas. We found that the enlargement of areas
exhibiting ‘excellent’ ecological quality and the simultaneous
contraction of ‘poor’ and ‘very poor’ ecological quality regions.
These transformations had contributed an enhancement in the
overall ecological environment quality in Jilin Province over the
past three decades.

There were significant differences in the ecological quality
evolution in the eastern, central and western regions of Jilin
Province.In the eastern counties, except for Meihekou City,
which was relatively special, the ecological quality of the other
areas mainly tends to be “excellent”, accounting for about 60%–
80%, followed by the areas classified as “good”. Over a span of
30 years, the ecological quality in the eastern region experienced
minimal fluctuations, maintaining a relatively stable trajectory
(Figure 8). The central region was the transition area in Jilin
Province, the counties near the eastern region were mainly
“excellent”, and the counties near the west were mainly “good”.
Huadian City, Jiaohe City, Panshi City, Yongji County, and Shulan
City are dominated by “excellent” ecological quality, while the
remaining regions lean toward “good” quality. Notably, there was
a conspicuous shift from “good” to “excellent” quality areas,

FIGURE 5
The changes in Jilin Province’s RSEI from 1990 to 2020 and the results of linear fitting.
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although areas categorized as “poor” and “moderate” exhibited
negligible changes (Figure 9). The western region is the most
fragile ecological area in Jilin Province. Despite a relatively low
proportion of “excellent” quality areas, the western region
underwent the most pronounced changes over the past three
decades. This transformation primarily manifested in an increase
in “excellent” and “good” quality areas, accompanied by a reduction
in areas characterized as “poor’ and “very poor” (Figure 10).

The application of the Sen’s slope estimator and the Mann-
Kendall trend test effectively captured the spatial distribution
characteristics of RSEI changes in Jilin Province from 1990 to

2020. Based on the actual values of SRESI and Z, the RSEI
change trends were classified into four categories (Table 6). The
area of improvement (including significant improvement and
Insignificant improvement) accounted for 74.13%. As observed
from Figure 11, the areas with significant improvement are
mainly concentrated in the western regions of Jilin Province,
which is mainly due to the improvement of saline-alkali land (Li
et al., 2022). On the contrary, areas with insignificant deterioration
are mainly located in urban areas, primarily as a result of urban
expansion, with Changchun City exhibiting the most
noticeable decline.

FIGURE 6
Statistical chart of RSEI values for counties and urban areas in Jilin province.

TABLE 5 The area proportion of different ecological quality in Jilin Province in 30 years.

Ecological quality classification 1990 1995 2000 2005 2010 2015 2020

[0, 0.2) Very Poor 7.75 6.64 6.46 8.44 9.57 5.52 4.15

[0.2, 0.4) Poor 10.42 8.79 9.02 9.09 9.21 7.93 6.21

[0.4, 0.6) Moderate 13.12 14.61 12.53 14.44 10.52 10.63 9.76

[0.6, 0.8) Good 27.45 30.54 27.74 33.19 23.76 26.1 21.96

[0.8, 1] Excellent 41.26 39.41 44.25 34.84 46.94 50.09 57.93

Total 100 100 100 100 100 100 100
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FIGURE 7
The changes and trends of different ecological quality grades in different years. (The dotted lines represent linear trend lines).

FIGURE 8
The changes in the proportion of different ecological quality types across counties in eastern Jilin Province. (A) Fusong County (B) Jingyu County (C)
Linjiang City (D) Changbai Korean Autonomous County (E) Huinan County (F) Jilin City (G) Liuhe County (H) Meihekou City (I) Tonghua County (J) Antu
County (K) Dunhua City (L) Helong City (M) Hunchun City (N) Longjing City (O) Tumen City (P) Wangqing County (Q) Yanji City (R) Tonghua (Urban
District) (S) Baishan (Urban District) (The dotted lines represent linear trend lines).

Frontiers in Environmental Science frontiersin.org10

Wang et al. 10.3389/fenvs.2024.1446313

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1446313


4.3 Factors influencing ecological
environment quality

The spatiotemporal differentiation patterns of the RSEI index in
Jilin Province are a result of the interaction between human and
natural factors. In this study, eight factors related to the ecological
environment in the research area were selected from both socio-
economic and natural phenomena perspectives (Table 7). We
employed geographic detectors to evaluate the driving factors
influencing ecological environmental quality. From Figure 12, the
central part of Jilin Province is densely populated, and the central
and western regions are agricultural concentration areas. The
eastern region has numerous mountains, higher elevation, steeper
slope, low temperature, increased precipitation, and high
vegetation cover.

4.3.1 Dominant factor analysis
Table 8 showed the results of the dominant factor analysis of

the geographic detector. In terms of the magnitude of the
q-values associated with the selected influencing factors, the
ranking is as follows: vegetation coverage > precipitation >
elevation > slope > temperature > forestry output value >
agricultural output value > population density. These rankings
were determined based on the q-values associated with the
selected influencing factors, with vegetation coverage having
the highest contribution (67.9%). It emerged as the dominant
factor affecting the spatiotemporal variation of RSEI in Jilin

Province. This indicates that the extent and area of vegetation
coverage have a significant impact on the RSEI index in the study
area. Precipitation ranked as the second most influential factor
(24.3%), highlighting its close relationship with ecological
environment quality and its considerable influence on the
spatial variation of RSEI. It is worth noting that natural
factors had a greater impact on the RSEI in the study area
compared to socio-economic factors.

4.3.2 Interaction detection results
The results of the interaction detection for the eight influencing

factors (Figure 13) reveal that the interaction strength between any two
factors is greater than that of any single factor. Throughout the entire
study area, the interaction between vegetation coverage and
temperature, as well as between vegetation coverage and
precipitation, exerts the strongest influence on the spatial variation
of RSEI in the research area, with q-values of 0.685. This indicates that
these interactions account for approximately 68.5% of the spatial
variation in ecological environmental quality in Jilin Province.
Among all factors, these interactions have the most substantial
explanatory power for the spatial variation in ecological
environmental quality. In terms of interaction types, interactions
such as population density ∩ agriculture, population density ∩
forestry, population density ∩ elevation, population density ∩ slope,
population density ∩ temperature, population density ∩ precipitation
and agriculture ∩ forestry exhibit non-linear enhanced interactions,
while the others demonstrate linear enhanced interactions.

FIGURE 9
The changes in the proportion of different ecological quality types across counties in central Jilin Province. (A) Huadian City (B) Jiaohe City (C)
Panshi City (D) Shulan City (E) Yongji County (F) Dongfeng County (G) Dongliao County (H) Lishu County (I) Dehui City (J) Gongzhuling City (K) Nong’an
County (L) Yushu City (M) Changchun (Urban District) (N) Jilin City (Urban District) (O) Liaoyuan (Urban District) (The dotted lines represent linear
trend lines).
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4.4 Impact of different land use on RSEI

To assess the ecological environmental quality under different
land cover types, this study leveraged the advantages of cloud
computing through the GEE platform. Six datasets, including
water bodies, farmland, forests, urban areas, saline-alkali land,
and bare land, were configured in GEE. Approximately
130 points were selected for each dataset as the basis for
classification, with an 80%–20% split for training and testing
datasets, respectively. We utilized a supervised classification
approach, employing the Random Forest algorithm, to categorize
land types in Jilin Province into six classes. The overall classification
accuracy was 0.8875, with a Kappa coefficient of 0.8646 (Figure 14).

The average RSEI values for different vegetation types are as
follows: water bodies 0.6721, farmland 0.7507, forests 0.8996, urban
areas 0.2185, saline-alkali land 0.5143, and bare land 0.5523
(Table 9). Forests have the highest ecological environment
quality, followed by farmland, whereas urban areas have the
lowest ecological environment quality. Therefore, increasing
urban green spaces has become an effective way to improve
urban ecological quality, and many cities have made successful
efforts in increasing urban green spaces. For instance, Singapore
has implemented various innovative methods, including vertical
greening, rooftop gardens, park development, and greenway
networks, to increase urban green space and provide abundant
green areas (Yuen and Hien, 2005; Chew et al., 2019). London

FIGURE 10
The changes in the proportion of different ecological quality types across counties in western Jilin Province. (A) Da’an City (B) Baicheng (Urban
District) (C) Taonan City (D) Tongyu County (E) Zhenlai County (F) Shuangliao City (G) Yitong Manchu Autonomous County (H) Fuyu City (I) Songyuan
(Urban District) (J)Qianguoerluosi Mongolian Autonomous County (K)Qian’an County (L) Changling County (M) Siping (Urban District) (The dotted lines
represent linear trend lines).

TABLE 6 Significance of changing trends and Area Proportions.

SRESI Zvalue RSEI change trend Percentage of area (%)

SRESI ≥ 0 Z ≥ 1.96 Significant improvement 5.23

SRESI ≥ 0 0 < Z < 1.96 Insignificant improvement 68.9

SRESI < 0 −1.96 < Z < 0 Insignificant deterioration 25.72

SRESI < 0 Z ≤ −1.96 Significant deterioration 0.15
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has established a green roof policy to encourage rooftop greening
(Simpson et al., 2023). Toronto, Canada, has created new urban
parks and improved existing green spaces and waterfront areas to
increase urban green space (Conway et al., 2020). Berlin, Germany,
is renowned for its abundant urban green spaces, with the
government committed to preserving and expanding these green
areas while also encouraging urban residents to participate in

greening projects (Kowarik, 2023). These successful examples
from various cities demonstrate that increasing urban green
space is feasible and can be achieved through various methods.
Cities within Jilin Province can draw inspiration from these
practices to expand urban green areas, thereby improving the
ecological environmental quality of various cities in Jilin Province
and provide residents with an enhanced living environment.

FIGURE 11
Trend chart of ecological environmental quality changes in Jilin Province.

TABLE 7 The eight influencing factors.

Factor type Symbol Implication Unit Data source

Socioeconomic factor X1 Population density people/km2 Statistical yearbook of Jilin Province

X2 Agricultural Output Value Ten thousand yuan Statistical yearbook of Jilin Province

X3 Forestry Output Value Ten thousand yuan Statistical yearbook of Jilin Province

Natural factor X4 Elevation meter 30-m elevation data

X5 Slope Degrees DEM calculation

X6 Temperature K GEE calculation

X7 Precipitation millimeter GEE calculation

X8 Vegetation Cover dimensionless GEE calculation
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5 Discussion

5.1 Temporal trends and spatial distribution
patterns of RSEI

Overall, the RSEI of Jilin Province has gradually improved over
the past 30 years. Combined with geographical detector results

(Table 8), vegetation is the most important factor affecting the
change of RSEI, and in recent years, this region has experienced an
increase in precipitation and sufficient sunshine time, providing
favorable conditions for vegetation growth and ecological recovery
(Che et al., 2021; Ren et al., 2023) found that when studying the
NDVI of vegetation in Jilin Province in the past 22 years, NDVI
values showed an increasing trend in most areas (Yun et al., 2009).
studied the spatio-temporal variation characteristics of vegetation
coverage in the Three-North Shelterbelt project area from 2001 to
2007, and found that Jilin Province had the highest increase,
reaching 27.37%, which well indicates that the increase of
vegetation in Jilin Province in the past 30 years is the main
reason for the improvement of RSEI.

Furthermore, this trend is closely linked to regional
governance measures. Past development projects and
population growth in the area led to significant ecological
degradation. However, since the year 2000, a series of major
ecological projects, including the “Changbai Mountain
Ecological Protection Project (Wang et al., 2016)" “Songhua
River Basin Ecological Restoration Project,” “Songnen Plain
Land Retirement and Reforestation Project,” “Saline-Alkali
Land Transformation and Management Project,” and
“Farmland Quality Improvement Project,” have been

FIGURE 12
Spatial distribution plots of the eight driving factors in 2020.

TABLE 8 q-Values of Driving Factors and Significance Test.

Detecting factors q-value p-value

Population Density (X1) 0.017 0

Agricultural Output Value (X2) 0.05 0

Forestry Output Value (X3) 0.054 0

Elevation (X4) 0.181 0

Slope (X5) 0.16 0

Temperature (X6) 0.12 0

Precipitation (X7) 0.243 0

Vegetation Cover (X8) 0.679 0
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implemented. The Changbai Mountain Ecological Protection
Project has significantly enhanced the region’s ecological
stability by protecting rare species and improving habitats.
The Songhua River Basin Ecological Restoration Project has
notably improved water quality and the health of river
ecosystems through enhanced water pollution control and
wetland protection. The Songnen Plain Conversion to Forest
Project has effectively reduced the overuse of farmland, increased
forest cover, and enhanced carbon sequestration. The Saline-
Alkaline Land Improvement Project and Farmland Quality
Improvement Project have improved soil and agricultural
productivity, not only protecting arable land resources but
also promoting sustainable agricultural development.These
initiatives have facilitated ecological recovery in the region,
resulting in improved ecological environmental quality (Zang
et al., 2014).

At the spatial scale, the RSEI demonstrates a “west-low, east-
high” distribution pattern across Jilin Province. The western regions
of Jilin Province have historically faced challenges due to lower
precipitation, higher evaporation rates, frequent natural disasters,
and significant human-induced environmental degradation. These
issues have led to problems such as land salinization, grassland

degradation, and soil desertification (Chang et al., 2022; Han et al.,
2023). Among them, the land salinization is the most prominent
problem, and the saline-alkali land management is an important
reason for the obvious improvement in the west of Jilin Province.
Government departments have consistently carried out a series of
policies, including the construction of water conservancy projects,
the improvement of saline-alkali land, the cultivation of saline-alkali
tolerant crops and ecological air defense control, which has made the
saline-alkali land in western China significantly improved (Gong
et al., 2022; Li et al., 2022).

5.2 Impact of natural and socio-economic
factors on RSEI changes

Among the various natural factors analyzed, vegetation cover
was found to have a significant impact on ecological environmental
quality in Jilin Province (Table 8). Sufficient vegetation cover plays a
crucial role in soil stability, reducing erosion and soil loss. It also
contributes to clean water sources, reducing the risks of floods and
droughts (de la Barrera et al., 2016). Additionally, vegetation provides
diverse ecological services such as oxygen generation, carbon

FIGURE 13
Interaction detection results.
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sequestration, and habitat for biodiversity. These factors contribute to
the best ecological quality in areas with dense vegetation.

Natural factors were found to exert a greater influence on
ecological environmental quality than socio-economic factors
(Pan et al., 2023). Natural factors such as slope, elevation,
temperature, and precipitation play dominant roles in shaping
the ecological environment of Jilin Province. These factors
determine vegetation types and distribution, influence
hydrological cycles, and impact ecosystem diversity. Stability in
these natural factors is directly related to the stability of
ecosystems. In contrast, socio-economic factors (such as
agricultural and forestry production values and per capita GDP)
do have an influence on ecological environmental quality but to a
lesser extent. This does not diminish the importance of socio-
economic factors; unregulated socio-economic activities can
disrupt the stability of natural factors. Therefore, it is essential to
regulate and manage socio-economic activities to ensure they do not

have irreversible negative impacts on the ecological environment
(Chen et al., 2021). Considering the interaction between natural and
socio-economic factors and formulating appropriate policies and
measures will contribute to achieving the sustainable development
goals of Jilin Province.

5.3 Future perspectives

Some scholars had doubted about the RSEI after it was put
forward, but the references showed that the index was the most
widely used among the many remote sensing ecological indexes, and
according to the Figure 4, the results show that the evaluation results
of the index are consistent with the reality, so this study directly
adopted RSEI for research without evaluating the accuracy of RSEI,
which is one of the defects of this study. In addition, some scholars
believed that the four indicators that constitute RSEI were not

FIGURE 14
Results of land use type classification in Jilin Province.

TABLE 9 RSEI mean values under different land types.

Land types Water Cropland Forst land City Saline-alkali land Bare land

Mean RSEI 0.6721 0.7507 0.8996 0.2185 0.5143 0.5523

Number of sample points 353 3763 3749 307 3 1721
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comprehensive during the study, and added a fifth index on the basis
of the original index. For example, Dong et al. (2023) introduced the
landscape diversity index (LDI) and reconstructed theModified Remote
Sensing Ecological Index (MRSEI) when studying the ecological
environment quality of the artificial oasis in Ningxia section of the
Yellow River. Li Y. M. et al. (2024) took the Soil Erosion Indicator (SEI)
as the fifth component when studying the ecological quality of karst
areas, and created the Modified Remote Sensing Ecological Index
(MRSEI). Due to the research area of Jilin Province, Considering
that there are many land cover types such as forest, farmland and
saline-alkali land in this region, the issue of whether RSEI is incomplete
is not considered, which is the second defect of this study. To sum up,
the selection of RSEI indicators and the accuracy of RSEI evaluation will
be mainly considered in the follow-up research.

6 Conclusion

Based on Landsat data and theGEE platform, this study calculated
the RSEI of Jilin Province from 1990 to 2020, revealing spatiotemporal
characteristics of ecological environmental quality. Subsequently, the
Geo-detector model was employed to investigate and determine the
factors influencing ecological environmental quality. The main
conclusions of this research are as follows.

(1) The effect of the RSEI evaluation is effective and consistent
with the actual situation, the average RSEI values in Jilin
Province from 1990 to 2020 ranged between 0.655 and 0.753,
indicating generally good ecological environmental quality.
Spatially, ecological environmental quality gradually
decreases from east to west, with the eastern region
showing the best ecological environmental quality, followed
by the central region, and the western region exhibiting the
lowest quality. Additionally, rural areas have better ecological
environmental quality compared to urban areas.

(2) Over the 30-year period from 1990 to 2020, the RSEI values in
Jilin Province exhibits an overall improving trend. From
1990 to 2000, there was an initial increase in RSEI
followed by a subsequent decrease. However, from 2000 to
2020, spanning two decades, the average RSEI values in Jilin
Province have shown a consistent upward trend, indicating a
gradual enhancement in ecological environmental quality. It
is worth noting that in the past 30 years, the ecological
environment quality in the west of Jilin, which is mainly
characterized by saline-alkali land, has improved significantly.

(3) Ecological environmental quality in Jilin Province is influenced
by both socio-economic and natural factors, with vegetation
cover identified as the most significant factor affecting
ecological environmental quality in the study area. Natural
factors were found to have amore substantial impact compared
to socio-economic factors. The interactive detection results
reveal that the interaction strength between any two
influencing factors is greater than the effect of a single
factor. The interaction between vegetation cover and
temperature, as well as vegetation cover and precipitation,
has the most significant impact on the spatial variation of
RSEI in the study area, with q-values of 0.685.
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