
Comparative analysis of
high-temperature targets
retrieved from SWIR and TIR data

Yifan Yu1, Jun Pan2 and Huishi Du1*
1Department of Geographic Science and Tourism, Jilin Normal University, Siping, China, 2Department of
Geo-Exploration Science and Technology, Jilin University, Changchun, China

Introduction: Forest fires, grassland fires, heap coking, straw burning, and
volcanic eruptions are thermal anomalies. They attract attention and are
designated as high-temperature targets. They can be retrieved
macroscopically and quickly by remote sensing technology.

Methods: In temperature inversion, the mid-infrared (MIR, 3~5 μm) and thermal
infrared (TIR, 8~14 μm) band data are most commonly used for temperature
inversion. However, it is difficult to effectively retrieve the temperature of small-
area high-temperature targets with them; the SWIR band data can perform this
task more effectively. Additionally, inversion methods for short-wave infrared
(SWIR, 1.3~2.5 μm) and TIR band data are different. These differences lie in the
mechanisms and models. Therefore, we use SWIR and TIR band data to retrieve
heap coking temperature with Landsat 7 and Landsat 8 data.

Results: SWIR data obtained the results 496~651 K and 912 K, and TIR data
obtained the results 313~334 K and 320 K.

Conclusion: The SWIR inversion results have higher accuracy than the TIR
inversion results. The inversion results are closer to the actual temperature of
local coking. For this reason, SWIR is more suitable for temperature inversion of
small-area high-temperature targets.
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1 Introduction

On Earth, the temperatures of high-temperature targets [forest fires (Adab et al., 2013;
Di Biase and Laneve, 2018; Lim et al., 2019; Hashimoto et al., 2021), grassland fires, heap
coking (Kong et al., 2005; Biswal and Gorai, 2020), straw burning, volcanic eruptions
(Wright et al., 1999), etc.] are significantly higher than those of other normal-temperature
objects. Using remote sensing technology to perform temperature inversion (Ermida et al.,
2020) has the advantages of low cost and high efficiency. Land surface temperature
inversion primarily utilizes TIR or MIR band data (Giglio et al., 2000). Existing
methods generally assume that the components and temperatures within the pixels are
uniform (Schroeder et al., 2014a; Schroeder et al., 2014b). In addition, emitted radiation is
the only aspect that needs to be considered. These algorithms include single window and
split window. They are applied in land surface temperature inversion (Yu, 2014; Yu, 2017;
Stefanidou et al., 2019; Laneve et al., 2020; Santana et al., 2020; Ehsani et al., 2020), resource
investigation (Laneve et al., 2019; Shan et al., 2020; Xu et al., 2021), and environmental
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monitoring (Veraverbeke et al., 2014; Xu and Zhong, 2017;
Szpakowski and Jensen, 2019; Yin et al., 2020). MIR and TIR
remote sensing data are heavily affected by atmospheric
background radiation. The limitation in spatial resolution is
another important effect. These factors make it difficult to
effectively retrieve the temperature of small-area high-
temperature targets. It is difficult to differentiate high-
temperature targets from the background of the normal-
temperature objects (Pan et al., 2009; Yu et al., 2016).

According to the law of black-body radiation, in the SWIR band,
the radiation from normal-temperature objects (temperature
300 K±) is primarily the reflected energy of solar radiation (Yu
et al., 2014a; Yu et al., 2014b). For high-temperature targets, the
energy contains not only reflected radiation but also its own emitted
radiation. When the temperature reaches a certain level
(temperature 500 K ± or higher), the emitted radiation energy
will be close to or even exceed the reflected radiation energy of
normal-temperature objects. In the instantaneous field of view
(IFOV) of remote sensor detection, there are both normal-
temperature objects and high-temperature targets. The energy
corresponding to the DN value of the mixed pixel is composed
of the reflected energy of normal-temperature objects and the
emitted energy of high-temperature targets. This spectral feature
is significantly different from that of a pure pixel of a normal-
temperature object. In the mixed pixel, if the emission energy of the
high-temperature target can be separated from themixed energy, the
temperature and area (sub-pixel area) of the high-temperature target
can be determined using the black-body radiation law (Planck
function) (Pan et al., 2009; Yu et al., 2016). TIR temperature
inversion only considers emitted energy (Guo et al., 2020;
Maithani et al., 2022; Sekertekin and Bonafoni, 2020a; Sekertekin
and Bonafoni, 2020b; Yu, 2014). Moreover, the temperature
inversion mechanisms of SWIR and TIR bands are very different.
We can derive a physical model from the law mentioned above.
Through the physical model, we understand that SWIR is more
sensitive for research on high-temperature targets than TIR.
Therefore, this paper will use SWIR and TIR data (Barducci
et al., 2004; Dennison and Matheson, 2011) to compare the
temperature inversion of high-temperature targets. The study
areas are in Shanxi Province and Liaoning Province, where we
have conducted field verification (Yu et al., 2016; Yu, 2017).

2 Methodology

Any object, as long as its temperature is above absolute zero, will
emit radiation to its surroundings. According to Planck’s formula,
the radiant flux density of an object is a function of temperature and
wavelength. The higher the temperature is, the greater the black-
body radiant flux density is (Figure 1). Under normal temperature
conditions (temperature 300 K±), the peak wavelength is
approximately 10 μm, and it is in the TIR range. As a result, TIR
is more suitable for temperature inversion of the normal-
temperature objects (Yu, 2017). As the temperature rises, the
peak wavelength of radiant energy shifts toward the shortwave
direction. When the object’s temperature reaches approximately
500 K or higher, its SWIR emission radiation energy approaches or
even exceeds the reflected radiation energy of normal temperature.

Thus, it can be detected by the remote sensor unit. When both
normal-temperature and high-temperature objects are present in the
IFOV on the ground, the mixed pixel’s energy in the remote sensing
image represents a combination of the radiation energy from both
types of objects. The mixed pixel exhibits unique spectral
characteristics. The emission energy information on high-
temperature targets can be extracted through data processing,
and temperature inversion of these targets can be achieved using
Planck’s formula (Pan et al., 2009; Yu et al., 2016). Although the
peak wavelength of high-temperature target radiation does not fall
within the SWIR range (it is approximately 1,500 K when the peak
wavelength is in the SWIR), the radiation energy of the high-
temperature mixed pixel exceeds that of the normal-temperature

FIGURE 1
Radiation flux density of the black body in different temperatures.

TABLE 1 Statistical analysis of temperature for typical normal-temperature
objects on the surface with TIR data.

Classification Position Mean(T)

Seawater Liaoning 290.91

Reservoir Liaoning 294.19

Lake Qinghai Lake 275.81

Forest (broad-leaved) Beijing 294.33

Forest (needle-leaved) Liaoning 306.28

Cultivated land Beijing 294.69

Grassland Qinghai Lake 296.21

Desert Qinghai Lake 307.03

Salt lick West of Jilin 296.36

Loess Shanxi loess plateau 302.00

Bare ground Beijing 295.81

Volcanic ash Lake of heaven 295.83

Residential area Beijing 299.90

Cloud Qinghai 244.05

Ice and snow Qinghai (snow mountain) 256.39
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object. A high-temperature target can be effectively separated from
the mixed pixel. Therefore, TIR temperature inversion for high-
temperature pixels relies on emission energy, while SWIR
temperature inversion relies on the combined energy of emission
and reflection from high-temperature pixels. In the preliminary
work, we selected Landsat 8 TIR remote sensing data from April
2013 to November 2015. Furthermore, we conducted a preliminary
statistical analysis of temperature for typical normal-temperature
objects on the surface using the radiation transfer equation method
(Table 1). At the same time, we performed TIR temperature statistics
for forest fires with an average value of 334.90 K. The result is so low
that it does not match the actual value. The SWIR temperature
statistics for forest fires have also been conducted, with average
values of 515.5 K. It is evident that the SWIR method can effectively
identify high-temperature pixels frommixed pixels, whereas the TIR
method fails to accurately reflect the true temperature of high-
temperature targets (Yu, 2017).

The SWIR temperature inversion method is based on physical
models, whereas the TIR temperature inversion method employs the
radiative transfer equation method in this article (Qin et al., 2001a;
Qin et al., 2001b).

In practical applications, the DN value of the pixels in the SWIR
remote sensing image, after radiation correction, represents the
integrated electromagnetic radiation energy of the objects within
the IFOV on the surface. For normal-temperature objects, the pixel
DN value reflects reflected energy of the objects in the IFOV (in this
condition, emission energy is neglected). For a mixed pixel
composed of normal-temperature objects and high-temperature
targets, the pixel DN value reflects the combined energy of the
normal-temperature objects’ reflected energy and the high-
temperature targets’ emitted energy. The equivalent reflectivity of
the pixel caused by this integrated energy can be called visual
reflectivity (Zhu et al., 2011).

The visual reflectivity of the mixed pixel represents the
integrated electromagnetic radiation energy from the ground
objects within the IFOV. According to the principle of energy
conservation, it includes the reflected and emitted energy of the

normal-temperature ground objects and the emitted and reflected
energy of the high-temperature targets.

To simplify the model for practical application (Yu, 2017), the
model assumes the following conditions:

All types of surface features are Lambertian. The normal-
temperature ground features and high-temperature targets each
have a uniform composition and temperature. The radiant
energy from normal-temperature objects and high-temperature
targets is linearly superimposed.

As a result, a physical model (Yu et al., 2016; Yu, 2017) for the
SWIR temperature inversion of mixed pixels on the surface can be
established (Figure 2).

Its mathematical expression is as follows (Equation 1):

M � M1S +M2 1 − S( ) +M3S +M4 1 − S( ). (1)
In the formula, M is the radiation flux density of the mixed pixel, M1

is the emitted radiation flux density of the high-temperature target
in the mixed pixel, M2 is the reflected radiation flux density of the
normal-temperature objects in the mixed pixel, M3 is the reflected
radiation flux density in the mixed pixel of the high-temperature
target inside, M4 is the emitted radiation flux density of the normal-
temperature ground object in the mixed pixel, and S is the area ratio
of the high-temperature target in the mixed pixel.

In the SWIR spectrum, the radiation energy is primarily
reflected by the sun, with a radiant brightness in the order of
10−1~101 Wm−2 μm−1 ster−1. The background emission energy is
very small, with a radiance in the order of
10−4~10−3 Wm−2 μm−1 ster−1. The ratio of the reflected and
emitted energy of the normal-temperature background in the
SWIR is approximately 103:1. Therefore, the emitted energy of
the normal-temperature background in the SWIR can be
neglected (Pan et al., 2009; Zhu et al., 2011).

In summary, the SWIR radiation energy of mixed pixels consists
of three components (Zhu et al., 2011): high-temperature target
emission radiation, reflected radiation from the normal-temperature
background, and reflected radiation from the high-temperature
target. Thus, the mathematical expression of the physical model
can be simplified (Equation 2).

M � M1S +M2 1 − S( ) +M3S. (2)

For TIR temperature inversion of high-temperature targets, this
paper adopts the radiation transfer equation method, also known as
the atmospheric correction method (Qin et al., 2001a; Kafer et al.,
2020). The basic idea is to use satellite-synchronized atmospheric
data to estimate the degree of influence that surface thermal
radiation has on the atmosphere. This influence is then
subtracted from the total thermal radiation measured at the
satellite’s entrance. Consequently, the thermal radiation intensity
at the surface can be obtained. This intensity is then converted to the
corresponding surface temperature.

The TIR radiance Lλ obtained by the satellite sensor consists of
three parts. The first part is the upward atmospheric radiance L↑.
The second part is the actual radiance of the Earth’s surface that
reaches the satellite sensor after atmosphere’s effect. The third part is
the downward atmospheric radiation L↓ whose reflected energy
reaches the surface. The expression for the TIR radiance received by
the satellite sensor is given by the following equation (Equation 3):

FIGURE 2
Sketch of the physical model of a mixed pixel in SWIR for high-
temperature targets.
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Lλ � ε · B Ts( ) + 1 − ε( )L ↓[ ] · Tθ + L ↑ . (3)
Among them, TS is the true temperature of the ground, B(TS) is
the thermal radiance of a black body in TS derived from Planck’s
law, and ε is the specific emissivity of the ground. The TIR
radiance B(TS) of the black body at temperature T is as follows
(Equation 4):

B TS( ) � Lλ − L ↑ − Tθ 1 − ε( )L ↓[ ]
Tθε

. (4)

By entering the image acquisition time and positioning coordinates
on the NASA website, the required parameters mentioned above can
be obtained. These include the atmospheric transmittance Tθ, the
upward atmospheric radiation L↑, and the downward atmospheric
radiation L↓.

The energy of each component in the SWIR temperature
inversion method is as follows:

1. The emitted radiation flux densityM1 of the high-temperature
target in the mixed pixel

According to the law of black-body radiation, the emission
energy of the high-temperature target is the product of the
emissivity ε of the high-temperature target and the Planck
function B, that is (Equation 5),

M1 � εB λ, T( ) � 2επhc2λ−5 exp hc/λkT( ) − 1[ ]−1. (5)
In the formula, ε is the emissivity of the object; λ is the wavelength;
B(λ, T) is the radiant flux density of the black body with an absolute
temperature of T at wavelength λ; h is the Planck constant, h = 6.63 ×
10−34 Js; c is the speed of light in the vacuum, c = 3 × 108 m/s; and k is
Boltzmann’s constant, k = 1.38 × 10−23 J/K.

2. The reflected radiation flux densityM2 of the ground objects at
normal temperature in the mixed pixel

M2 � ρE � ρTθE0 cos θ

ds
2 . (6)

In the formula (Equation 6), ρ is the reflectivity of the ground objects
at normal temperature, Tθ is the atmospheric transmittance, E is the
solar irradiance at the surface, E0 is the upper boundary solar
irradiance of the atmosphere, θ is the solar zenith angle, and ds is
the solar-terrestrial astronomy unit distance.

3. The reflected radiation flux density of the high-temperature
target in the mixed pixel M3 (Equation 7)

M3 � 1 − ε( )E � 1 − ε( )TθE0 cos θ
d2
s

. (7)

4. The total radiant flux density of mixed pixels M (Equation 8)

M � ρ0E � ρ0TθE0 cos θ

ds
2 . (8)

ρ0is the visual reflectivity of high-temperature mixed pixels.
Combining these energy components into the formula yields the

temperature inversion formula as follows (Equation 9):

T � hc
λk

ln 2πhc2εS λ5 ρ0E − ρE 1 − S( ) − 1 − ε( )ES[ ]{ }−1 + 1{ }{ }
−1
.

(9)
Based on experience, remote sensing data are classified into

three types of coverage. They are water, town, and natural surface.
The following methods are used to obtain the surface specific
emissivity of the study area. In these methods, the emissivity of
water bodies is assigned a value of 0.995. The estimated emissivity
values for natural surfaces and towns are calculated using Formulas
10, 11, respectively.

εsurface � 0.9625 + 0.0614Fv − 0.0461Fv
2. (10)

εbuilding � 0.9589 + 0.086Fv − 0.0671Fv
2. (11)

In the formula, εsurface and εbuilding represent the emissivity of natural
surfaces and towns, respectively, and Fv is the vegetation coverage.

The vegetation coverage Fv is obtained using the mixed pixel
decomposition method. The coverage types of the entire study area
are roughly divided into water bodies, vegetation, and buildings. The
specific calculation formula is as follows (Equation 12):

Fv � NDVI −NDVIS( )
NDVIv −NDVIS( ). (12)

Among them, NDVI is the normalized difference vegetation index
(Huete et al., 2002). NDVIv = 0.70; NDVIS = 0.00. When the NDVI
of a pixel is greater than 0.70, the Fv value is 1. When the NDVI is
lower than 0.00, Fv is 0.

After obtaining the radiance of the black body with a
temperature of TS in the TIR band, using the inverse function of
the Planck formula, the true ground temperature TS (Equation 13) is
determined.

TS � K2

ln K1
B TS( ) + 1( )

. (13)

For the ETM + data TIR band, K1=666.09 W/(m2·sr·μm) and K2 =
1,282.71 K. For the Landsat 8 data TIR band, K1 = 774.89 W/
(m2·sr·μm) and K2 = 1,321.08 K.

3 Study area and data

To make a strong statement in a comparative analysis study, two
study areas are selected here. One is located at the junction of Baode
County and Fugu County, and the other is in Xingcheng city.

The first study area is located at the junction of Baode County in
Shanxi Province and Fugu County in Shaanxi Province. They are on
both sides of the Yellow River (Figure 3) (110°3′~111°10′E,
38°59′~39°4′N). The area contains coal seams in all layers, and it
includes relatively abundant coal resources. Around 2002, the area
was generally populated with various high-temperature targets, such
as coke ovens and metal smelters (Yu et al., 2013). Most of the local
coking plants were located at the bottom of loess gullies, while a few
were situated on the loess beams, ridges, idle fields, and wastelands.
In general, they are close to the coking coal-producing area and the
water source. Therefore, the ETM + image (Goodwin and Collett,
2014) from Landsat 7 on 14 July 2002 was selected as the basic data
for this research. The data were processed through radiometric
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calibration, atmospheric correction, projection transformation, and
image cropping. The nominal wavelength λ of the ETM+7 band is
2.208 μm; the upper boundary solar irradiance of the E0 atmosphere
is 82.1 Wm−2 μm−1 in the ETM + SWIR band; the sun zenith angle θ
can be obtained from the image header file, and it is 27.24°. The
temperature of the upper layer of the focal point can reach
500~1,470 K. Moreover, during some special periods in the
production process, the temperature exceeds 1,400 K.

The second study area is located in the Xingcheng city of
Liaoning Province (Figure 4) (120°06′~120°50′E, 40°16′~40°50′N).
A synchronization satellite observation experiment was conducted
there (Yu et al., 2016; Yu, 2017). The Landsat 8 OLI data from
9 November 2014 were selected as the basic data for this research.
The nominal wavelength λ of the OLI seventh band is 2.201 μm. The
area of high temperature is 4 m2. It consists of 20 stoves, each
measuring 1 m × 0.2 m. The high-temperature stoves are placed in a
large outdoor area (Figure 5), which is approximately 60 m ×
90 m in size.

In the physical model of the SWIR high-temperature mixed
pixel, several parameters are considered, including atmospheric
transmittance Tθ, normal-temperature ground object reflectivity
ρ, and high-temperature target emissivity ε. The accuracy of
these parameters is directly related to the accuracy of
temperature inversion. The primary function of atmospheric
transmittance Tθ is to calculate the total energy of the mixed
pixels. The primary function of the reflectivity ρ of the normal-
temperature object is to subtract the reflected energy from the total
energy. High-temperature target emissivity ε is used to calculate the
emitted energy. Inverting the performance temperature relies on the

accurate determination of all parameters, which play a crucial role in
SWIR temperature inversion. The parameters for TIR temperature
inversion can be calculated using data from the NASA website and
image pixel values.

3.1 Calculation of atmospheric
transmittance

The atmospheric transmittance can be obtained through
MODTRAN (Ni et al., 2022; Yang G. et al., 2023; Yang M. et al.,
2023). MODTRAN is an atmospheric radiation transmission
simulation model developed by the U.S. Air Force Geophysics
Laboratory. It can be used to simulate radiance and atmospheric
transmittance in the range of 50,000 cm−1 with a spectral resolution
of 2 cm−1. By setting surface parameters, atmospheric parameters,
sensor parameters, observation geometry parameters, control
operating parameters, and output parameters, MODTRAN can
accurately simulate the radiance at the top of the atmosphere.

The main parameter settings are as follows (Yu, 2014):
Based on the data, the mid-latitude summer atmospheric model

is selected for the study area. The surface Kelvin temperature is
294.82 K. The ground object reflectivity at normal temperature is
0.45. The CO2 volume mixing ratio is 395.000. The rural aerosol
mode is selected. The average ground elevation of the study area is
0.5 km. The height of the ETM + sensor is higher than 705 km. The
altitude of the upper boundary of the MODTRAN atmosphere is
100 km. The average surface altitude is 0.5 km. ETM+ is a vertical
observation with an observation angle of 180.000. The imaging time

FIGURE 3
Remote sensing image of the study area of Shanxi (RGB753 color composition).
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is July 14, and the calculated ‘day of the year’ is 195. The radiation
source is the sun. The sub-satellite latitude is 38.91°. The longitude of
the sub-satellite point is converted to a western longitude of 248.43°.
Greenwich Mean Time for imaging is 3:00. The initial wavelength is
1,300 nm. The final wavelength is 2,500 nm. The wavelength
increment is 10 nm. FWHM is 20. Radiance must be output. The
output wavelength unit is nanometer (nm).

3.2 Background reflectivity estimation

Based on the principle of geographic correlation, we can
calculate the reflectivity of the normal-temperature ground object
within the high-temperature mixed pixel (Kitichotkul et al., 2024).
The reflectance of normal-temperature objects within the mixed
pixel should have the greatest possible spectral consistency and
similarity with the nearest normal-temperature object pixel. This
method is called the reflectivity estimation method of background
pixels (Yu, 2017).

The reflectivity estimation method for background pixels
employs two schemes for comparative analysis. One scheme
involves remote-sensing image pixel sampling and statistical
analysis. This method is based on the identification of high-
temperature target (Fan et al., 2004) mixed pixels. The reflectivity
of the surrounding neighboring pixels in the SWIR band needs to be
measured and analyzed. The calculated value for the normal-

temperature ground object is then used as the reflectivity. The
other scheme is the object spectroscopy measurement method. In
the satellite synchronous observation experiment, the normal-
temperature background object’s spectrum is measured. Using
the spectral response function of the satellite’s remote sensor,
reflectance data are obtained, which serves as the calculated value
for the normal-temperature ground object’s reflectivity (when there
are more than two types of objects, a linear spectrum superposition
model is applied). In this study, we use the former method to
estimate the background reflectance.

3.3 Emissivity estimation of the high-
temperature target

The emissivity of high-temperature targets is calculated by the
measured spectral reflectance of the samples (Barducci and Pippi,
1996; Bastiaanssen et al., 1998; Aires et al., 2002; Atitar and Sobrino,
2009; Li et al., 2013; Zhang et al., 2023). The inverse of this is
emissivity. Various high-temperature targets, such as coal, charcoal,
coke, wood, vegetation leaves, grass, straw, steel, and volcanic rock,
are used in field and laboratory experiments. The spectrum was
measured, and the emissivity was determined (emissivity = 1-
reflectivity). Various measured data serve as the empirical
spectrum library for SWIR emissivity of high-temperature targets.
The emissivity of non-metallic materials does not change with

FIGURE 4
Remote sensing image of the study area of Liaoning (RGB753 color composition).
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temperature under Earth’s environmental temperature conditions.
A consensus has been reached. The emissivity spectrum data
obtained under the normal-temperature conditions can be used
as a reference for the emissivity of high-temperature ground objects.
(Chen et al., 2000).

In this study, the emissivity of coal, char, and coke at normal
temperatures is used in place of high-temperature emissivity. A near-
infrared mineral analyzer is used to perform spectral testing on field-
collected samples of coal, charcoal, and coke. The obtained spectral
data are regarded as the reflectance of high-temperature targets. The
spectrometer measures a spectral range of 1,300–2,500 nm, with a
scanning interval of 2 nm. Forty-one field-collected samples were
selected and converted into on-board data, according to the spectral
response function (Table 2). The substitute value for emissivity was
calculated using an inverse calculation method.

The imaging time of the Landsat 7 ETM + image in the study
area was 3:00 on 14 July 2002. The latitude and longitude of the
image center were 39.04°N and 111.11°E. For the atmospheric
profile, we selected the mid-latitude summer model and Landsat

7 band 6 as the spectral response curve. On entering the data above
into the NASA official website, the atmospheric transmittance Tθ of
the TIR band is 0.83. The upward atmospheric radiance L↑ is
1.20 W/(m2·sr·μm), and the downward atmospheric radiance L↓
is 2.04 W/(m2·sr·μm).

According to the parameter above, the atmospheric transmittance
Tθ, the normal-temperature ground object reflectivity ρ, and the high-
temperature target emissivity ε are obtained. For the local coking
method, the area of high-temperature targets is uncertain. For this
reason, the proportion of the high-temperature target area is assumed
to be 0.1, 0.5, and 1. These proportions are used as the critical area
ratios for temperature inversion (Table 3). Using this parameter for
temperature inversion of 200 high-temperature target pixels in the
study area image, the temperature inversion statistics results in
different areas can be found in Tables 4–6.

Field verification shows that the size of the indigenous coke oven
is 10 m × 3 m, and most coking plants have approximately 5–7 coke
ovens (Figure 6). The ratio of the high-temperature target area to the
area of each pixel in the Landsat 7 image for the local coking method
is approximately 0.1~0.2. The SWIR temperature inversion result is
closer to the actual value when the area ratio reaches a critical value
of 0.1 (Table 4).

FIGURE 5
Remote sensing image of the experiment area from Google (the red rectangle on the image is the location of high-temperature targets).

TABLE 2 Spectral testing on samples of coal, charcoal, and coke collected
in the field.

Samples Min Max Mean Stdev

Coal (field) 13 0.048955 0.105785 0.071402 0.018320

Coke 3 0.036918 0.066408 0.051960 0.014754

Coal (situ) 6 0.061597 0.123279 0.092458 0.021651

Charcoal (situ) 19 0.033343 0.159950 0.090550 0.037961

Total 41 0.045203 0.113856 0.076593 0.023171

TABLE 3 Parameter in different critical area ratios for temperature
inversion.

S Tθ ρ ε

0.1 0.96 0.18 0.92

0.5 0.96 0.18 0.92

1 0.96 0.18 0.92
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Parameters for the second study area are listed below. According
to the satellite transit time of Landsat 8 at 10:41:07 Beijing time on
9 November 2014, the parameters for Xingcheng city, Liaoning
Province, are shown below. The atmospheric transmittance,
retrieved using the MODTRAN model, is 0.943. The reflectance of
charcoal samples is measured using an ASD FieldSpec
thermodetector. The average value is used to compute an integral
on the basis of Landsat 8’s spectral response function and to convert
the value to satellite reflectance of Landsat 8. After obtaining the
emissivity of high-temperature targets (charcoal) in the SWIR band, ε
is obtained as 0.9311 based on the formula ε = 1−ρ. The reflectance of
grass and soil samples is measured using an ASD FieldSpec
thermodetector. The fractional areas of grass and soil are

computed based on outdoor photographs. According to the linear
superposition model of spectra, spectral reflectance data for grassland
are obtained. The integral is computed based on Landsat 8’s spectral
response function, and the value is converted to Landsat 8 satellite
reflectance. Finally, the reflectivity (ρ) is determined to be 0.0799.

4 Results and discussion

4.1 The first study area

The pixels that match the Landsat 7 TIR data for the
aforementioned 200-pixel points are used to define the TIR

TABLE 4 Temperature inversion statistics results of SWIR (S = 0.1).

Min (K) Max (K) Mean (K) Stdev (K) Mode (K) Median (K)

High-temperature targets 571.24 651.34 622.16 25.84 651.28 625.63

TABLE 5 Temperature inversion statistics results of SWIR (S = 0.5).

Min (K) Max (K) Mean (K) Stdev (K) Mode (K) Median (K)

High-temperature targets 512.37 565.16 545.46 17.28 565.12 547.49

TABLE 6 Temperature inversion statistics results of SWIR (S = 1).

Min (K) Max (K) Mean (K) Stdev (K) Mode (K) Median (K)

High-temperature targets 496.20 537.25 521.55 13.61 537.21 522.90

FIGURE 6
Photograph of an indigenous coke oven that was found in the field.

Frontiers in Environmental Science frontiersin.org08

Yu et al. 10.3389/fenvs.2024.1446007

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1446007


temperature anomaly area. The other pixels serve as the normal-
temperature background area for temperature inversion. The
statistics for high-temperature targets and the background are as
follows (Tables 7, 8).

Low-temperature distillation temperature for local coking is
approximately 773.15 K (Yu et al., 2014c). In the local coking
method, the TIR high-temperature target temperature inversion
result ranges from 313 K to 334 K (mean value 319.00 K from
Table 7). The relative error is 58.8%. The corresponding normal
temperature background temperature inversion result ranges from
290 K to 331 K. The normal temperature background is relatively
close to the temperature of the high-temperature target. These two
results are easy to confuse. The SWIR temperature inversion result,
ranging from 496 K to 651 K (mean value is 622.16 K from Table 4),
is closer to the actual temperature of the high-temperature targets.
The relative error is 19.5%. Furthermore, SWIR data can more
accurately invert the temperature of high-temperature targets than
TIR data. By examining the parameter settings of the two
temperature inversion methods and the statistical data on the
results, it is evident that the SWIR temperature inversion method
inverts the temperature of high-temperature targets under various
area ratios. In contrast, the TIR temperature inversion method
directly calculates the overall high temperature. This represents
the temperature inversion for mixed pixels. The emissivity used
in temperature inversion has a specific range of applicability and is
suitable only for normal-temperature ground objects. However, it
introduces certain errors when used to invert the temperatures of
high-temperature targets. Apparently, the TIR inversion method
struggles to accurately reflect the temperature of high-
temperature targets.

4.2 The second study area

We can see one high-temperature pixel in Figure 4, which is
marked with a red square. It is the pixel where we have placed high-
temperature stoves. Pixels adjacent to it are also affected, and these
pixels display a different color compared to other normal-
temperature pixels in the vicinity. The satellite Landsat 8 passed
over the study area at 10:41:07 Beijing time on 9November 2014.We
found the transit time of Landsat 8 for the study area on the NASA
website 2 days prior to the experiment. Twenty stoves were
measured one by one using a portable thermodetector, and we
measured the temperature many times. The two measurements (the
last time before satellite transit and the first time after satellite
transit, as shown in Table 9) are used as the actual temperatures for
high-temperature targets. Finally, high-temperature targets and
normal-temperature surface features are sampled, respectively.
The spectral samples are measured indoor. High-temperature
targets were the spare charcoal pieces that we selected randomly,
and the normal-temperature surface features are grasslands. We
sampled grass and soil, took photographs of them, and recorded
descriptions. Temperature of the high-temperature target is
calculated by Formula 9, and the value is 912 K. The relative
error is 3.3% compared to the mean value 882 K (which is the
mean of 860 K and 904 K, and these values were measured with a
portable thermodetector). The TIR high-temperature target
temperature inversion result is 320 K. The corresponding
normal-temperature background temperature inversion result
ranges from 290 K to 331 K. The normal-temperature
background is relatively close to the temperature of the high-
temperature target. These two results are easy to confuse. SWIR

TABLE 7 High-temperature target inversion statistics results of TIR.

Min (K) Max (K) Mean (K) Stdev (K) Mode (K) Median (K)

High-temperature targets 312.91 333.50 319.00 3.97 320.04 317.68

TABLE 8 Background temperature inversion statistics results of TIR.

Min (K) Max (K) Mean (K) Stdev (K) Mode (K) Median (K)

Background 290.49 330.69 312.37 6.78 313.83 313.01

TABLE 9 Temperature measurements of each stove with a portable thermodetector.

Start 10:30 End 10:33 Number 1 2 3 4 5 6 7 8 9 10 Average Standard deviation

T/K 881 873 868 889 907 867 861 911 834 718 860 53.8

Number 11 12 13 14 15 16 17 18 19 20

T/K 749 898 902 839 850 880 907 780 906 835

Start 10:45 End 10:48 Number 1 2 3 4 5 6 7 8 9 10 Average Standard deviation

T/K 844 925 909 915 881 899 916 954 922 833 904 34.5

Number 11 12 13 14 15 16 17 18 19 20

T/K 850 901 923 895 956 909 929 963 898 876
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data can more accurately invert the temperature of high-
temperature targets than TIR data.

5 Conclusion

There is no obvious temperature anomaly in the TIR remote
sensing image for the high-temperature targets of the native coking
method. The analysis from the perspective of spatial resolution shows
that TIR remote sensing has a resolution of 60 m × 60 m, while the
SWIR remote sensing image has a resolution of 30 m × 30 m. High-
temperature targets with the same temperature and area are easily
obscured by normal-temperature backgrounds in TIR remote sensing
images. In particular, small-area high-temperature targets are more
likely to be obscured by the background, making it difficult to
distinguish them from the background. From the perspective of
radiant energy and based on the black-body radiation law, the
peak wavelength of normal-temperature objects is in the TIR
range. Furthermore, the TIR band is more suitable for temperature
inversion of normal-temperature objects. Additionally, TIR
temperature inversion relies solely on the emitted energy of
ground objects, while SWIR temperature inversion is based on the
combined energy of emission and reflection of objects. Therefore, for
the temperature inversion of high-temperature targets, the SWIR
method is more advantageous. In particular, for small-area high-
temperature targets, the SWIR method has more obvious advantages
in temperature inversion.

TIR temperature inversion is the process of inverting the
temperature of the entire pixel that contains the high-
temperature target. However, it is inevitable that emissions from
large areas of ambient-temperature background objects mix in,
causing the energy of the high-temperature target to be evenly
distributed across the mixed pixel, thereby reducing the
temperature inversion value of the entire high-temperature pixel.
On the other hand, SWIR temperature inversion is the process of
inverting the temperature of the high-temperature target within the
mixed pixels. The SWIR temperature inversion method is more
conducive to high-temperature target analysis, such as resource
investigation, environmental monitoring, and fire warning. At the
same time, the study of SWIR temperature inversion methods also
lays the foundation for further simultaneous inversion of
temperature and area for high-temperature targets.

In the SWIR inversion of high-temperature targets, there is a
certain error between the inversion result and the true temperature
due to the approximate estimation of a key parameter: the area of the
high-temperature target, as observed in the field. In future research,
two shortwave infrared bands will be further utilized to

simultaneously determine both the temperature and area. This
approach aims to avoid the error caused by the key parameter,
the area of the high-temperature target, in the inversion process and
improve the accuracy of the inversion method.
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