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Rainfall plays an important role in maintaining the water cycle by replenishing
aquifers, lakes, and rivers, supporting aquatic life, and sustaining terrestrial
ecosystems. Accurate prediction is crucial given the intricate interplay of
atmospheric and oceanic phenomena, especially amidst contemporary
challenges. In this study, to predict rainfall, 12,852 data points from open-
source global weather data for three cities in Indonesia were utilized,
incorporating input variables such as maximum temperature (°C), minimum
temperature (°C), wind speed (m/s), relative humidity (%), and solar radiation
(MJ/m2). Three novel and robust Deep Learning models were used: Recurrent
Neural Network (DRNN), Deep Gated Recurrent Unit (DGRU), and Deep Long
Short-Term Memory (DLSTM). Evaluation of the results, including statistical
metrics like Root-Mean-Square Errors and Correction Coefficient (R2),
revealed that the Deep Long Short-Term Memory model outperformed DRNN
and Deep Gated Recurrent Unit with values of 0.1289 and 0.9995, respectively.
DLSTM networks offer several advantages for rainfall prediction, particularly in
sequential data like time series prediction, excelling in handling long-term
dependencies important for capturing weather patterns over extended
periods. Equipped with memory cell architecture and forget gates, DLSTM
networks effectively retain and retrieve relevant information. Furthermore,
DLSTM networks enable parallelization, enhancing computational efficiency,
and offer flexibility in model design and regularization techniques for
improved generalization performance. Additionally, the results indicate that
maximum temperature and solar radiation parameters exhibit an indirect
influence on rainfall, while minimum temperature, wind speed, and relative
humidity parameters have a direct relationship with rainfall.
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Highlights

• Deep Learning models excel in accurate rainfall prediction, vital for water cycle
maintenance and ecosystem sustainability.

• DLSTM algorithm outperforms DRNN and DGRU, boasting impressive RMSE
and R2 values.

• DLSTM networks effectively capture long-term dependencies crucial for weather
pattern recognition.
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• LSTM networks offer computational efficiency and flexibility
in model design for enhanced generalization.

• Maximum temperature and solar radiation indirectly
influence rainfall, while others show direct relationships.

• Utilizing 12,852 data points, this study integrates various input
variables for robust rainfall forecasting.

1 Introduction

Effective rainfall predicting is imperative for a multitude of
important applications, ranging from flood management to
agricultural planning and drought assessment (Fahad et al.,
2023). Over the years, researchers have extensively utilized
numerical and statistical methods to predict rainfall patterns with
the aim of improving accuracy and reliability (DelSole and Shukla,
2002; Latif et al., 2023; Markuna et al., 2023). However, while
numerical models offer deterministic predicts, they often fall
short in capturing local weather nuances due to limitations in
initial conditions and parameterizations (Beniston, 2003;
Goutham et al., 2021). Two primary challenges dominate rainfall
predicting endeavors: firstly, the accurate prediction of rainfall
occurrences across various temporal scales, including weekly,
monthly, and annual data, and secondly, the development of
neural network models tailored to these temporal scales (Saleh
et al., 2024). The former entails identifying relevant weather
parameters, detecting peak values, and anticipating negative
rainfall events, while the latter demands considerations such as
network architecture, training and testing procedures, prevention of
overfitting, selection of performance metrics, and activation
functions. Accurate rainfall predicts play a pivotal role in
managing water resources, ensuring food security, and mitigating
flood-related risks (Knight andWashington, 2024). Globally, rainfall
patterns are significantly influenced by climate signals such as the
North Atlantic Oscillation (NAO), Southern Oscillation Index
(SOI), and Pacific Decadal Oscillation (PDO), emphasizing the
importance of understanding these signals to enhance predictive
capabilities (Nicholson, 2017). Recent strides in Machine Learning
(ML), particularly neural networks, have revolutionized rainfall
predicting, outperforming traditional models like linear
regression (Norel et al., 2021; Sheng et al., 2023a; Zhang et al.,
2024). The ramifications of inadequate rainfall predicting extend
beyond economic and infrastructural damage, encompassing health
and environmental concerns. Floods, exacerbated by climate change,
pose imminent threats, while heightened air pollution levels,
exacerbated by climatic conditions, elevate health risks,
particularly respiratory ailments (Chang et al., 2017). Therefore,
efficient rainfall predicting techniques are imperative for
preparedness and mitigation efforts across diverse sectors,
including transportation, agriculture, and public health (He
et al., 2022).

Deo and Shahin (2015) predicted the evapotranspiration index,
specifically the monthly standardized rainfall, utilizing Artificial
Neural Network (ANN) alongside climate indicators and
parameters in eastern Australia. They identified the most
impactful indicators for the region and demonstrated that
incorporating these indicators into the model enhanced its
efficiency (Deo and Şahin, 2015). Dwivedi et al. (2019) used

ANN for rainfall prediction in Junagadh city, India. They utilized
rainfall data spanning the years (1980–2011) and (2012–2016) for
their prediction model. The study concluded that the ANN model
exhibits greater reliability compared to the AutoRegressive
Integrated Moving Average (ARIMA) model in rainfall
prediction. They subsequently applied this model to predict
rainfall for the upcoming years (2017–2021) (Dwivedi et al.,
2019). Pham et al. (2020) predicted daily rainfall in Hoa Binh
Province, Vietnam, using Support Vector Machine (SVM),
Particle Swarm Optimization-based Adaptive Neuro-Fuzzy
Inference System (PSOANFIS), and ANN models. The study
utilized input and output data, with input variables
encompassing relative humidity, maximum temperature, wind
speed, solar radiation, and minimum temperature. Daily rainfall
served as the output information in their analysis. The study’s results
demonstrated the efficacy of the used models in accurately
predicting daily rainfall. Notably, the SVM model exhibited
superior performance compared to the other two models
investigated in the study (Pham et al., 2020). Baljon and Sharma
(2023) investigated rainfall prediction using data mining and
machine learning techniques. They found that decision tree (DT)
and Function Fitting Artificial Neural Network (FFANN) classifiers
achieved higher accuracy, with FFANN reaching 96.1%. Their
conclusion emphasizes the effectiveness of these methods over
conventional statistical approaches in predicting rainfall and
aiding agricultural planning (Baljon and Sharma, 2023). Kumar
et al. (2023) investigated rainfall prediction using machine learning
methods with a unique data segmentation approach. CatBoost and
XGBoost excelled in predicting daily and weekly rainfall, with
CatBoost achieving superior results. Both models showed an R2

of 0.99, indicating high prediction accuracy. This study highlights
the potential of these methods to enhance urban meteorology and
disaster preparedness (Kumar et al., 2023). Markuna et al. (2023)
addressed the critical need for accurate rainfall predicting,
particularly due to its association with natural disasters. Using
4 ML techniques, including Multiple Linear Regression (MLR),
Support Vector Regression (SVR), Multivariate Adaptive
Regression Splines (MARS), and Random Forest (RF), the study
focused on predicting daily and mean weekly rainfall at Ranichauri
station in Uttarakhand. Utilizing 18 years of meteorological data, the
RF model demonstrated superior performance, showcasing its
potential for precise rainfall prediction, thus highlighting its
significance in mitigating the impacts of natural calamities
(Markuna et al., 2023). Akhtar et al. (2023) employed a
statistically-based machine learning technique to predict rainfall,
integrating data augmentation and normalization with the Adaptive
Searched Scaling factor-based Elephant Herding Optimization
(ASS-EHO) and cascaded Convolutional Neural Network (CNN).
This model improved accuracy and efficiency in rainfall forecasting
compared to traditional methods (Akhtar et al., 2023). Tricha and
Moussaid (2024) explored the prediction of rainfall using various
ML techniques, including linear regression, Polynomial Regression
(PR), K-Nearest Neighbors (KNN), SVM, DT, RF, XGBoost, and an
ensemble learning model. The study concluded that ML approaches
significantly enhance precipitation forecasting accuracy, with
implications for agriculture, water management, and climate
change adaptation in Casablanca, Morocco (Tricha and
Moussaid, 2024). Latif et al. (2024) investigated rainfall
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prediction using a hybrid model combining Seasonal Autoregressive
Integrated Moving Average and Artificial Neural Network
(SARIMA-ANN) techniques. They compared this with a
conventional ANN model. Their results demonstrated that
SARIMA-ANN outperformed ANN, with RMSE values of
11.5 and 51.002, and R2 values of 0.98 and 0.43, respectively. The
study concludes that the SARIMA-ANN model provides a more
accurate prediction and can significantly contribute to sustainable
water resource management in the Kurdistan Region of Iraq (KRI),
aligning with Sustainable Development Goal (SDG) (Latif
et al., 2024).

In this study, 12,852 data points from open-source global weather
data were utilized to predict rainfall in three cities in Indonesia: Kuantan,
Butterworth, and Kuching. Input variables included maximum
temperature, minimum temperature, wind speed, relative humidity,
and solar radiation. Unlike other articles in the field, this study
incorporates a comparative analysis of three novel and robust Deep
Learning (DL)models: Recurrent Neural Network (DRNN), Deep Gated
Recurrent Unit (DGRU), and Deep Long Short-Term Memory
(DLSTM). This article contributes to a deeper understanding of the
performance differences between thesemodels for rainfall prediction. The
advantages of these models include the ability to handle large amounts of
data efficiently, automatic feature learning, adaptability to various data
types, scalability to complex tasks, potential for high accuracy and
performance, continual improvement through iterative training, and
the capability to handle non-linear relationships in data. When
comparing the three algorithms, the DRNN offers basic sequence
modeling and captures simple temporal patterns, with lower
computational demands. The DGRU improves upon DRNN by
offering faster training and greater efficiency due to fewer parameters
and a simplified architecture. However, the DLSTMoutperforms both by

excelling at capturing long-term dependencies and handling complex
weather patterns over extended periods. DLSTM’s memory cell
architecture, with forget gates, allows for effective information
retention and retrieval, resulting in higher prediction accuracy as
demonstrated by superior RMSE and R2 values. Additionally, DLSTM
provides greater flexibility inmodel design and regularization techniques,
enhancing its generalization performance and making it the most robust
choice for rainfall prediction among the three.

2 Methodology

2.1 Flow chart

The rainfall prediction process, as shown in Figure 1, involves
several steps. First, rainfall data is collected from various sources,
such as meteorological stations and online databases. In the data
preprocessing step, the collected data is cleaned to remove noise and
missing values and normalized within a range of −1 to +1
(Equation 1).

Xnormi � xi − xmini
xmaxi − xmini

( ) × 2 − 1 (1)

Where Xnorm is the normalized variable value, xmin and xmax are
the minimum and maximum variable values, respectively, and i
represents the value for each data point.

The preprocessed data is then divided into three subsets:
training set (70%), test set (15%), and validation set (15%). The
training set is used to train the deep learning models, the test set is
used to evaluate the performance of the models, and the validation
set is used to adjust the parameters of the models. Next, three

FIGURE 1
Flow chart diagram for the prediction of rainfall using DL models, highlighting data preprocessing, model training, and evaluation stages.
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different deep learning models are built for rainfall predicting:
DLSTM, DGRU, and DRNN. The DLSTM, DGRU, and DRNN
models are trained using the training set, during which the models’
parameters are adjusted to learn the patterns in the training data.
The performance of these models is then evaluated using the test set
and validation set with metrics such as Root-Mean-Square Errors
(RMSE), Normalized Root-Mean-Square Errors (NRMSE), Mean
Absolute Errors (MAE), and Correction Coefficient (R2). Based on
the evaluation results, the best deep learning model is selected for
rain predicting; in this study, the DLSTM model was chosen as the
best. The selected DLSTM model is then used for rain predicting,
and the predict results are compared with the actual rainfall values.
The study concludes that deep learning models can predict rainfall
with high accuracy, with the DLSTM model identified as the most
effective in this study.

2.2 Predicting using time series

Frequently, time series datasets, pertinent in predicting weather,
monitoring stock market trends, and analyzing energy consumption
patterns, manifest a fundamental trait: the sequentiality of time.
Acknowledged as one of the top ten formidable tasks in data mining,
owing to its inherent complexities, the quest for a robust model
capable of discerning patterns within time series datasets persists as
a important and arduous endeavor (Li et al., 2019).

Time series prediction can be classified as either a classification or
regression problem. Typically, a series of data collected within a specific
time frame is considered as the input for these problems. These details
illustrate the progression of the phenomena (Equation 2).

X � X1, X2, . . . , XT( ) (2)
Is a random variable and we have (Equation 3).

XT � X1
t , X

2
t , . . . , X

L
t( ), Xt ∈ X (3)

Where t represents time and L represents the length of the time
step. Typically, past values are also given (Equation 4):

y � y1, y2, . . . , yT−1( ) (4)

In classification problems, the historical values of the dependent
variable, y, may vary.When the random variable X is confined to one
dimension, solely a solitary characteristic is used in crafting the time
series model from the diverse attributes characterizing a
phenomenon. This model is denoted as “univariate.” Conversely,
if multiple features are harnessed in crafting a time series model, it
assumes the nomenclature of a “multivariate” time series model.

To ascertain the value of T utilizing the following formula, the
customary approach involves exploring a nonlinearmapping function
of the variable X and its associated target value y (Equation 5):

ўT � f X, y( ) (5)

2.3 DRNN model architecture

The DRNN represents a densely interconnected neural
architecture that integrates the temporal dimension into its

structure. Diverging from conventional feed-forward
networks, DRNNs incorporate feedback connections,
facilitating the incorporation of both present and recent past
information into the data processing framework (Lukoševičius
and Jaeger, 2009; Fabbri and Moro, 2018; Sheng et al., 2023b).
Through this distinctive architecture, DRNNs possess the
capability to unveil correlations among events occurring
across multiple temporal intervals, capturing enduring
dependencies stemming from past occurrences (Wang et al.,
2018; Song et al., 2020).

Nonetheless, akin to numerous neural network models, RNNs
grapple with a pervasive performance obstacle referred to as the
vanishing gradient problem. Throughout the learning phase, the
gradient—a important indicator dictating weight adjustments based
on errors—tends to either escalate excessively (resulting in an
exploding gradient) or diminish significantly (leading to a
vanishing gradient) (Lukoševičius and Jaeger, 2009; Neftci et al.,
2019). This scenario complicates the training process, as precise
gradient information is indispensable for accurate weight updates.
To mitigate the vanishing gradient predicament, a variant of RNNs
known as Long Short-Term Memory (LSTM) units is frequently
used (Fei and Tan, 2018). LSTM units adeptly tackle this challenge
by preserving error information as it traverses through time and
layers. These units are specifically engineered to grasp long-term
dependencies and mitigate issues associated with gradient
instability.

LSTM units introduce a memory cell, comprising four primary
components: an input gate, a self-recurrent connection, a forget gate,
and an output gate (Gers et al., 2000; Chen et al., 2016). These gates
play a pivotal role in regulating the information flow within the
LSTM unit, facilitating decisions pertaining to data storage, retrieval,
and modification (Zhang et al., 2021). In contrast to conventional
recurrent neurons, LSTM units integrate these gates as innovative
elements, effectively curbing gradient divergence.

For an exhaustive comprehension of DRNNs, LSTM units, and
the mathematical formulations governing output evaluation and
training, please consult the references provided (Alzubaidi et al.,
2021). The hidden layer formulation for DRNN is delineated in
Equation 6. The proposed architecture, depicted in Figure 2,
exemplifies the typical functionality of DRNNs.

Rt � f Vx,WR t−1( ), bR( ) (6)

FIGURE 2
DRNN architecture for predicting rainfall: detailed schematic
representation of the connections, and data flow within the network.
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2.4 Deep Gated Recurrent Unit (DGRU)
model architecture

The DGRUs represent specialized derivatives of Deep Recurrent
Neural Networks (DRNNs) that have garnered significant attention
in the domain of DLs. Rooted in the architecture of LSTM models,
GRUs introduce a distinctive refinement in the form of an update
gate integrated within their structure (Zhang et al., 2018). This
update gate amalgamates the functionalities of both an input gate
and a forget gate, rendering DGRUs potent instruments for
sequence modeling.

The primary impetus driving the development of GRUs is to
streamline the complexity of LSTM architectures while preserving
their efficacy in capturing prolonged dependencies within sequential
data (Campos et al., 2017; Che et al., 2018). By integrating an update
gate, DGRUs strike a delicate equilibrium between assimilating
pertinent information from the past and selectively disregarding
superfluous data (Garcia-Garcia et al., 2017). This adaptive gating
mechanism empowers GRUs to adeptly process sequential data and
render precise predictions.

The configuration of a DGRU, as illustrated in Figure 3,
delineates its internal constituents and the flow of information. It
encompasses recurrent connections that facilitate information
persistence across the sequence, encompassing an update gate, a
reset gate, and a candidate activation function (Zulqarnain et al.,
2020). These elements synergistically regulate information flow and
update the hidden state of the DGRU at each time step.

For a deeper comprehension of DGRU functionality, let us
delve into the equations governing their operations (Hupkes et al.,
2018). Equations 7-9 delineate the computational procedures
intrinsic to GRUs. These equations elucidate how the update
gate, reset gate, and candidate activation function interact with
the current input, previous hidden state, and output of the GRU at
each time step (Dey and Salem, 2017). By adjusting the weights and
biases within these equations, GRUs can learn to model complex
sequential patterns and make accurate predictions based on the
given input data.

pt � σ Wx dt−1, xt[ ] + xt( )
qt � σ Wx dt−1, xt[ ]( )

rt � tanh W qt × dt−1, xt[ ]( )
dt � 1 − pt( ) × dt−1 + pt × rt

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

σ � 1
1 + e−t

(8)

tanh t( ) � 1 − e−2t

1 + e−2t
(9)

2.5 Deep Long Short-TermMemory (DLSTM)
model architecture

The DLSTM, pioneered by Hochreiter and Schmidhuber,
represents a substantial enhancement to DRNN performance
(Hochreiter and Schmidhuber, 1997). This variant of RNN,
known as LSTM, leverages an DLSTM memory cell to
encapsulate Long-Term Dependencies (LTD) within time series
data. Additionally, in addressing the imperative of preserving
long-term dependencies, DLSTM emerges as indispensable for
mitigating the vanishing gradient issue inherent in DRNNs
(Bengio et al., 1994; Sagheer and Kotb, 2019). The pivotal
distinction between DLSTM and traditional DRNN cells resides
in the mechanism used for activation computation. The DLSTM
uses four distinct gates—namely the input gate, forget gate, output
gate, and cell gate—to ascertain activation at time step t (Fang and
Yuan, 2019).

The following relationship calculates the input of the
information gate (in step t) (Equation 10):

it � σ Wia.ht−1 +Wix.xi( ) (10)

Where is a sigmoid-like non-linear function. Wia and Wix are
matrices that connect h (t-1) with ht and xt with ht, respectively. The
forget gate and output gate calculate their inputs as follows
(Equations 11-12).

ft � σ Wia.ht−1 +Wfx.xi( ) (11)
ot � σ Woa.ht−1 +Wox.xi( ) (12)

This is how the cell gate input is calculated (Equation 13):

ct � ft.ct−1 + it.kt (13)

Where Kt is determined as follows, and Ct-1 represents the cell
status data from the preceding phase (Equation 14):

kt � tanh wca.ht−1 + wcx.xt( ) (14)
While using the tanh hyperbolic tangent function. Ultimately,

the following formula is used to calculate the activation at step t
(Equation 15):

ht � wca. tanh Ct( )
Enhancing the overall performance of a neural network

commonly involves increasing its depth (Sagheer and Kotb,
2019). Illustrated in Figure 4, the DLSTM model amalgamates
the benefits of a single DLSTM layer by sequentially connecting
numerous DLSTM blocks in a recurrent network fashion. The
overarching objective of stacking multiple DLSTMs within this
hierarchical framework is to extract features in the lower layers
that discern the sources of variation within the input data and
subsequently amalgamate these representations in the upper layers
(Sagheer and Kotb, 2019). Despite the fact that a deep architecture

FIGURE 3
DGRU architecture for predicting rainfall: detailed schematic
representation of the connections, and data flow within the network.
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presents a more streamlined representation compared to a shallow
one, empirical evidence has shown that deeper architectures tend to
generalize more effectively, particularly for extensive or intricate
datasets (Hermans and Schrauwen, 2013; Längkvist et al., 2014; Li
et al., 2019). The parameters employed in the proposed model are
delineated in Table 1.

One advantage of the stack architecture is that each layer
accomplishes a part of the process before passing it on to the
following layer, ultimately producing the final output. Another
benefit of such systems is that they allow hidden states to operate
across various time scales. The use of data with LTD or multivariate
series data sets greatly benefits from these two advantages (Spiegel
et al., 2011; Li et al., 2019). Figure 4, show DLSTM network
architecture for prediction of rainfall. The process begins with a
Select Population step, indicating that the model works with a
population of potential DLSTM models. It then moves to a
Fitness Evaluation step, assessing each model’s performance on a
specific task, such as predicting the next word in a sequence. The

flowchart then branches based on whether a Termination Criterion
is met, which could be a set number of iterations or a desired
performance level. If not met, the model proceeds to a Selection step,
where the fittest models are chosen to be parents for the next-
generation. This is followed by a Crossover step, where the genetic
material (weights and biases) of two parent models is combined to
create offspring. Optionally, a Mutation step introduces randomness
by changing some weights or biases, preventing the model from
getting stuck in local optima. The offspring are then evaluated for
fitness, and the process repeats until the termination criterion is met.
Finally, the flowchart concludes with an Output Optimal LSTM
Layers step, indicating that the output is a set of weights and biases
defining an optimal LSTM model for the task.

2.6 Cross validation evaluation

One superior technique for result validation is k-fold cross-
validation. In this method, the entire dataset is considered a
complete set, and DL models are applied. The data is then
divided into two groups: test and train. Initially, one portion of
the data is designated as the test subset, while the remaining portion
serves as the training subset (Figure 5) (Bengio and Grandvalet,
2003; Al-Mudhafar, 2016). Subsequently, the roles are reversed, with
the other portion of the data becoming the test set. This process is
repeated for each of the k folds, with k set to 8 in this study. The
entire procedure is conducted 10 times, resulting in an average of
80 iterations.

This validation approach effectively addresses analytical issues,
enhancing result reliability while mitigating problems related to

FIGURE 4
DLSTM architecture for predicting rainfall: detailed schematic representation of the connections, and data flow within the network.

TABLE 1 Hyper parameters used in the DLSTM model, including activation
functions, dropout rates, and other model’s performance.

Model Parameter Value

DLSTM Batch size 128

Activator function Hyperbolic tangent

Random deletion rate 0.3

Dropout Adam

Network weights optimizer mean square error
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overfitting and model inefficiency in prediction. In this method, one
batch is designated as the test subset, and the remaining seven
batches are treated as the training set. Ultimately, the lowest average
value from the data is considered the measure of prediction
accuracy. This iterative process significantly contributes to result
validation and ensures the robustness of the outcomes.

3 Data collection

To evaluate the effectiveness of the proposed models, a dataset
comprising 12,852 data points collected from three cities in
Indonesia: Kuantan, Butterworth, and Kuching, was utilized. This
dataset consisted of weather information sourced from the Global
Weather Data, spanning the period between 1797 and 2014. The
data was obtained online from the website https://globalweather.
tamu.edu. Leveraging this comprehensive and extensive weather
dataset, researchers rigorously analyzed and validated the proposed
models. The inclusion of such a substantial dataset enhances the
credibility and robustness of the findings, ensuring that the models
are well-suited for handling weather-related data within the
specified time range.

Table 1 displays the statistical parameters for the range of data
used in this study. For the prediction of rainfall, the models used
several input variables, including maximum temperature (°C),
minimum temperature (°C), wind speed (m/s), relative humidity

(%), and solar radiation (MJ/m2). The statistical values of input and
output data for rainfall prediction are reported in Table 2. According
to the information presented, the maximum temperature ranges
from −4.95°C to 27.97°C, the minimum temperature falls
between −22.70°C and 15.36°C, the wind speed variable ranges
from 0.66 m/s to 11.39 m/s, the relative humidity variable falls
between 0.41 and 1.01, the solar radiation ranges from 0.19MJ/m2 to
35.24 MJ/m2, and the rainfall output parameter falls between
0.00 mm and 69.80 mm.

4 Discussion of results

4.1 Evaluation criteria

The statistical parameters for evaluation, including RMSE,
NRMSE, MAE, and R2, have previously been used as evaluation
criteria for performance. These metrics are derived from Equations
16-19.

MAE �

������������
1
N

∑N
i�1

ŷi
t − yi

t[ ]√√
(16)

RMSE �

�������������
1
N

∑N
i�1

ŷi
t − yi

t( )2√√
(17)

FIGURE 5
Detailed architecture of K-fold cross validation: methodology and process of iterative test/train divisions.

Frontiers in Environmental Science frontiersin.org07

Li et al. 10.3389/fenvs.2024.1445967

https://globalweather.tamu.edu
https://globalweather.tamu.edu
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1445967


NRMSE �

����������������������
1
N

∑N
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t − yi
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max yt( ) − min yt( )

√√
(18)

R2 � 1 −
∑N
i�1

ŷi
t − yi

t( )2
∑N
i�1

yi
t − ∑n

I�1 ŷ
i
t

n( )2 (19)

Where; ŷi
t is the real value, yi

t is the predicted value, yt is the
vector of actual values, and N is the total number of test samples.

The details of the dataset and the procedure for partitioning it
into training and test sets are visually depicted. The data allocation
was carried out meticulously, with 70% assigned for training, 15%
for validation, and the remaining 15% reserved for the test set for
each meteorological dataset.

For an effective comparison of DL models, researchers can
examine the statistical error parameters described in Equations
17-21, serving as quantitative measures of model performance.
Table 3 provides a comprehensive overview of error values
associated with various stages of rainfall prediction, including
training, testing, validation, and the overall prediction. Analyzing
the error values in the table allows researchers to gain insights into
the accuracy and efficacy of the models in predicting rainfall. This

evaluation aids in identifying models with lower error rates and
provides valuable information for selecting the most suitable model
for accurate rainfall prediction. The incorporation of statistical error
parameters and the corresponding table enhances the scientific rigor
and reliability of the comparative analysis.

Using the data outlined in Table 3 and the insights from
Figure 6, a Cross-plot illustration for predicting rainfall through
DL models, several noteworthy observations emerge. The
mentioned figure represents the accuracy levels achieved by these
models, serving as a visual depiction of their performance.
Specifically, the figure effectively illustrates the discrepancy
between the cross-plot line and the predicted data points.

Upon careful analysis of this figure alongside the results
presented in Table 3, a clear pattern emerges, indicating that the
accuracy of the DLSTMmodel surpasses that of both the DRNN and
DGRU models. The evidence from the figure, coupled with the
quantified outcomes in Table 3, unmistakably illustrates the superior
precision and predictive capability exhibited by the DLSTM model.

Therefore, based on these results, it can be confidently stated
that the DLSTM model outperforms its counterparts, namely, the
DRNN and DGRU models, in terms of accuracy. These compelling
results further emphasize the effectiveness and potential of DL
models, specifically underscoring the prominence of DLSTM as a
formidable tool for rainfall prediction.

Figure 7 serves as a significant visual representation of the error
analysis conducted on the test sample data for rainfall prediction
using DL models. This figure provides valuable insights into the
calculation errors associated with the DLSTM, DRNN, and
DGRU models.

Upon careful examination of this figure, it becomes evident that
the calculation error for the DLSTM model is substantially lower
than that of the DRNN and DGRUmodels. The calculated errors for
DLSTM range between −1 and +1, indicating a remarkably narrow
margin of deviation from the actual values. Conversely, the DRNN
model exhibits a wider range of errors, spanning from −3 to +3,
suggesting a comparatively higher level of inconsistency in its
predictions. Similarly, the DGRU model displays an even larger
range of errors, fluctuating between −6 and +6, thereby implying a
greater degree of imprecision.

Based on the results presented in Figure 7, it is irrefutable that
the calculation error rankings for the models used in this study

TABLE 2 Statistical parameters for the prediction of rainfall based on various input variables.

Variables Max. Temperature Min. Temperature Wind speed Relative humidity Solar radiation Rainfall

Symbol Max T Min T WS RW SR R

Maximum 27.97 15.36 11.39 1.01 35.24 69.80

Minimum −4.95 −22.70 0.66 0.41 0.19 0.00

Standard deviation 5.67 4.49 1.50 0.08 8.19 5.95

Mean 8.33 1.15 3.56 0.90 10.70 3.63

Variance 32.15 20.15 2.25 0.01 67.05 35.41

STD 5.67 4.49 1.50 0.08 8.19 5.95

Skewness 0.51 −0.42 0.76 −1.13 0.97 3.50

Kurtosis −0.47 1.33 0.52 1.53 0.04 18.14

TABLE 3 Statistical results for rainfall prediction using DL models:
performance metrics and comparative analysis.

Dataset Model MSE RMSE NRMSE R2

Train DLSTM 0.0124 0.1112 0.0134 0.9994

DRNN 0.0324 0.1799 0.0219 0.9988

DGRU 0.0506 0.2249 0.0270 0.9972

Test DLSTM 0.0166 0.1289 0.0165 0.9995

DRNN 0.0377 0.1941 0.0251 0.9978

DGRU 0.0642 0.2533 0.0326 0.9966

Validation DLSTM 0.0136 0.1168 0.0141 0.9993

DRNN 0.0374 0.1935 0.0233 0.9984

DGRU 0.0513 0.2265 0.0271 0.9973
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follow the sequence: DLSTM >DRNN >DGRU. In other words, the
DLSTM model exhibits the lowest calculation error, followed by the
DRNNmodel, while the DGRUmodel yields the highest calculation
error. These findings further reinforce the superior performance and
accuracy of the DLSTM model compared to other models,
emphasize its potential as a robust tool for precise rainfall
prediction.

To visually assess the performance of DL models in predicting
rainfall, the Regression Error Characteristics (REC) curve and the
Area Over the Curve (AOC) value were used. The REC curve depicts
the error distribution of predictive models by plotting error
tolerance against the percentage of predictions falling within that
tolerance. The AOC measures model accuracy, with a smaller AOC
indicating superior performance. The REC method, indicating
accuracy by showcasing the distribution of absolute deviation,

serves as a measure to gauge performance accuracy. In AOC
analysis, a higher value signifies lower model accuracy, while a
lower value indicates higher accuracy (Azam et al., 2022). Figures 8,
9 present the REC curve and AOC curve for the test subset in
predicting rainfall using DL models, respectively. Figure 8 clearly
illustrates that the DLSTM model outperforms other DL models
(DRNN and DGRU) in terms of performance accuracy. Figure 9
depicts the AOC value for the REC curve, with the highest value
observed for the DGRUmodel and the lowest for the DLSTMmodel.
Analyzing these figures leads to the conclusion that the DLSTM
model exhibits the highest performance accuracy, while the DGRU
model demonstrates the lowest.

Figure 10 presents a visual representation of the RMSE and R2

parameters in the context of rainfall prediction using DL models.
The graph showcases the performance of three models: DLSTM,

FIGURE 6
Cross plot illustration for prediction of rainfall in the test subset
using DL models: a comparative analysis of model performance
and accuracy.

FIGURE 7
Error illustration for the test subset in predicting rainfall using DL
models: a comparative analysis of model performance and error
distributions.
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DRNN, and DGRU, by evaluating the error values derived from the
RMSE and R2 metrics. Upon analyzing the graphical results, it
becomes evident that the DLSTM model exhibits superior
accuracy and performance compared to the other models. The
figure provides valuable insights into the comparative
effectiveness of these models in accurately predicting rainfall,
highlighting DLSTM as the most accurate and reliable option
among the three.

Figure 11 shows the histogram of predict errors for rainfall using
three models: DLSTM, DRNN, and DGRU. Each histogram depicts
the rainfall predict error for an model, displaying a normal
distribution of predict errors centered around the zero axis, with
a relatively narrow range and no detectable positive or negative bias.
This graph enables a comprehensive analysis of the models’
performance and facilitates the identification of the model with
the best performance based on its normal error distribution. After
thorough examination, it becomes clear that the DLSTM model’s
error distribution is more normal compared to the other models,
indicating a superior and more accurate standard deviation.
According to the comparison of these models based on the

information presented in Table 3 and Figure 11, the performance
accuracy of the models can be ranked as follows:
DLSTM > DRNN > DGRU.

Figure 12 show the graphical representation of error versus
iteration for DLSTM, DRNN, and DGRU models. The graph
provides valuable insights into the performance of these models
over multiple iterations. Upon analyzing the figure, several
observations can be made. Firstly, for the DLSTM model, it is
evident that the error significantly decreases at iteration = 12,
indicating a substantial reduction in error. Additionally, at
iteration = 85, the quantitative error further diminishes,
surpassing the error values of the other two models.
Comparatively, the DGRU model showcases a reduction in error
at iteration = 11, and a similar trend can be observed at iteration =
85. However, for the DRNN model, the error steadily decreases
without any sudden fluctuations. Ultimately, at iteration = 100, the
error comparison reveals that the DGRU model exhibits the highest
error value among the three models, followed by DRNN and
DLSTM, with DLSTM demonstrating the lowest error magnitude.
This graphical representation allows for a comprehensive
understanding of the error performance across different
iterations, aiding in the evaluation and selection of the most
effective DL models.

One method for evaluating models is through "score analysis.”
This approach assigns a score to each statistical parameter,
facilitating a comprehensive comparison among models. In this
method, scores are determined by evaluating each model against a
statistical error parameter, with the highest possible score being
9 and the lowest score being 1 for this study. Figure 13 illustrates the
Score Analysis for the prediction and comparison of DLSTM,
DRNN, and DGRU models. According to this figure, the Score
Analysis values for LSTM, DRNN, and DGRU are 82, 66, and 31,
respectively. This indicates that, based on the analysis, DLSTM
outperforms DRNN, which in turn outperforms DGRU.

Figure 14 displays the Taylor diagram used to evaluate the
performance of DL models in predicting rainfall. In this diagram,

FIGURE 8
Illustration of the REC curve for the test subset in predicting
rainfall using DL models: performance evaluation and comparison
across different algorithms.

FIGURE 9
Illustration of AOC based on the REC curve for the test subset in
predicting rainfall using DL models, highlighting model performance
and accuracy.

FIGURE 10
Graphical illustration of RMSE and R2 parameters for evaluating
the performance of deep learning models in predicting rainfall.
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the horizontal axis represents the standard deviation, which ranges
from 0 to 0.3 in this study. A value closer to 1 indicates higher model
accuracy. Additionally, the diagram shows the values of RMSE and
R2 as indicated by the radius of the circles. Points that are closer to
the center of the quarter circle signify lower RMSE values, which

correspond to improved model accuracy. As illustrated, the DLSTM
model, with R2 = 0.9995, R2 = 0.9995 and a standard deviation of
0.1285, demonstrates superior performance compared to the other
models used for rainfall prediction.

To assess the influence of each input variable on rainfall,
Spearman’s non-parametric correlation coefficient (R) is used.
This coefficient ranges from −1 (indicating a complete negative
correlation) to +1 (indicating a complete positive correlation),
reflecting the variable’s impact as either low or high. The
equation for Spearman’s coefficient is defined in Equation 20.
The heat map graph is a valuable tool for analyzing changes in
dependent and continuous variables. It visually represents the
relationships between different parameters and helps determine
the impact of input variables on the output parameter.

R �
∑n
i�1

Si − �S( ) Qi − �Q( )[ ]���������∑n
i�1

Si − �S( )2√ ����������∑n
i�1

Qi − �Q( )2√ (20)

As shown in Figure 15, the maximum temperature and solar
radiation parameters exhibit an indirect influence on the output
parameter, while the minimum temperature, wind speed, and
relative humidity parameters have a direct relationship with
rainfall, as demonstrated by Equation 21.

FIGURE 11
Histogram illustrating the distribution of prediction errors for rainfall forecasts by DL models, based on the test subset of the dataset.

FIGURE 12
Illustration of error reduction versus iteration for DLSTM, DRNN,
and DGRU models.
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FIGURE 13
Graphical illustration for determination of score analysis in predicting rainfall using DL models.

FIGURE 14
Graphical illustration of a Tylor diagram showing the prediction accuracy of rainfall using DL models, based on the test subset data.
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R∝
1

Max .T& SR( ), R∝ Min .T&WS&RW( ) (21)

5 Conclusion

In conclusion, this study highlights the critical role of rainfall in
sustaining the water cycle and ecosystems, emphasizing the necessity for
accurate predictions given the complex interactions between
atmospheric and oceanic phenomena in today’s climate. Using
12,852 data points from open-source global weather data for three
Indonesian cities, the study incorporated variables such as maximum
and minimum temperatures, wind speed, relative humidity, and solar
radiation to predict rainfall. Three advanced Deep Learning
models—Recurrent Neural Network (DRNN), Deep Gated Recurrent
Unit (DGRU), and Deep Long Short-Term Memory (DLSTM)—were
employed, with the DLSTM model demonstrating superior
performance, achieving Root-Mean-Square Errors (RMSE) and
Correction Coefficient (R2) values of 0.1289 and 0.9995, respectively.
The DLSTM model’s ability to handle long-term dependencies and its
memory cell architecture with forget gates enable it to retain and retrieve
important information, making it particularly effective for time series
predictions. Additionally, its parallelization capabilities enhance
computational efficiency, while its flexibility in model design and
regularization techniques improve generalization performance. The
study also found that maximum temperature and solar radiation
have an indirect influence on rainfall, whereas minimum
temperature, wind speed, and relative humidity directly affect it.
Overall, the DLSTM model’s superior performance in capturing
complex weather patterns and delivering high-precision rainfall
predictions underscores its value in meteorological data analysis and
forecasting, surpassing the capabilities of DRNN and DGRU models.
DLSTM networks excel in rainfall prediction by capturing long-term
dependencies, handling temporal variability, and modeling non-linear
relationships between meteorological variables. They manage complex
atmospheric interactions, handle missing data robustly, and adapt to
changing weather patterns effectively.
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Nomenclature

ANN Artificial Neural Networks

AOC Area Over the Curve

ARIMA Autoregressive Integrated Moving Average

ASS-EHO Adaptive Searched Scaling factor-based Elephant Herding
Optimization

CNN Convolutional Neural Network

DGRU Deep Gated Recurrent Unit

DLSTM Deep Long Short-Term Memory

DRNN Recurrent Neural Network

DT decision tree

FFANN Function Fitting Artificial Neural Network

i The Value for Each Data Point

KNN K-Nearest Neighbors

KRI Kurdistan Region of Iraq

LTD Long-Term Dependencies

MAE Mean Absolute Errors

MARS Multivariate Adaptive Regression Splines

ML Machine Learning

MLR Multiple Linear Regression

NAO North Atlantic Oscillation

NRMSE Normalized Root-Mean-Square Errors

PDO Pacific Decadal Oscillation

PR Polynomial Regression

PSOANFIS Particle Swarm Optimization-Based Adaptive Neuro-Fuzzy
Inference System

R Spearman’s Non-Parametric Correlation Coefficient

R2 Correction Coefficient

REC Regression Error Characteristics

RF Random Forest

RMSE Root-Mean-Square Errors

SARIMA-ANN Seasonal Autoregressive Integrated Moving Average and Artificial
Neural Network

SDG Sustainable Development Goal

SOI Southern Oscillation Index

SVM Support Vector Machine

SVR Support Vector Regression

WANN Wavelet Artificial Neural Network

xmax Maximum Variable Value

xmin Minimum Variable Value

Xnorm Normalized Variable Value
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