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Accurate coastline extraction is crucial for the scientific management and
protection of coastal zones. Due to the diversity of ground object details and
the complexity of terrain in remote sensing images, the segmentation of sea and
land faces challenges such as unclear segmentation boundaries and
discontinuous coastline contours. To address these issues, this study improve
the accuracy and efficiency of coastline extraction by improving the DeepLabv3+
model. Specifically, this study constructs a sea-land segmentation network,
DeepSA-Net, based on strip pooling and coordinate attention mechanisms. By
introducing dynamic feature connections and strip pooling, the connection
between different branches is enhanced, capturing a broader context. The
introduction of coordinate attention allows the model to integrate coordinate
information during feature extraction, thereby allowing the model to capture
longer-distance spatial dependencies. Experimental results has shown that the
model can achieves a land-sea segmentation mean intersection over union
(mIoU) ration and Recall of over 99% on all datasets. Visual assessment results
show more complete edge details of sea-land segmentation, confirming the
model’s effectiveness in complex coastal environments. Finally, using remote
sensing data from a coastal area in China as an application instance, coastline
extraction and dynamic change analysis were implemented, providing new
methods for the scientific management and protection of coastal zones.
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1 Introduction

With the development of remote sensing technology, the means of obtaining remote
sensing data have become more diversified, making coastline extraction from remote
sensing images an important means of monitoring coastline changes. Accurate coastline
extraction is the foundation for monitoring changes in coastal zones, providing direct data
support for understanding the evolutionary trends of coastal zones (Yasir et al., 2020). The
accuracy of coastline extraction directly affects coastal zone planning, engineering
construction, disaster prevention and mitigation, etc. (Zheng et al., 2023). By regularly
acquiring remote sensing image data and accurately extracting and analyzing the dynamic
changes of coastlines, it is helpful to identify phenomena such as coastline erosion and
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siltation, providing scientific basis for relevant decisions. In addition,
the dynamic changes of coastlines are of great significance for
studying marine ecological environment and climate change
(Ranasinghe et al., 2012). By extracting coastlines and analyzing
changes in historical images, it is possible to discover long-term
migration trends of coastlines, providing data support for land use,
ecological protection, disaster warning, etc. in coastal areas.

However, the process of extracting coastlines still faces multiple
challenges, especially in high-resolution remote sensing images. The
diversity of ground features and the complexity of terrain often lead
to errors in using traditional methods for coastline extraction, such
as misidentifying the boundary of closed waters near the coast, such
as aquaculture ponds, as sea areas (Tsokos et al., 2018). In addition,
coastlines themselves include various types such as artificial, sandy,
and silty, and are easily disturbed by nearby ground features. These
factors often cause gaps in the extracted coastline, affecting the
accuracy of extraction. Traditional methods for coastline extraction
can be generally classified into three categories: threshold
segmentation-based, classification-based, and edge detection-
based methods. In practical applications, due to the challenges of
selecting thresholds in complex images, these methods have certain
limitations in accuracy, especially in complex coastal environments.
At the same time, due to the large amount, diverse types, and rich
bands of currently available remote sensing image data, traditional
coastline extraction algorithms are difficult to process and analyze
massive remote sensing data quickly and accurately, hindering the
development of practical applications.

In recent years, deep learning algorithms have been widely used
in various computer vision tasks due to their powerful feature
extraction capabilities, and have also provided new methods for
extracting coastlines from remote sensing images (Bengoufa et al.,
2021). The emergence of fully convolutional networks and skip
connection models based on Encoder-Decoder structures has
further improved the accuracy and efficiency of deep learning in
remote sensing image analysis tasks (Han et al., 2018). For instances,
Zhou et al. (2018) proposed the D-LinkNet model based on pre-
trained encoders and dilated convolutions to extract ground objects
from high-resolution satellite images, improving the accuracy of
feature extraction and segmentation. Zhu et al. (2021) proposed a
dual-branch encoding and iterative attention decoding network
specifically for semantic segmentation of remote sensing images,
using skip connections to refine the segmentation results. Due to
deep learning methods can make full use of multi-scale information
in remote sensing images through feature extraction and learning in
multiple layers of networks, they have significant advantages to
make land-sea boundary recognition more accurate, especially in
complex terrains and environments.

Remote sensing images with different spectral bands carry
unique spectral information, providing rich features for coastline
extraction. Deep learning algorithms can effectively utilize different
spectral band data from remote sensing images by constructing
convolutional neural networks and other advanced models.
Through the input of multi-band spectral information, deep
learning models can extract advanced features to analyze the
spectral differences between water bodies and other ground
objects. These spectral features combined with multi-level feature
extraction methods further improve the segmentation accuracy in
complex terrain and diverse environments. By using multi-band

spectral information, deep learning models can better identify the
characteristics of land and sea under different coastal conditions
such as sandy, artificial, and silty conditions, not only improving the
accuracy of coastline extraction, but also enhancing the
generalization ability of the model.

Overall, deep learning technology provides a new approach for
coastline extraction. The main contributions of this study are
as follows:

(1) Constructed a novel DeepSA-Net remote sensing image
segmentation network. By introducing strip pooling and
coordinate attention in the model construction, the
dynamic feature connection capability during feature
extraction is enhanced, enabling the capture of longer-
distance spatial dependencies, thereby segmenting more
complete and accurate sea-land edge details. This
effectively addresses the challenges of complex coastal
environments. The proposed DeepSA-Net model improves
the accuracy and efficiency of sea-land segmentation in
remote sensing images, better serving coastline
extraction work.

(2) Verified the application of DeepSA-Net in actual coastline
change scenarios. Experimental results show that the model’s
sea-land segmentation mIoU and Recall rate on the adopted
dataset both exceed 99%, and the model’s effectiveness in
practical applications was validated using remote sensing data
from a coastal area in China. This facilitates the analysis of
dynamic coastline changes, providing a new method for the
scientific management and protection of coastal zones.

2 Related works

Coastline detection essentially combines semantic segmentation
and edge detection tasks for dual marine pixel identification.
Specifically, the research on coastline extraction methods has
gone through multiple stages, including remote sensing index
methods, threshold methods, edge detection methods, and
machine-learning based methods. Each type of methods has its
own advantages and limitations. Thus, Zhou et al. (2023)
systematically summarized the development history of coastline
extraction methods based on remote sensing dataset. In this
section, we discuss traditional coastline extraction methods and
deep learning-based coastline extraction methods, starting with
coastline extraction.

2.1 Traditional coastline extraction
techniques

Traditional methods for coastline detection mainly rely on
expert knowledge to analyze samples’ spectral, color, geometric,
and texture features to distinguish targets from the background.
Current traditional coastline extraction methods can be summarized
into three categories: (1) threshold-based methods, (2)
classification-basedmethods, and (3) edge detection-basedmethods.

Threshold-based methods classify target and background
objects based on pixel points through histogram analysis. The
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normalized difference water index (NDWI) is an important metric
of the normalized ratio index of near-infrared and short-wave
infrared bands, used in threshold segmentation methods
(McFeeters, 1996). However, the extraction process of NDWI is
prone to mixing other information, leading to suboptimal extraction
accuracy. To resolve this problem, Xu (2005) proposed the modified
normalized difference water index (MNDWI) to optimize the
extraction of water body boundaries, but challenges remain in
distinguishing water bodies from vegetation. To this, Sharma
(Sharma et al., 2015) used the superfine water index (SWI) to
improve the detail of water body identification. However,
selecting thresholds in complex images remains challenging,
leading to classification errors.

Classification-based methods are divided into pixel-based
classification and object-based classification. To the former, the
K-means algorithm (Shang et al., 2022) is widely used for remote
sensing image sea-land segmentation tasks. However, selecting the K
value in practical applications is difficult, so Liu et al. (2011)
introduced the iterative self-organizing data (ISODATA) analysis
technique to improve this algorithm. Toure et al. (2018) adopted the
fusion of over segmentation (FOOS) technique to identify categories
of waves and beaches. To the latter, object analysis does not study
single images independently but deals with collections of image
pixels, emphasizing the spectral and spatial characteristics of images.
Zhang et al. (2013) analyzed coastline images of different resolutions
through the new feature of the object merging index (OMI).

Edge detection-based methods locate edge points by identifying
color and grayscale changes in images and generate sea-land
segmentation contours. Sobel (Wang et al., 2005) and Laplacian
operators (Coleman et al., 2010) have been widely used in such tasks,
but the Laplacian has limitations in directionality. Asaka et al. (2013)
improved this issue with the Laplacian of Gaussian (LoG) operator.
Additionally, the Canny operator has been used in coastline
detection, for example, Li et al. (2013) extracted the coastline of
Bohai Bay using the Canny operator.

In summary, traditional methods for coastline detection are
often simple to operate, easy to understand and implement, but may
overly rely on expert experience for threshold selection, thus lacking
generalizability. These methods are also easily affected by
environmental factors such as clouds and vegetation, leading to
misclassification. In practical applications, it is usually necessary to
combine multiple methods to improve detection accuracy and
adaptability.

2.2 Deep learning-based coastline
extraction techniques

The powerful end-to-end processing capability of deep learning
technology and its significant advantage in directly extracting high-
level semantic features have played a huge role in fields such as
computer vision and natural language processing. For instances, Yu
et al. (2017) considering the spectral and spatial information of
images, developed a framework combining convolutional neural
networks (CNN) and logistic regression, effectively extracting
coastlines from Landsat-7 satellite images. To reduce the loss of
image features during the pooling process, Chen et al. (2018a) used a
simple linear iterative clustering algorithm to divide images into

superpixels, then combined a new CNN model to extract urban
water bodies and detect building shadows.

Although CNNs excel in extracting local features of images, their
classification performance is limited by the size of the receptive field.
To overcome this limitation, Shelhamer et al. (2017) proposed the
fully convolutional networks (FCN), which replaces fully connected
layers with upsampling techniques, allowing for processing images
of any size and demonstrating superior performance. However, FCN
may lead to unclear segmentation details and issues with spatial
consistency and boundary blurriness during convolution and
pooling operations. To address these issues, scholars introduced
Encoder-Decoder structured models with skip connections, such as
DeepLabv3+ (Chen L. et al., 2018) and UNet (Ronneberger et al.,
2015). These models preserve image contour information by
retaining pooling coordinates, thus mitigating information loss
caused by pooling operations in FCN. Particularly, the UNet
model achieves precise localization by adding a contracting path
in the Encoder-Decoder module, which performs well in fields such
as biomedical and coastline detection.

With technological advancements, methods combining
standard convolutional layers with dense connections, dilated
convolutions, residual modules, and multi-scale feature pyramids
have been widely adopted. For examples, Cao et al. (2020) developed
the DenseUNet model based on UNet, extending the DenseNet idea
to UNet for image segmentation, and proposed a weighted loss to
accurately obtain segmentation results and overcome gradient
vanishing issues. Wang et al. (2022) designed a novel upsampling
convolution-deconvolution module, thereby improving the
performance of remote sensing image classification. Furthermore,
Cheng et al. (2017) optimized multi-task models’ segmentation and
edge detection through edge-aware regularization, enhancing the
classification accuracy for oceans, land, and ships. Li et al. (2020)
proposed an attention mechanism-based convolutional neural
network with multiaugmented schemes, which effectively reduces
the information redundancy introduced during feature extraction by
forcing the model to capture features of specific classes, and
improves the recognition performance of remote sensing images.

These advancements demonstrate the potential and
effectiveness of fully convolutional symmetric semantic
segmentation models, especially networks such as DeepLab and
U-Net, in applications like coastline detection. By drawing on these
advanced research ideas and technologies, this study focuses on deep
learning-based coastline detection from the perspectives of pooling
methods and attention mechanisms, based on the
DeepLabv3+ model.

3 Methodology

3.1 Network architecture

DeepLabv3+ is a neural network model for image semantic
segmentation tasks, mainly addressing the blurriness issue in
processing sharp object edges in earlier versions by introducing
an Encoder-Decoder structure. In the Encoder part, DeepLabv3+
uses the Xception network as the backbone network, optimizing
computational efficiency and model performance with depthwise
separable convolutions. Additionally, the model integrates the
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atrous spatial pyramid pooling (ASPP) module, consisting of
several convolutional layers with different dilation rates and a
1 × 1 convolutional layer, to capture multi-scale features,
effectively extracting high-level semantic information and
adapting to different task requirements. In the Decoder part, the
model fuses deep and shallow features extracted by the Encoder
using channel concatenation technology and uses upsampling to
restore the feature image to the original size of the input image,
achieving precise pixel-level semantic segmentation. This structure
not only enhances the network’s ability to capture image details but
also improves recognition of sharp edges. Due to these advantages,
DeepLabv3+ has shown strong adaptability and efficiency in fields
such as medical image segmentation.

However, in the task of sea-land segmentation of remote sensing
images, the fixed branch structure of the traditional ASPP module
limits its ability to handle complex scenes, and it can only capture
features within a rectangular space, lacking in directional feature
extraction. This study introduces a dynamic feature connection
structure and integrates the strip pooling module, proposing an
EASPP (Enhanced ASPP) module. On the one hand, the inclusion of
this module allows the outputs of different convolutional branches
to be reused in subsequent branches, enhancing the connection
between different branches. On the other hand, by performing
adaptive average pooling on the width and height of the image, it
more effectively captures global features in horizontal and
vertical directions. This method better captures and integrates
features from different spatial scales, providing a richer and more
detailed feature representation for complex sea-land interfaces in
remote sensing images, such as winding coastlines and water
bodies of various sizes.

Furthermore, the original DeepLabv3+ model lacks a dedicated
attention mechanism. Although ASPP can handle features from
different scales, its processing is still limited to relatively
independent dilated convolution branches, with insufficient
interaction between channels. This structure is not sufficient to
capture long-distance spatial dependencies, affecting the overall
segmentation’s coherence and accuracy. This study introduces the
coordinate attention module, encoding the input feature map in
spatial directions, allowing the model to capture longer spatial
dependencies. By integrating coordinate information while
focusing on the relationship between feature map channels, the
model can more finely adjust the contribution of each channel,
thereby enhancing the response to specific features and improving
segmentation accuracy and robustness.

Based on these improvements, this study proposes a DeepSA-
Net model based on DeepLabv3+, as shown in Figure 1. Below, we
will provide a detailed introduction to the core modules that
construct the DeepSA-Net network.

3.2 EASPP module

In the field of image segmentation, ASPP has been proven to be
an effective method for capturing image features at different spatial
scales. ASPP enhances the model’s perception of features at different
scales while maintaining computational efficiency through a series
of parallel dilated convolutional layers with different dilation rates.
However, the traditional ASPP structure mainly uses a fixed branch
structure to process input features and fuses the outputs of these
branches through a unified convolutional layer, which still has room

FIGURE 1
Network structure diagram of DeepSA-Net.
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for improvement in handling complex scenes. In addition, the ASPP
method only detects input feature maps through square windows,
limiting its flexibility in capturing anisotropic features widely
present in remote sensing images.

To address these limitations, this study proposes an enhanced
ASPP module, named EASPP. The new module introduces a
dynamic feature connection structure, allowing the outputs of
different convolutional branches to be reused in subsequent
branches, thereby enhancing the connection between different
branches and enriching the context information the model can
utilize. Specifically, some branches in EASPP combine the outputs of
previous branches with the original input before performing dilated
convolution. For example, the third branch combines the output of
the second branch with the original input, and the fourth branch

connects the outputs of the third and second branches with the
original input. This method allows each branch to operate not just
independently on its input but in a richer feature environment,
making feature extraction more refined and in-depth.

Furthermore, EASPP integrates the strip pooling module,
designed to address the issue of insufficient feature capture in
image segmentation. Thus, the EASPP module, through unique
strip pooling operations, performs adaptive average pooling on the
width and height dimensions of the image, capturing global
contextual information in different directions. This process helps
the model better understand the overall structure of the image and
enhances its grasp of spatial details. After effectively extracting
global features in the horizontal and vertical directions of remote
sensing images, these features are fused and added to the original

FIGURE 2
Strip pooling module structure diagram.

FIGURE 3
EASPP module structure diagram.
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input features, enhancing feature representativeness while preserving
original feature information, allowing the model to perform
segmentation tasks more accurately in complex environments.

The structure diagram of the strip pooling module is shown in
Figure 2. As shown in Figure 2, compared with traditional pooling
methods, strip pooling pools and obtains one-dimensional feature
vectors through horizontal and vertical paths, and then obtains the
outputs result through resolution expansion and feature map fusion.
Specifically, the module first receives a C×H×W feature map, then
processes it through horizontal and vertical strip pooling, outputting
two feature maps of sizesH × 1 and 1×W. By averaging the elements
within the pooling kernel, the pooled outputs are obtained. Next,
through convolution operations, these two pooled feature maps are
expanded along their width and height, respectively, to the same size,
and the two feature maps are summed pixel-wise to obtain an H×W
fused feature. Finally, a 1 × 1 convolution operation and Sigmoid
processing yield the final output. This design allows the strip pooling
module to capture extensive contextual information without losing
sensitivity to local features.

In the task of sea-land segmentation of remote sensing images,
effectively processing and distinguishing different geographical spatial
features is crucial. Since oceans and large water bodies typically exhibit
significant area continuity, depending on the specific geographical
direction and coastline orientation, this continuity may be more
pronounced in either the vertical or horizontal direction. Strip
pooling model, by performing horizontal and vertical adaptive
average pooling, can effectively extract global features in these
directions. Such processing not only helps to more accurately
delineate the boundaries between water and land but also allows
the model to handle different coastline orientations more flexibly and
accurately. Additionally, this strategy improves the model’s
segmentation performance for terrain features such as rivers and
islands, as these features’ representation in images is often closely
related to their geographical direction. Through this method, strip
pooling model enhances the spatial understanding capability of
remote sensing image segmentation models, especially in complex
natural and artificial interface-interlaced coastal areas.

Overall, EASPP, by integrating dynamic feature connections and
additional global information provided by strip pooling and
integrating them through 1 × 1 convolution, results in a more
comprehensive feature representation. This strategy not only retains
the detail information obtained from different dilation rate
convolutional branches, but also strengthens the integration of
these details with additional global features, making the final
feature representation more comprehensive and effective. The
structure diagram of the EASPP module is shown in Figure 3.

The task of sea-land segmentation of remote sensing images often
involves processing highly heterogeneous landscapes, including
complex coastlines and diverse boundaries between water bodies
and land. Through a multi-scale atrous convolution strategy, the
EASPPmodel can capture detailed contextual information at different
spatial scales. EASPPmodel, with its dynamic feature fusion capability
and integration of global information, greatly enhances the model’s
accuracy and robustness in handling these complex scenes.
Particularly, the introduction of strip pooling increases the model’s
ability to capture features in broad and elongated areas along the sea-
land boundary, thus providing more precise and coherent sea-land
segmentation results.

3.3 Coordinate attention module

Currently, many lightweight neural network architectures have
adopted the squeeze-and-excitation (SE) module to implement
attention mechanisms, focusing on the interaction between channels
but paying less attention to spatial location information. To overcome
this limitation, convolutional block attention module (CBAM) adds
consideration of spatial location on top of channel attention, using
convolution operations after channel reduction to extract location
attention information. However, convolution operations typically
capture only local feature relationships, lacking consideration for
long-distance relationships. For this reason, the coordinate attention
mechanism was proposed. Coordinate attention can be seen as an
optimized computational unit designed to enhance the network’s
feature expression capability. It not only recalibrates features at the
channel level but also enhances the network’s feature expression by
embedding spatial location information.

This mechanism processes input feature groups
[x1, x2,/, xC] ∈ RC×H×W, to produce enhanced features
[y1, y2,/, yC] ∈ RC×H×W with the same dimensions as the input.
It mainly consists of two parts: the coordinate information
embedding module and the coordinate attention generation
module, which work together to make the network more efficient
and precise in global perception and local detail capture. Themodule
structure is shown in Figure 4.

(1) Coordinate Information Embedding.

First, pooling kernels of size of (1, W) and (H, 1) are used to
encode each channel of the input feature map along the vertical
and horizontal directions, respectively. Suppose xi(h, w)
represents the element at position(h, w) in the ith channel of
the feature map. During vertical encoding, the size of each

FIGURE 4
Coordinate attention module structure diagram.
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channel feature map becomes H × 1, and the output at height h
in the ith channel is shown in Equation 1:

zhi �
1
W

∑
W−1

n�0
xi h, n( ) (1)

During horizontal encoding, the size of each channel feature
map becomes 1 × W, and the output at width w in the ith channel is
shown in Equation 2.

zwi � 1
H

∑
H−1

m�0
xi m, w( ) (2)

After the above pooling operations, image features are
aggregated in two spatial directions, vertical and horizontal,
producing a pair of feature maps. Each feature map contains
long-distance dependencies along one spatial direction and
preserves precise location information along the other
spatial direction. Embedding coordinate information into
feature maps helps the network more accurately locate
targets of interest.

(2) Coordinate Attention Generation.

The coordinate attention generation process involves
concatenating the feature maps after coordinate information
embedding and using a 1 × 1 convolution to adjust the number
of channels in the feature map, as shown in Equation 3.

f � δ F1 zh, zw[ ]( )( ) (3)

where, F1 represents a 1 × 1 convolution operation, δ is a nonlinear
activation function, zh and zw represents the feature vector after
coordinate information embedding. The generated feature tensor is
f ∈ RC/r×1×(H+W), where r is the channel downsampling rate. The
feature tensor f is then split into two independent tensors
fh ∈ RC/r×H×1 and fw ∈ RC/r×1×W, along the spatial dimension.
Then, two independent 1 × 1 convolutions Fh and Fw are used
to restore the channel count of feature vectors Fh and Fw to C, as
shown in Equations 4, 5.

gh � σ Fh fh( )( ) (4)
gw � σ Fw fw( )( ) (5)

where σ is the sigmoid activation function, thus obtaining the
attention weights gh ∈ RC×H×1 and gw ∈ RC×1×W. The obtained
attention weights are used to update the input feature map X to
produce the output feature map Y ∈ RC×H×W, as shown in
Equation 6.

yc i, j( ) � xc i, j( ) × gh
c i, 1( ) × gw

c 1, j( ) (6)
where, yc(i, j) and xc(i, j) are the values of the cth channel of the
output feature map and the original feature map at position of
(i, j), gh

c(i, 1) and gw
c (1, j) are the values of the cth channel of the

attention weights generated along the vertical and horizontal
directions at position of (i, j), respectively. Through Formula 6, it
combines the input feature map with the attention weights to
generate an output feature map that highlights important
features, thereby improving the model’s performance in spatial
and long-distance dependencies.

In summary, coordinate attention can supplement the
shortcomings of DeepLabv3+ in understanding spatial details
and long-distance dependencies, and by utilizing coordinate
information to locate areas of interest, it allows the model to
more effectively capture long-distance spatial dependencies, fully
utilizing information between channels to enrich feature
expression.

4 Experiment and discussion

4.1 Datasets and data processing

This study primarily utilized the SLS (sea-land segmentation)
dataset collected by Yang et al. (2020) in 2020, consisting of
29 Landsat-8 OLI (operational land imager) images covering
coastal areas of China. For neural network input convenience, all
remote sensing images were segmented into 3361 image blocks of
512 × 512 pixels, with 2689 blocks used as training samples and
672 as test samples. Each small image block was manually labeled

FIGURE 5
Partial images and labels in the dataset.
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with two types of labels: land and sea, using Labelme. The study
created two sub-datasets using RGB and NIR-SWIR-Red (near
infrared - short wave infrared - red) spectral band combinations
for training the models. All samples were in PNG format without
spatial information. To further assess the model’s performance, the
study also incorporated the YTU-WaterNet (Yildiz Technical
University) dataset proposed by Erdem et al. (2021), consisting of
63 Landsat-8 OLI images covering parts of Europe, South
America, North America, and Africa. Only the red, blue, and
near-infrared (NIR) bands were used as samples for this dataset.
All remote sensing images were segmented into 1008 image
blocks of 512 × 512 pixels, with 806 blocks used as training
samples and 202 as test samples. Part of the dataset images and
labels are shown in Figure 5, where red represents land areas and
black represents sea areas.

4.2 Experimental parameters and
evaluation indices

All experiments in this study were implemented on
the PyTorch framework and conducted on a server equipped
with a 40 GB NVIDIA A100 GPU. To ensure consistency in
training conditions, both the original and improved models
were set with the same hyperparameters: the optimizer was
Adam, the initial learning rate was set at lr = 0.0005, the
minimum learning rate was 0.01 of the initial rate, and the
learning rate adjustment strategy was cosine decay. The batch
size was set to 20, the input image size was set to 512 × 512 pixels
with 8X downsampling, and the models were trained for
150 epochs, with an evaluation every 5 epochs. Dice loss was
used to handle class imbalance, and multi-threading was used to

FIGURE 6
Image of loss function during DeepSA-Net model training process.

TABLE 1 Sea land segmentation indicators of five models on three different band datasets.

Dataset Band of wave Model mIoU Recall Precision Accuracy

SLS

Red-Green-Blue

U-Net 98.25 98.45 99.51 99.14

SCUNet 98.30 98.65 99.37 99.16

DenseUNet 98.78 99.13 99.45 99.40

DeepLabv3+ 99.02 99.48 99.50 99.51

DeepSA-Net 99.31 99.46 99.74 99.66

Red-Blue-NIR

U-Net 98.15 98.85 99.04 99.08

SCUNet 98.25 98.51 99.29 99.21

DenseUNet 98.53 98.86 99.46 99.27

DeepLabv3+ 98.81 99.15 99.50 99.41

DeepSA-Net 99.07 99.34 99.60 99.54

YTU-WaterNet NIR-SWIR-Red

U-Net 98.95 99.24 99.63 99.48

SCUNet 99.06 99.26 99.74 99.53

DenseUNet 98.43 98.72 99.58 99.21

DeepLabv3+ 99.14 99.58 99.51 99.57

DeepSA-Net 99.37 99.56 99.73 99.69
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speed up data reading. The model with the highest training
accuracy was selected for testing.

To verify the algorithm’s performance in sea-land segmentation on
high-resolution remote sensing images, four evaluation indices were
used: mIoU (mean intersection over union), Recall, Precision, and
Accuracy. Their calculation formulas are given in Equations 7–10.

mIoU � 1
2
×

TP

TP + FP + FN
+ TN

TN + FP + FN
( ) (7)

Recall � TP

TP + FN
(8)

Precision � TP

TP + FP
(9)

TABLE 2 Detailed visualization of sea land segmentation results of five models on three different band datasets.
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Accuracy � TP + TN

TP + TN + FP + FN
(10)

where TP is the number of sea pixels correctly predicted by the
network, FP is the number of sea pixels incorrectly predicted, TN is
the number of land pixels correctly predicted, and FN is the number
of land pixels incorrectly predicted.

4.3 Experimental results

The study conducted sea-land segmentation experiments on the
SLS dataset and YTU-WaterNet dataset using five deep learning
models: U-Net, SCUNet, DenseUnet, DeepLabv3+, and DeepSA-
Net. Among them, the former dataset includes two band
combinations, while the latter dataset only has one band
combination. Especially, the loss function of the DeepSA-Net
model during the three training processes is shown in Figure 6.
As the number of iterations increases, the loss function shows a
downward trend before 100 epochs, and the trend gradually stops
between 100 and 150 epochs, proving that the model has converged.

The experimental results of land-sea segmentation on three
different bands of data sets for the five models are shown in
Table 1. In Table 1, the bold font indicates the best metric
among all models, and the underline indicates the second best
metric among all models.

As shown in Table 1, the training results based on the YTU-
WaterNet dataset generally have higher accuracy than those based
on the SLS dataset. Through analysis, it can be concluded that the
information carried by the NIR and SWIR bands is more
conducive to distinguishing between ocean and land. The

training results on all different band datasets show that
both DeepLabv3+ and the DeepSA-Net proposed in this study
have achieved good results. DeepSA-Net is slightly better than
DeepLabv3+ and U-Net models in terms of mIoU, Recall,
Precision, and Accuracy. Since the effect of coastline
extraction mainly depends on the segmentation effect at the
sea-land boundary, these indicators alone may not be
sufficient to visually demonstrate the differences between
different models. Table 2 selects three regions from each
of the above three band datasets and displays their
corresponding detailed segmentation results to visually
demonstrate the effects of the models. To facilitate
observation, the parts with significant differences in the result
graph are marked with yellow rectangular boxes.

As shown in Table 2, although the mIoU of each model is above
98%, there are still significant differences in the actual segmentation
results of land and sea. DeepLabv3+ and DeepSA-Net proposed in
this study perform the best, able to retain more details of the
coastline and have good segmentation results for rivers between
lands. The results from the third row indicates that the DeepSA-Net
and the DeepLabv3+ model outperform other models in terms of
prediction accuracy, and especially the DeepSA-Net model
closely aligns with the labels (true values) in terms of minor
details. From the fifth row of results, it can be seen that only
DeepSA-Net and DeepLabv3+ models segment rivers, while
other models misclassify rivers as land. From the sixth row of
results, it can be seen that for muddy seawater, the DeepSA-Net
model still correctly segments islands and land coastlines,
showing strong anti-interference ability. From the eighth and
ninth rows of results, it can be seen that for sharp details of the
coastline in the label, the model proposed in this study retains the

TABLE 3 Coastal line extraction results.
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best effect, while other models have problems with unclear
boundary segmentation details and blurred boundaries.

4.4 Coastline extraction

Based on the results of sea-land segmentation with our proposed
DeepSA-Net model, the study explored methods for coastline
extraction. The coastline was extracted from the label images
based on the principle of maximum continuity and regularization
methods to fit potential breakpoints in the curve, thus achieving
accurate and continuous coastline extraction. The principle of
maximum continuity refers to finding the longest approximate
curve in the segmentation label results as the coastline extraction
result. The regularization method fits the possible breakpoints in the
curve based on the coordinates of the previous and subsequent
pixels, resulting in an accurate and continuous coastline.

Table 3 shows the coastline extraction results of three regions in
the SLS dataset. The original labels and prediction results are
processed by the algorithm to generate coastline contour data,
and the contour lines are overlaid on the original image. The
green curve is the prediction output of the DeepSA-Net network,
and the red curve is the original label.

From Table 3, it can be seen that the method proposed in this
study extracts a complete and continuous coastline. The two colored
curves overlap in most coastal areas, with only a few areas where
they are difficult to distinguish, proving the effectiveness of the
coastline extraction method.

4.5 Experiment on the analysis of coastline
dynamic changes

Based on the above researches, the study conducted coastline
extraction and dynamic change analysis in a coastal area near
Tangshan City, Hebei Province, China. This area is located near
a river estuary where the coastline changes are quite apparent.
Remote sensing images from three study zones in this area were
downloaded from the ArcGIS Living Atlas of the World platform,
taken on 27 February 2017, and 29 June 2023. After processing with
the DeepSA-Net model, sea-land segmentation labels were
extracted, and the extracted coastline contours were overlaid on
the images of 2023 for display, as shown in Table 4. The red line
represents the coastline extracted from the images of 2017, and the
green line represents the coastline from the images of 2023, allowing
for a visual analysis of the changes in the coastline over the years.

TABLE 4 Analysis of coastal line changes.
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As shown in Table 4, the coastlines of the selected study zones have
undergone significant changes in 2017 and 2023. Specifically, the
coastlines of zones #1 and #3 have extended slightly inward, while the
coastline of zone #2 has extended slightly outward, mainly due to the
scouring and sediment accumulation of rivers near the estuary.
Specifically, the sediment carried by rivers deposits at the estuary and
gradually forms new sedimentary landforms, leading to the outward
expansion of the coastline. The hydrodynamic characteristics of the water
flow near the estuary determine the distribution and accumulation
process of sediments, which is a common phenomenon in the change
of estuary coastline. On the other hand, tides and coastal currents can
erode the coastline, especially during the rising and falling tide processes.
The back-and-forthflowof seawater erodes coastal sediments, causing the
coastline to shrink towards the land side.

From the experimental results, the proposed method in this
study accurately realizes the extraction of coastlines. Compared with
traditional coastline extraction algorithms, the deep-learning
method proposed in this study has higher accuracy and can
effectively distinguish between land and sea in different seasons
and different coverage types. It can also better distinguish between
man-made water bodies and oceans, thus preventing erroneous
segmentation of coastlines. The coastline with more complete
details and contours also creates favourable conditions for
subsequent large-scale and high-precision analysis of coastline
changes. Therefore, this work could provide better technical
support for coastline monitoring work.

5 Conclusion and future works

This study, by integrating attention mechanisms and other
deep learning theories, constructed a sea-land segmentation
network, DeepSA-Net, based on strip pooling and coordinate
attention mechanisms. Using remote sensing image datasets
from coastal areas in China, the study conducted sea-land
segmentation and verified the model’s effectiveness across
multiple datasets. The experimental results on high-resolution
remote sensing image datasets demonstrated that the novel
network model achieved excellent segmentation effects, with
mIoU and Recall rate exceeding 99% across all datasets. Visual
assessment confirmed the model’s effectiveness in complex coastal
environments. Finally, using remote sensing data from a coastal
area in China, the study implemented coastline extraction and
dynamic change analysis, providing new methods for the scientific
management and protection of coastal zones.

In the future, the researches can further optimize the DeepSA-
Net network model, especially to adjust the hyperparameters of
Adam, to cope with larger-scale and more complex terrain remote
sensing image datasets, thereby improving the model’s

adaptability under different coastal landforms. At the same
time, it is possible to explore the application of multi-source
data fusion technology to coastline extraction, combining data
from different sensors to further improve the accuracy and
robustness of coastline extraction, providing stronger technical
support for the scientific management and protection of
coastal areas.
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