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Particulate matter with a diameter of 2.5microns or less (PM2.5) is a significant type of
air pollution that affects human health due to its ability to persist in the atmosphere
and penetrate the respiratory system. Accurate forecasting of particulate matter is
crucial for the healthcare sector of any country. To achieve this, in the current work, a
new time series ensemble approach is proposed based on various linear
(autoregressive, simple exponential smoothing, autoregressive moving average,
and theta) and nonlinear (nonparametric autoregressive and neural network
autoregressive) models. Three ensemble models are also developed, each
employing distinct weighting strategies: equal distribution of weight among all
single models (ESME), weight assignment based on training average accuracy
errors (ESMT), and weight assignment based on validation mean accuracy
measures (ESMV). This technique was applied to daily PM2.5 concentration data
from 1 January 2019, to 31 May 2023, in Pakistan’s main cities, including Lahore,
Karachi, Peshawar, and Islamabad, to forecast short-term PM2.5 concentrations.
When compared to other models, the best ensemble model (ESMV) demonstrated
mean errors ranging from 3.60% to 25.79% in Islamabad, 0.81%–13.52% in Lahore,
1.08%–7.06% in Karachi, and 1.09%–12.11% in Peshawar. These results indicate that
the proposed ensemble approach ismore efficient and accurate for short-termPM2.5

forecasting than existing models. Furthermore, using the best ensemble model, a
forecastwasmade for the next 15 days (June 1 to 15 June 2023). The forecast showed
that in Lahore, the highest PM2.5 value (236.00 μg/m3) was observed on 8 June 2023.
Other days also displayed higher and poor air quality throughout the 15 days.
Conversely, Karachi experienced moderate PM2.5 concentration levels between
50 μg/m3 and 80 μg/m3. In Peshawar, the PM2.5 concentration levels were
consistently unhealthy, with the highest peak (153.00 μg/m3) observed on 9 June
2023. This forecasting experience can assist environmental monitoring organizations
in implementing cost-effective planning to minimize air pollution.
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1 Introduction

Maintaining a healthy atmosphere is vital for both humans and
other living creatures. Air quality refers to the absence of harmful
pollutants in the air. However, there are several deadly and fatal
contaminants in the air nowadays, including PM2.5, nitrogen
dioxides (NO2), carbon monoxides (CO), sulfur dioxides (SO2),
ozone (O3), and PM10 are the most hazardous pollutants, and these
and several more contaminants cause air pollution (Donahue, 2018;
Quispe et al., 2024; Yin et al., 2023; Shang and Luo, 2021). Currently,
air pollution is increasing rapidly due to urbanization,
industrialization, and overcrowding, and this leads to a
significant increase in respiratory problems, premature birth,
premature death, and lung disease, which cause death. The
World Health Organization estimates that air contamination
claims the lives of about ten million people each year. As
discussed above, air pollutants contribute significantly to air
quality degradation and affect human health and the
environment due to increased industrial and human activity and
the continuous use of fossil fuels (Manisalidis et al., 2020; Luo et al.,
2024; Qiu et al., 2024; Shang et al., 2023). Currently, air pollution is
Pakistan’s most significant and alarming challenge, continuously
being mentioned by social media and other platforms. This air
pollution in Pakistan causes different health-related problems,
mainly cardiac and respiratory. Thus, particular actions must be
taken to prevent or reduce air pollution (Ullah et al., 2021; Iftikhar
et al., 2024c; Du and Wang, 2013; Chen et al., 2024).

In the past, many researchers have developed solutions to this
problematic air pollution issue. In this context, many researchers
have applied classical regression, time series, machine learning, and
hybrid models to find the optimum solution according to the nature
of the data (Zhan et al., 2017; Xu et al., 2018; Abdullah et al., 2019;
Dutta and Jinsart, 2021). For instance, the work (Geetha and Prasika,
2019) provides an LSTM in addition to two conventional forecasting
models for estimating the levels of air pollutants (NO2, NOx, CO,
SO2, O3, PM2.5, and PM10) in metropolises. The outcomes
demonstrated that LSTM outperformed LR and ARIMA. Zaman
et al. (2024) attempt intends to create machine learning models that
are computationally efficient and simpler than those found in earlier
studies. Findings indicated that the RF methodology performed
marginally better than the XG-Boost and SVR techniques. In
another research work, Zaman et al. (2021) predict PM2.5

concentrations throughout Malaysia by utilizing satellite-based
AOD data to drive machine learning (ML) models such as (RF)
and (SVR). Seven models were created for PM2.5 prediction. The
testing analysis shows that the RF framework (R2 = 0.53–0.76)
performs somewhat superior to SVR. On the other hand, using the
most recent data on diseases and smog degree of severity, this study
(Chen et al., 2017) designed an ANN-based model to forecast health
hazards associated with smog. The outcomes demonstrated that
empirical insights can aid researchers in getting the nonlinear
correlations between the health risk the following day and
present-day smog observations.

This work (Freeman et al., 2018), a forecast model for ozone
levels averaged over 8 hours, was trained using novel deep learning
techniques. A new technique for imputation was used to replace
missing data and outliers in the collected data set. This method
produced computed values based on the time and season closer to

the predicted value. (Carbo-Bustinza et al., 2023). Using a
comparison of numerous hybrid varieties of time series models,
this work extensively studies projecting ozone concentrations.
According to the study, the suggested models perform noticeably
superior to the standard models that were considered. However, this
research (Xie et al., 2021) aims to apply the Hausdorff distance
method to huge data to improve future cyclone effect predictions
(Rakholia et al., 2023). Analyzed to develop a multi-step-ahead with
multi-output type multivariate statistical model (NBEATS) to
estimate the air quality with the auxiliary information. The data
set was collected from six healthcare air quality centers in Vietnam.
To compare the results and efficiency with the existing model,
accuracy indices such as MAPE and RMSE were used. The result
indicated that the developed (d-BEATS) multi-dimensional co-
variate model outperforms the existing models. In the work
Bhatti et al. (2021), the researcher conducted a comparative
study to estimate the air quality index for Pakistan. They used
the SARIMA and factor analysis approaches to achieve this end. The
study found that the SARIMA model outperforms others in
attaining better estimation accuracy for Pakistan’s air quality
index. In another work, Ashraf et al. (2022) conducted an
analysis based on the comparative study of machine learning and
classical forecasting models to forecast air pollution data. This article
uses the metrics, i.e., RMSE, MAE, and MAPE, to compare the
classical and traditional models. The study suggested that the
machine learning model performed more efficiently than the
existing time series methods.

In the same way, Lin et al. (2019) performed an analysis based on
machine learning and integrated assimilation data techniques to
expand the air quality prediction for the Netherlands. The findings
disclosed that the developed approach, which incorporates data-
driven machine learning and a physics-based model, significantly
improved the air quality forecast statistically. However, Kleine
Deters et al. (2017) modeled PM2.5 urban pollution (Cotocollao
and Belisario) using machine learning techniques. Based on the
proposed machine learning model concentrations of PM2.5, the
classifier accurately predicted PM2.5. Moreover, it was also
observed that regression highlights better prediction when there
are extreme conditions in the climate. This article shows that
statistical approaches to machine learning techniques are relevant
and significant in modeling PM2.5. Also, Borse (2020) highlighted
the systematic review based on different statistical and machine
learning techniques to forecast air quality. This systematic review
concludes that data mining and machine learning approaches are
highly used in forecasting and predicting air pollution. In another
research, the author in Liu et al. (2020) analyzed the air quality index
using machine learning algorithms. In this research work, the
authors developed a novel machine-learning model based on the
LSTM method and compared it with existing models. The results
indicated that the developed model outputs were superior to the
existing machine learning models in forecasting PM2.5. Garg and
Jindal (2021) conducted a comparative study between machine
learning and classical time series models to estimate PM2.5. The
study found that the LSTM model outputs better and superior
accuracy than the existing approaches. However, Ameer et al.
(2019) conducted a comparative analysis based on advanced
regression methods to predict the air quality index of smart
cities. This article used RMSE and MAE to evaluate the
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underlying models. The study found that the random forest model
outperformed the existing methods.

On the other hand,Wang et al. (2019) proposed a hybridmodel for
air quality variables forecasting. This proposed method is a
hybridization of the Long Short-Term Memory Neural Network
and Gated Recurrent Unit (LSTM and GRU), an enhancement of
ordinary LSTM. This work uses the data set of 74 cities in China for a
comparative study. The outcomes disclosed that the proposed hybrid
model outperformed the existing approaches. In the same way,
Ejohwomu et al. (2022) conducted a comprehensive study to model
the PM2.5 using hybrid machine learning methods. The finding
showed that the hybrid machine-learning model outperformed the
existing techniques. Also, Bai et al. (2019) for forecasting the hourly
PM2.5 concentration, an ensemble neural network (E-LSTM) is
proposed. The results show that the E-LSTM model, which
comprises multiple LSTMs in different modes, outperforms the
single LSTM regarding MAPE, RMSE, and correlation. Thus,
different authors used various methods and models to find the
optimum solution according to the nature of the data.

In contrast to the research mentioned earlier, this study
introduces a comparatively simple and easily implemented new
time series ensemble technique based on various linear
(autoregressive, simple exponential smoothing, autoregressive
moving average, and theta) and nonlinear (nonparametric
autoregressive and neural network autoregressive) models to
accurately and efficiently forecast short-term PM2.5 concentration
in highly populated cities of Pakistan, including Lahore, Peshawar,
Karachi, and Islamabad. Three ensemble models are developed, each
using different weighting strategies: equal distribution of weight
among all single models (ESME), weight assignment based on
training average accuracy errors (ESMT), and weight assignment
based on validation mean accuracy measures (ESMV). In this
proposed time series ensemble approach, the PM2.5 time series is
first preprocessed by addressing missing values, stabilizing variance,
ensuring normality, considering deterministic features, and
addressing stationarity concerns. Then, six single time series and
three ensemble models are used to forecast the preprocessed PM2.5

concentration time series. Six different accuracy metrics—the
Diebold and Mariano tests and the correlation plot—are
employed to assess the performance of this novel time series
ensemble forecasting approach. The main contribution of this
study is evaluating the performance of different single time series
models and their proposed three novel ensemble models within the
time series forecasting approach. The short-term forecasting
performance for a whole year for air pollution (PM2.5) is
evaluated, and the significance analysis of the differences in
prediction accuracy is also investigated. To confirm the
performance of the proposed time series ensemble technique, six
different average accuracy metrics, an equal forecast statistical test,
and a graphical assessment are used for comparison. This
methodological proposal applies to the environmental
management system to mitigate ozone pollution and is aimed at
the stakeholders of the national air quality program. Unlike previous
studies, which have been conducted from various perspectives
globally, this analysis uses ensemble time series modeling and
forecasting for short-term PM2.5 levels in the Pakistan megacities.
Finally, this approach could be extended to other cities in Pakistan
and worldwide.

2 The proposed time series ensemble
forecasting technique

This section elucidates the proposed time series ensemble
technique for short-term (one-day-ahead) PM2.5 concentration
forecasting in the megacities of Pakistan. In the proposed time
series ensemble technique, the PM2.5 time series is first preprocessed
by missing value, variance stabilization, and stationary concerns.
Second, six different single time series models: the
autoregressive, the simple exponential smoothing, the
autoregressive moving averages, the theta, the nonlinear
autoregressive, and the neural network autoregressive, and
also three proposed ensemble models anticipate the cleaned
PM2.5 concentration time series. The details about these steps
are in the following subsections.

2.1 Preparation of raw data

This work uses daily PM2.5 concentration datasets from four
monitoring megacities in Pakistan, Islamabad, Lahore, Karachi, and
Peshawar, for five consecutive years: 2019, 2020, 2021, 2022, and
2023, respectively. Before starting modeling and estimating a time
series of data, it should make sense to prepare the data. The goal of
preprocessing is usually to simplify the modeling of the database.
The PM2.5 concentration time series case involves missing values,
high volatility, a nonconstant mean, a long-run secular trend
component, and specific seasonality. To achieve these, we first
treated the missing values using the multivariate imputation by
chained equations (MICE) method (Van Buuren and Oudshoorn,
2011; Zhou et al., 2023). The MICE is a robust, informative method
of dealing with missing data in datasets. The procedure imputes
missing data in a dataset through an iterative series of predictive
models. In each iteration, each specified variable in the dataset is
imputed using the other variables. These iterations should be run
until convergence has been met. Second, after getting the free
missing values PM2.5 concentration time series, we get stabilized
variance and standard deviation by taking the natural logarithm of
each series. Third, the deterministic characteristics containing a
linear long-run trend component and yearly seasonality are
removed. To accomplish this, model these deterministic
components using the following procedure: Let the time series of
the PM2.5 concentration series be donated by log(Pk

d); the super
subscript k (k � 1, 2, 3, 4) shows the city series, while d shows the dth
day data point. Thus, the dynamics of the log daily PM2.5

concentration times series, log(Pk
d), may be described as:

log Pk
d( ) � τkd + akd + pk

d (1)

That is, the log(Pk
d) in Equation 1 is divided into these

components: a long-run linear trend component (τkd), a yearly
seasonality component (akd), and a residual component (pk

d). The
(τkd) component is a function of the series (1, 2, 3, . . . , d), is
estimated by the regression splines method, and dummies

capture the annual periodicity: akd,j � ∑5
j�1

ζjId,j. The variable Id,j is

assigned a value of 1 when h refers to the ith year and 0 otherwise.
The regression coefficients (ζj) associated with these components
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are determined using the ordinary least square method. It is worth
mentioning that many authors in the literature capture the long-run
trend and yearly in a time series using regression splines (Shah et al.,
2020; Iftikhar et al., 2023c; Shah et al., 2022; Zhu, 2023; Xu et al.,
2022). On the other hand, once the estimated deterministic
component (long-run trend and annual periodicity) is obtained,
the residual or stochastic component can be derived by using
Equation 2:

pk
d � log Pk

d( ) − τ̂kd + âkd( ) (2)

Thus, once the air pollutant (PM2.5) concentration time series is
preprocessed (to address the issue of missing values and its
imputation, stabilize the variance and standard deviation, and
remove the deterministic properties), the next step is to model
the remaining residual pk

d series; the current work considers six
single-time series models and three proposed ensemble models.
Hence, all forecasting models are described in the coming
subsection.

2.2 Forecasting models

This section briefly overviews the forecasting models and their
proposed ensemble models: the autoregressive, the simple
exponential smoothing, the autoregressive moving average, the
Theta, the nonparametric autoregressive, and the neural network
autoregressive models.

2.2.1 The auto-regressive model
A linear autoregressive (AR) model is used to understand the

short-term dynamics of pd by using a linear combination of p past
observations. The model can be expressed as:

pd � I + β1p1 + β2p2 +/ . + βppd + ϵd (3)

In Equation 3, pi(i � 1, 2, . . . , d) are observed and past values of
PM2.5, β AR parameters, and ϵm is the white noise process. In this
study, we estimated the parameters using maximum likelihood
estimation. After analyzing the series’s auto-correlation function
(ACF) and partial auto-correlation function (PACF), we concluded
that lags 1, 2, 3, and 7 are significant and, therefore, included in the
model (Jenkins and Box, 1976; Box et al., 2015).

2.2.2 The exponential smoothing model
The Exponential Smoothing Model (ESM) is a group of

forecasting models that apply exponentially decreasing weights to
previous observations. It is a time-series forecasting model that uses
a weighted average of past observations to predict the future value of
a variable. The ES model assumes that a variable’s future value
depends on its past values, with greater emphasis placed on recent
values than on older ones. The ESM model can be expressed
as follows:

pd+1 � α · pd + 1 − α( ) · pd−1 (4)
In the given Equation 4, pd+1, pd, and pd−1 are the actual values

of the PM2.5 concentration time series at times d+1, d, and d-1. At
the same time, α is the smoothing parameter determining the weight
assigned to the most recent observation (Brown, 1956; Holt, 2004).

2.2.3 The autoregressive moving average model
The autoregressive moving average (ARMA) models

incorporate lagged values from a time series and factor in error
terms passed into the model. This study utilized a model
representing the residual series (pd) as a linear combination of d
past observations and a delay error term. The model equation can be
expressed as:

pd � u + β1p1 + β2p2 +/ . + βdpd + ϵn + ξ1ϵ1 + ξ2ϵ2 +/ . + xisϵs,
(5)

In Equation 5, where u is the intercept, βi (i � 1, 2, . . . , d) and
ξj, (j � 1, 2, . . . , s) are the AR andMA parameters, respectively, and
ϵd ~ N(0, σ2ϵ). After conducting graphical analyses (the ACF and
PACF plots), this study found that the first two lags are significant in
the MA part, while only lags 1, 2, and 7 are significant in the AR part
(Jenkins and Box, 1976; Box et al., 2015).

2.2.4 The neural network autoregressive model
The Neural Network Autoregressive (NNA) model is a machine

learning approach that uses historical observations to predict future
values in a time series. It does this by analyzing a mathematical
function that considers the previous values, denoted by
pd−1, pd−2, . . . , pd−n, where n is the time delay parameter.
Training involves the backpropagation method and the steepest
descent approach to minimize the difference between predicted and
actual values. During the forecasting process, the autoregression
order is determined. This order indicates the number of preceding
values needed to predict the current time series value. The NNA is
then trained using a dataset that reflects the autoregression order,
and the number of input nodes is determined based on this order.
These inputs represent previous lagged observations in univariate
time series forecasting. The NNA’s output provides predicted values.
However, selecting the number of hidden nodes often involves trial
and error and lacks a theoretical basis. Careful consideration is
necessary to prevent overfitting when choosing the number of
iterations (Taskaya-Temizel and Casey, 2005; Alshanbari et al.,
2023). In this study, an NNA design of (4, 2) is utilized,
expressed as pd � f(pd−1), where pd � (pd−1, pd−2, pd−3, pd−4)
represents past values of the time series of the cleaned daily
PM2.5 concentration time series (pd), and f denotes a neural
network with four hidden nodes in a single layer.

2.2.5 The nonparametric autoregressive model
The nonparametric autoregressive model (NPAR) presents an

alternative to the conventional parametric AR model, departing
from the latter’s reliance on specific mathematical equations to
elucidate the relationship between past and future values. In
contrast, NPAR models employ flexible and adaptive techniques,
such as kernel regression or spline functions, to capture dynamic
patterns in the data without explicit parameter estimation. These
models are distinguished by their flexibility, absence of predefined
parameters, emphasis on local relationships, and reliance on data-
driven structures to address intricate and nonlinear dependencies
within time series data. This model’s association between pd and its
previous terms lacks a specific parametric form, allowing for
potential non-linearities. This relationship is expressed as:

pd � u1 pd−1( ) + u2 pd−2( ) +/ + un pd−n( ) + εd (6)
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here in Equation 6, uj (j � 1, 2, . . . , n) denotes smoothing
functions describing the association between pd and its previous
values. In this study, cubic regression splines represent the functions
ui, and lags 1, 2, 3, and 7 are employed for NPARmodeling (Álvarez-
Díaz, 2020; Iftikhar et al., 2023d).

2.2.6 The theta model
The Theta Model is a forecasting method that predicts future

values based on the average change in the time series data. It involves
calculating the average change between consecutive time points and
extrapolating it into the future. The equation for the Theta Model is
given by in Equation 7:

pd+1 � 1
m

pd + pd−1 +/ + pd−m+1( ) (7)

2.2.7 The proposed ensemble models
At its core, an ensemble technique integrates outcomes from

various models, each meticulously calibrated before unity. This
approach capitalizes on the inherent strengths of individual
models while compensating for their inherent limitations. Within
the scope of this study, ensemble techniques are initially employed to
compute weights for the results derived from individual models
(Iftikhar et al., 2024a; Gonzales et al., 2024). Consequently, the
proposed ensemble encompasses three distinct weighting strategies:
a) equitable distribution of weight among all single models, denoted
as ESME; b) weight assignment based on training average accuracy
errors (1), designated as ESMT; and c) weight assignment based on
validation mean accuracy measures, denoted as ESMV. The model
allocates greater weight to the ensemble model for training and
validation datasets with lower mean accuracy errors, while models
exhibiting higher mean accuracy errors contribute comparatively
less weight to the ensemble. Notably, the model weights assume
small positive values, and their accumulation equates to one,
signifying the percentage of reliance or anticipated performance
from each model.

Thus, after estimating the linear trend component and annual
periodicity using the multiple regression model discussed above, the
next step is forecasting the remaining part (pk

d) using six single and
three proposed ensemble models as discussed above. Thus, this work
can obtain the daily PM2.5 concentration for the next day forecast as
follows by Equation 8:

P̂
k

d � exp τ̂kd + âkd + p̂k
d( ) (8)

2.3 Evaluation criteria

This study examines two evaluation criteria for the proposed
time series ensemble forecasting technique: accuracy average errors
and an equal forecast accuracy test.

2.3.1 Accuracy average errors
Primarily, Table 1 presents the accuracy average errors,

outlining the formulas for computing each metric. The metrics
encompass the mean absolute error (MAE), an indicator of
errors within pair samples reflecting the same phenomena. The

mean absolute percent error (MAPE) is a metric used to assess how
accurate a forecasting system is in making predictions. The mean
scaled absolute error (MASE), it is calculated by dividing the mean
absolute error of the prediction values by the mean absolute error of
the one-step naive forecast made in the sample. The root mean
squared error (RMSE) calculates the average disparity between the
values a statistical model predicts and the observed values. The root
relative squared error (RRSE) root of the squared prediction error in
comparison to a simple model that predicts the mean. After applying
the log to both, the root mean log squared error (RMSLE) is
computed by considering the differences between the actual and
anticipated values, Iftikhar et al. (2024b).

The table presents the actual (Pd) and forecasted (P̂d) value of
PM2.5. Consequently, diminishing values for MAE, MASE, MAPE,
RMSE, RRSE, and RMSLE generally signify heightened predictive
accuracy of the model.

2.3.2 Equal forecast accuracy test
Second, a statistically equal forecast test, the Diebold–Marino

(DM) test (Diebold, 2015), is performed to evaluate the forecasting
ensemble time series proposed approach. In the literature, It is used
to evaluate time series forecasting models, determining whether the
forecast errors from one model are statistically different from
another model’s forecast errors (Iftikhar et al., 2023a; Shah et al.,
2019; Iftikhar et al., 2023b). To perform the DM test, the forecast
errors of each model are calculated using a loss function. Then, a
statistical value is computed by comparing the errors of each model.
The test statistic is based on the difference between the mean
squared errors of the two models. Suppose the test statistic is
above a certain threshold and the p-value is below a significance
level (α � 0.05). In that case, the forecasts from one model are
significantly better than the other model. For instance, calculate the
forecast errors for both models. Forecast errors ( ed � Pd − P̂d ) are

TABLE 1 Mean evaluation errors.

S.No Error Formula

1 MAE
1
D ∑D

d�1
|PD − P̂D |

2 MASE 1
D[ |PD−P̂D |

1D−1∑D
d2

|PD−PD−1 |
]

3 MAPE
1
D ∑D

d�1

∣∣∣∣∣∣PD−P̂D
PD

∣∣∣∣∣∣

4 RMSE [ ∑D
d�1

](Pd−P̂d )2
D ]]0.5

5 RMSLE [ 1
D ∑D

d�1
[log(Pd + 1) − log(P̂d + 1)]2]0.5

6 RRSE ⎡⎣∑
D

d�1
(Pd−P̂d )2

∑D
d�1

(Pd−�Pd )2
]0.5
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the differences between the observed values (Pd) and the forecasted
values (P̂d). Compute the mean difference ( �w) of the forecast errors:
�w � 1

D∑D
d�1(e1d − e2d). Where: e1d and e2d are the forecast errors

from Model 1 and Model 2 at time d, respectively, and D is the
number of observations. Next, calculate the variance of the
differences, such as σ2d � 1

D∑D
d�1(e1d − e2d − �w)2. Thus, the

Diebold-Mariano test statistic DM = �w
σ2
d

√ . Finally, the Null and
alternative hypothesized generally state as H0: There is no difference
in forecast accuracy between the twomodels (H0: �w = 0) Vs. HA: The
two models differ in forecast accuracy (HA: �w ≠ 0). Hence, the null
hypothesis implies that there is not a statistically significant
difference in forecast accuracy between the models. In contrast,
the alternative hypothesis suggests a significant difference in forecast
accuracy between the two models.

To complete this section, the main steps, including the
introduced time series ensemble forecasting approach in bullet
form, are listed below, and the flowchart is presented in Figure 1.

• In the first step, we divide the clean PM2.5 time series data into
three parts: training (in-sample), validation (evaluation), and

testing (out-of-sample) datasets. Let Pd; p � 1, 2, ·, D (1826) is
the PM2.5 time series. The training (60%, in-sample) dataset is
Pm;m � 1, 2, ·,M(1096), the validation (20%, evaluation)
dataset is Pl; l � 1, 2, ·, L(365), and the testing (20%, out-of-
sample) dataset is Pt; t � 1, 2, ·, T(365) where D (D = M + L +
T) is the total data points.

• In the second step, model the train data using single models,
i.e., the AR, the ARMA, the ESM, the NPAR, the NNA, and the
Theta model.

• In the third step, calculate the one-day-ahead PM2.5 forecast
using the expanding window technique. The forecast values,
P̂
j
D−(M+L+T) for j � 1, 2, ·, 6, are obtained by the models listed

in step 2.
• In the fourth step, the output of a basic ensemble method is
mathematically described by Equation 9.

P̂
j

D− M+L+T( ) � ∑6
j�1

WiP̂
j

D− M+L+T( ) (9)

Where Wi, are obtained by three weighting strategies: a) equal
weight to all single models and denoted by (ESME); b) weight
assigned based on training mean accuracy measures (MAPE,
MASE, MAE, RMSE, RMSLE, and RRSE) and denoted by
(ESMT); c) weight assigned based on validation mean accuracy
measures and denoted by (ESMV). The lower accuracy mean
errors model assigns more weight to the ensemble model in
training and validation data sets. In contrast, the model with
the model with the highest accuracy has fewer errors than the
ensemble model. However, the model weights are small positive
values, and the sum of all weights equals one, indicating the
percentage of trust or expected performance from each model.
Thus, obtain the day-ahead forecast values using Equation 9 for the
ESME, ESMT, and ESMV models.

• In the fifth step, evaluate the model based on average accuracy
errors, an equal forecast statistical test, and a graphical
assessment (see details in 2.3).

3 Case study results

In order to obtain short-term PM2.5 concentration day-ahead
forecasts, this study uses the proposed time series ensemble
approach to the PM2.5 time series data from major cities in
Pakistan, including Karachi, Lahore, Peshawar, and Islamabad.
The data in this study was collected primarily from air quality
data from sensors located at United States embassies across Pakistan
(Pakistan, 2021). The datasets for all four cities (Karachi, Lahore,
Peshawar, and Islamabad) were recorded daily for 5 years, from
1 June 2019 to 31 May 2023. The considered datasets are described
in Table 2, and the location of each city on the Pakistan map has
been shown in Figure 2. However, the PM2.5 concentration time
series generally comprises missing values, high variance, non-
normal, and non-stationary. Before modeling and forecasting,
these irregularities must be addressed. To tackle these issues, this
work first treated the missing values. Multiple imputations imputed
the missing data that were considered using the fully conditionally
specified. The imputation was done separately for each series

FIGURE 1
PM2.5 modeling and forecasting: A complete proposed time
series ensemble approach Layout.
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(Lahore, Karachi, Peshawar, and Islamabad). The percentage of
missing data was between 1.90% and 3.00%, shown in Table 2.
However, after getting the imputed PM2.5 concentration time series
(free of missing data), Figure 3A depicts a graphical representation
of all four cities’ imputed daily time series. This figure confirms a
long-run linear trend component and an annual seasonality in all
four megacities’ time series data.

3.1 Data description

On the other hand, Table 3 represents a comprehensive
overview of the statistical properties (with and without log
descriptive statistics) for PM2.5 concentrations of four cities such
as Lahore, Peshawar, Karachi, and Islamabad. As a result, these
statistics provide valuable insights into the central tendency, spread,
symmetry, and stationarity of the data associated with each city. For
instance, as seen in this table, the variance and standard deviation
are stabilized by taking the logarithm of each city’s time series.
Conversely, the measures of central tendency (mean, median, and

mode) indicate that the data is non-normal because the mean,
median, and mode are unequal. However, the log series in each
case shows the same central tendency, indicating that the series is
normal by taking the log to the original series in each case. For
example, the mean, median, and model for Islamabad city are
approximately the same, taking the log of the PM2.5

concentration series. The same experience is experienced in other
cities (Lahore, Karachi, and Peshawar). Next, the Augmented
Dickey-Fuller (ADF) test is performed to check the non-
stationarity issues. The results (the ADF statistic values), listed in
Table 3, suggest that both the log-filtered imputed daily PM2.5 time
series and the log-imputed daily PM2.5 time series have a negative
statistic value, which indicates that the series is stationary. In
addition, the graphical look of all stationary series is plotted in
Figure 3B. It can be seen that there is no evidence of nonstationary
use in all four megacity time series cases. Once the database
addresses all the essential treatments (missing values, variance
and standard deviation stabilization, normality, and stationary
issues), we proceed further for modeling and forecasting
purposes. The dataset was divided into training, validation, and

TABLE 2 Details about the considered original, missing, and imputed datasets are provided in this work.

Data period City Total Observed Missing Imputed (%)

2019–2023 Islamabad 1,461 1,430 31 2.12

2019–2023 Lahore 1,461 1,418 43 2.94

2019–2023 Karachi 1,461 1,426 35 2.40

2019–2023 Peshawar 1,461 1,433 28 1.92

FIGURE 2
The location of each study city (black star) on the Pakistan map.
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testing datasets. For the daily PM2.5 concentration forecast, the
training dataset (fitting model) was 3 years (60%) from 1 June
2019 to 31 May 2021, while the validation (validation model, 20%)

and testing (testing model, 20%) datasets were one complete year
from 1 June 2021 to 31 May 2022 and 1 June 2022 to 31 May 2023,
respectively.

FIGURE 3
Time Series Plot: Original time series (top) and the first ordered difference time series for all four megacities (bottom).
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3.2 PM2.5 forecasting outcomes

The given steps must be followed to obtain the forecast for PM2.5

concentration one step ahead of a day using the proposed time series
ensemble forecasting technique presented in Section 2. First, the
time series of PM2.5 is preprocessed by missing values and their
imputation, variance and standard deviation stabilization,
deterministic properties (trend and seasonality), and stationary
concerns are addressed. Then, six single time series and three
ensemble models anticipate the cleaned PM2.5 concentration time
series. Therefore, the forecast of a day ahead was obtained using the
expanding window technique for 365, and the models were
estimated accordingly. Finally, the PM2.5 concentration forecasts
were achieved through Equation 9. The performance measures,
including MAE, MASE, MAPE, RMSE, RRSE, and RMSLE, are
then used for the evaluation and comparative performance of the
models. Hence, this work uses six single time series models,
including the autoregressive model, the exponential smoothing
model, the autoregressive moving averages, the nonlinear
autoregressive, the neural network autoregressive, and the theta
model, and three proposed ensemble models (the ESME, the ESMT,
and the ESMV). Thus, the proposed time series ensemble forecasting
approach compares nine total models within the two contexts, such
as comparing single model performance, the proposed ensemble
models, and single verse ensemble models.

Hence, for all nine models for the four monitoring megacities,
including Lahore, Islamabad, Karachi, and Peshawar, one-day-
ahead out-of-sample forecast outcomes (MAE, MASE, MAPE,
RMSE, RRSE, and RMSLE) are listed in Table 4. Table 4 shows
that the ESMV produced the best forecasting results compared to all
nine forecasting models within the proposed time series ensemble
forecasting approach in all four monitoring megacities. For instance,
the average accuracy errors for these magacities are the following:
Islamabad (MAPE = 0.1739, MAE = 15.2718, MASE = 0.9237,
RMSE = 20.3203, RRSE = 0.4830, and RMLSE = 0.2354); Lahore

(MAPE = 0.2167, MAE = 34.1786, MASE = 0.9207, RMSE =
48.3090, RRSE = 0.5837, and RMLSE = 0.2701); Karachi
(MAPE = 0.1679, MAE = 16.0982, MASE = 0.9122, RMSE =
22.9913, RRSE = 0.5464, and RMLSE = 0.2215); and Peshawar
(MAPE = 0.1973, MAE = 24.1188, MASE = 0.8858, RMSE =
35.0552, RRSE = 0.5998, and RMLSE = 0.2594). However, the
ESMT model shows the second-best forecasting results among all
nine forecasting models in all four monitoring megacities, while the
third-best forecasting accuracy average error results are given in the
following manner: Islamabad (the Theta model; MAPE = 0.1835,
MAE = 16.3457, MASE = 0.9887, RMSE = 21.2335, RRSE = 0.5047,
and RMLSE = 0.2370); Lahore (the Theta model; MAPE = 0.2179,
MAE = 35.0539, MASE = 0.9442, RMSE = 49.9617, RRSE = 0.6037,
and RMLSE = 0.2723); Karachi (the ARMAmodel; MAPE = 0.1702,
MAE = 16.3909, MASE = 0.9287, RMSE = 23.3728, RRSE = 0.5555,
RMSLE = 0.2226); and Peshawar (the NPAR model; MAPE =
0.2010, MAE = 25.0597, MASE = 0.9204, RMSE = 36.1912,
RRSE = 0.6037, and RMLSE = 0.2723); Karachi (the ARMA
model; MAPE = 0.1702, MAE = 16.3909, MASE = 0.9287,
RMSE = 23.3728, RRSE = 0.5555, RMSLE = 0.2226); and
Peshawar (the NPAR model; MAPE = 0.2010, MAE = 25.0597,
MASE = 0.9204, RMSE = 36.1912, RRSE = 0.6192, RMSLE =
0.2610). Therefore, it is seen that within all nine forecasting
models, the proposed ensemble models (the ESMV and the
ESMT models) generally perform better than single models;
however, within the single models, different cities have different
single best models, as mentioned previously. Note that the best
model is an ESMV or equivalent for all four mountaineering
megacities. Also, using the proposed ensemble learning leads to
marked error reduction (see Table 4). The proposed ensemble
learning approach, thus, proves to be particularly effective in
forecasting short-term PM2.5 concentration.Once the best models
are achieved by average accuracy errors, they are processed to
confirm their superiority using a statistical test; for this purpose,
this work performs the Diebold and Mariano test (DM). This test is

TABLE 3 Descriptive statistics.

Statistic Islamabad Lahore Karachi Peshawar log
(Islamabad)

log
(Lahore)

log
(Karachi)

log
(Peshawar)

Minimum 10.00 5.00 9.00 16.00 2.30 1.61 2.20 2.77

Maximum 270.00 503.00 277.00 557.00 5.60 6.22 5.62 6.32

25% 84.00 128.00 77.00 112.00 4.43 4.85 4.34 4.72

50% 106.00 162.00 97.00 142.00 4.66 5.09 4.57 4.96

75% 139.00 218.00 143.00 168.00 4.93 5.38 4.96 5.12

Mean 112.34 183.15 109.97 146.01 4.65 5.10 4.62 4.92

Variance 1,576.95 7257.72 1795.17 2662.09 0.15 0.25 0.16 0.13

Standard
Deviation

39.71 85.19 42.37 51.60 0.39 0.50 0.40 0.36

Skewness 0.43 1.12 0.67 1.44 −1.03 −1.43 −0.66 −0.92

Kurtosis 2.94 4.18 2.76 8.60 6.23 11.44 6.43 7.95

ADF Statistic −4.05 −4.24 −3.66 −4.68 −4.54 −5.02 −4.34 −5.37

D_ADF Statistic −16.97 −16.12 −16.82 −17.38 −17.42 −15.85 −16.57 −16.20
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used to check whether two different models performed in the same
way or vice versa, and the following hypotheses are tested: the null
hypothesis, H0: There is equal accuracy between the models on the
rows and columns; the alternative, HA: Compared to the models on
the rows, the models on the columns are more accurate. In this way,
the hypothesis’s testing is statistically evaluated with the p-value. The
models assessed by this test can be interpreted as indicating that the
higher the p-value, the better the performance of the specific model.
The results (p-values) are demonstrated in Table 5, and the evaluation
of these results is based on the row and column in each case. For
example, for the Islamabad city in Table 5, it can be noticed that the
proposed ensemble model ESMV outperforms the existing models
with a value of 0.9120; additionally, for the Lahore station in Table 5, it
can be observed that the proposed ensemble model ESMV outputs a
significant p-value of 0.900, which shows that the proposed ensemble
model is more efficient than others. Furthermore, for the Karachi
station in Table 5, it is noticed that the proposed ensemble model
shows a significant value of 0.908. In addition to this, for the Peshawar
station in Table 5, it can be noticed that the proposed ensemble model
results in a p-value of 0.908, which is more significant than other
models. Hence, again, it is confirmed by the statistical test that the
proposed ensemblemodel performed better in the prediction of PM2.5

than the existing models for all four megacities.
On the other hand, after the evaluation of the proposed time series

ensemble modeling and forecasting technique by the average mean
errors and the DM test, another check can be made to evaluate the
accuracy of the selected best ensemble models by the graphical
representation of the observed data and the predicted data. To do
this, each city’s scatter plot (correlation) is drawn, and the correlation
coefficient is calculated. Figures 4A–D shows the graph for each
megacity. In Figure 5A for Islamabad city, it is noticed that the
correlation coefficient value between the forecasted and actual data set
is 0.97, indicating a strong and positive correlation. Moreover, from
Figure 4B for Lahore city, the coefficient value between forecasted and
actual data is 0.86, which shows a strong positive correlation between
forecasted and actual data. Figure 4C for Karachi city and Figure 4D
for Peshawar city, the coefficient values are 0.85 and 0.94, which shows
a strong positive correlation between forecasted and actual data. In
addition, the diagnostic checking (final residuals) plays an essential
role in model selection, and this is tracked by the auto-correlation
(ACF) plot and the partial auto-correlation plot (PACF), also known
as the correlogram plot. As stated earlier, the proposed ensemble
model is significant and efficient in forecasting the PM2.5

concentration, so the proposed ensemble model ESMV residuals
are plotted using correlograms (ACF and PACF plots). In
Figure 5, the Figure 5A, C, E, G and Figure 5B, D, F, H plots of
four megacities, namely, Islamabad, Lahore, Karachi, and Peshawar,
are demonstrated, and the 95% of the confidence interval is calculated,
which is shown by the dashed (—) lines for the upcoming lags. This
Figure 5 shows that no spike is out of the 95% of the C.I. for all four
cities, indicating that the residuals are white noise and the selected
model is best for the further statistical perspective, i.e., prediction and
forecast.Hence, to sum up this section, based on the evaluation criteria
(average mean errors, the statistical test, and the graphical
assessment), the proposed time series ensemble forecasting
approach is best for efficient and accurate short-term forecasts for
PM2.5 concentration forecasting. In addition, within the proposed
time series ensemble learning approach, the proposed ESMV model

TABLE 4 The average accuracy errors for all six single models and three
proposed ensemble models.

Islamabad

Model MAPE MAE MASE RMSE RRSE RMLSE

AR 0.1904 17.2904 1.0458 22.5284 0.5355 0.2454

ARIMA 0.1864 16.7744 1.0146 21.7228 0.5164 0.2399

ESM 0.1893 16.9394 1.0246 22.8407 0.5429 0.2633

NNA 0.2188 19.2108 1.1620 25.1802 0.5986 0.2794

NPAR 0.1922 16.8240 1.0176 21.6783 0.5153 0.2462

Theta 0.1835 16.3457 0.9887 21.2335 0.5047 0.2370

ESME 0.1934 17.2308 1.0422 22.5306 0.5356 0.2519

ESMT 0.1802 15.4959 0.9373 20.5671 0.4889 0.2441

ESMV 0.1739 15.2718 0.9237 20.3203 0.4830 0.2354

LAHORE

AR 0.2229 36.8529 0.9927 52.3530 0.6326 0.2887

ARIMA 0.2231 36.8117 0.9916 51.9208 0.6273 0.2785

ESM 0.2253 37.3232 1.0054 53.5939 0.6475 0.2889

NNA 0.2461 40.2607 1.0845 58.0993 0.7020 0.3098

NPAR 0.2185 36.0432 0.9709 51.1469 0.6180 0.2768

Theta 0.2179 35.0539 0.9442 49.9617 0.6037 0.2723

ESME 0.2256 37.0576 0.9982 52.8459 0.6385 0.2858

ESMT 0.2174 34.4391 0.9277 48.6824 0.5882 0.2706

ESMV 0.2167 34.1786 0.9207 48.3090 0.5837 0.2701

KARACHI

AR 0.1742 16.8161 0.9528 24.1719 0.5745 0.2294

ARIMA 0.1702 16.3909 0.9287 23.3728 0.5555 0.2226

ESM 0.1763 17.0864 0.9682 24.6113 0.5849 0.2325

NNA 0.1782 16.9910 0.9628 24.0124 0.5707 0.2292

NPAR 0.1758 16.6460 0.9432 23.7852 0.5653 0.2270

Theta 0.1745 16.4752 0.9335 23.1691 0.5506 0.2219

ESME 0.1749 16.7343 0.9482 23.8538 0.5669 0.2271

ESMT 0.1732 16.2855 0.9228 23.2569 0.5527 0.2229

ESMV 0.1679 16.0982 0.9122 22.9913 0.5464 0.2215

PESHAWAR

AR 0.2043 26.3133 0.9664 38.2363 0.6542 0.2728

ARIMA 0.2064 26.4649 0.9720 37.4996 0.6416 0.2653

ESM 0.2102 27.0384 0.9930 38.8519 0.6648 0.2797

NNA 0.2080 25.9315 0.9524 38.0994 0.6519 0.2682

NPAR 0.2010 25.0597 0.9204 36.1912 0.6192 0.2610

Theta 0.2031 25.3092 0.9295 37.1880 0.6363 0.2629

ESME 0.2055 26.0195 0.9556 37.6777 0.6447 0.2683

ESMT 0.1988 24.8234 0.9117 35.8784 0.6139 0.3949

ESMV 0.1973 24.1188 0.8858 35.0552 0.5998 0.2594
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TABLE 5 The DM test outcomes for all six single models and three proposed ensemble models.

Islamabad

Model AR ARIMA ESM NNA NPAR Theta ESME ESMT ESMV

AR 0.000 0.102 0.540 0.903 0.108 0.097 0.095 0.091 0.091

ARIMA 0.898 0.000 0.845 0.902 0.465 0.092 0.087 0.088 0.088

ESM 0.460 0.155 0.000 0.910 0.163 0.125 0.127 0.103 0.102

NNA 0.098 0.098 0.090 0.000 0.099 0.097 0.097 0.094 0.094

NPAR 0.892 0.535 0.837 0.901 0.000 0.088 0.089 0.087 0.087

Theta 0.903 0.908 0.875 0.903 0.912 0.000 0.888 0.087 0.087

ESME 0.905 0.913 0.873 0.903 0.911 0.112 0.000 0.088 0.089

ESMT 0.909 0.912 0.897 0.906 0.913 0.913 0.912 0.000 0.091

ESMV 0.909 0.912 0.898 0.906 0.913 0.913 0.911 0.909 0.000

Lahore

Model AR ARIMA ESM NNA NPAR Theta ESME ESMT ESMV

AR 0.000 0.165 0.873 0.891 0.104 0.099 0.099 0.104 0.104

ARIMA 0.835 0.000 0.865 0.889 0.091 0.094 0.089 0.100 0.100

ESM 0.127 0.135 0.000 0.895 0.114 0.107 0.110 0.109 0.108

NNA 0.109 0.111 0.105 0.000 0.108 0.106 0.107 0.107 0.107

NPAR 0.896 0.909 0.886 0.892 0.000 0.096 0.114 0.105 0.104

Theta 0.901 0.906 0.893 0.894 0.904 0.000 0.900 0.117 0.113

ESME 0.901 0.911 0.890 0.893 0.886 0.100 0.000 0.108 0.107

ESMT 0.896 0.900 0.891 0.893 0.895 0.883 0.892 0.000 0.102

ESMV 0.896 0.900 0.892 0.893 0.896 0.887 0.893 0.898 0.000

Karachi

Model AR ARIMA ESM NNA NPAR Theta ESME ESMT ESMV

AR 0.000 0.113 0.893 0.437 0.121 0.131 0.098 0.109 0.107

ARIMA 0.887 0.000 0.889 0.908 0.893 0.274 0.262 0.093 0.099

ESM 0.107 0.111 0.000 0.155 0.113 0.122 0.101 0.109 0.107

NNA 0.563 0.092 0.845 0.000 0.087 0.107 0.087 0.093 0.094

NPAR 0.879 0.107 0.887 0.913 0.000 0.138 0.089 0.103 0.102

Theta 0.869 0.726 0.878 0.893 0.862 0.000 0.565 0.400 0.092

ESME 0.902 0.738 0.899 0.913 0.911 0.435 0.000 0.280 0.136

ESMT 0.891 0.907 0.891 0.908 0.897 0.600 0.720 0.000 0.102

ESMV 0.893 0.901 0.893 0.906 0.898 0.908 0.864 0.898 0.000

Peshawar

Model AR ARIMA ESM NNA NPAR Theta ESME ESMT ESMV

AR 0.000 0.223 0.912 0.100 0.108 0.093 0.112 0.107 0.103

ARIMA 0.777 0.000 0.878 0.612 0.090 0.111 0.087 0.091 0.092

ESM 0.089 0.122 0.000 0.087 0.100 0.091 0.100 0.100 0.099

(Continued on following page)
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produces more precise forecasts when compared with the alternative
ensemble models and single time series models.

4 Discussion

This section elaborates an overview of comparing the proposed
best model of this work versus the literature that found the best
forecasting models. On the other hand, it also explains the future

PM2.5 forecasting results and directions for the policymaker and
health sector precautions.

4.1 Comparatively study resutls

In this subsection, we compared the results of our best ensemble
model with those reported in the literature models. Our model
showed high comparability with the other methods. Our best

TABLE 5 (Continued) The DM test outcomes for all six single models and three proposed ensemble models.

Peshawar

Model AR ARIMA ESM NNA NPAR Theta ESME ESMT ESMV

NNA 0.900 0.388 0.913 0.000 0.120 0.104 0.134 0.117 0.109

NPAR 0.892 0.910 0.900 0.880 0.000 0.857 0.900 0.101 0.097

Theta 0.907 0.889 0.909 0.896 0.143 0.000 0.305 0.129 0.112

ESME 0.888 0.913 0.900 0.866 0.100 0.695 0.000 0.100 0.098

ESMT 0.893 0.909 0.900 0.883 0.899 0.871 0.900 0.000 0.096

ESMV 0.897 0.908 0.901 0.891 0.903 0.888 0.902 0.904 0.000

FIGURE 4
The correlation plots for the best models among all nine considered models in each city: Islamabad (a), Lahore (b), Karachi (c), and Peshawar (d).
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(ESMV) model produced the most negligible mean errors and the
highest correlation coefficient (MAPE = 0.1679, MAE = 16.0982,
MASE = 0.9122, RMSE = 22.9913, RRSE = 0.5464, and RMLSE =

0.2215) compared to the best models reported in the literature. For
example, the best autoregressive distributed lag model (the ARDL
model) proposed in Qayyum et al. (2021) was applied to the dataset

FIGURE 5
The autocorrelation function and partial autocorrelation plots for the best models among all nine considered models in each megacity case: (A, B)
Islamabad, (C, D) Lahore, (E, F) Karachi, (G, H) Peshawar.
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TABLE 6 Forecasted values exercise for all megacities for the next 15 days using the best model in each case.

Islamabad Karachi Lahore Peshawar

Date Actual Forecasted PFE Actual Forecasted PFE Actual Forecasted PFE Actual Forecasted PFE

6/1/2023 49.00 48.12 1.80 55.00 54.60 0.73 93.00 92.03 1.04 73.00 73.02 0.03

6/2/2023 76.00 76.50 0.66 63.00 64.01 1.60 139.00 138.01 0.71 96.00 95.09 0.95

6/3/2023 79.00 79.32 0.41 70.00 70.43 0.61 153.00 153.90 0.59 128.00 127.91 0.07

6/4/2023 90.00 88.12 2.09 80.00 81.01 1.26 126.00 125.01 0.79 113.00 112.01 0.88

6/5/2023 83.00 82.10 1.08 62.00 62.98 1.58 123.00 124.01 0.82 100.00 99.09 0.91

6/6/2023 83.00 82.30 0.84 60.00 59.02 1.63 88.00 89.01 1.15 121.00 120.76 0.20

6/7/2023 86.00 84.50 1.74 64.00 64.98 1.53 125.00 124.21 0.63 129.00 129.09 0.07

6/8/2023 113.00 113.54 0.48 65.00 65.02 0.03 236.00 237.50 0.64 124.00 125.01 0.81

6/9/2023 125.00 123.12 1.50 60.00 59.02 1.63 174.00 174.50 0.29 153.00 154.05 0.69

6/10/2023 107.00 107.54 0.50 60.00 60.09 0.15 145.00 144.30 0.48 148.00 148.04 0.03

6/11/2023 80.00 81.00 1.25 50.00 51.23 2.46 118.00 118.09 0.08 102.00 102.98 0.96

6/12/2023 100.00 99.98 0.02 72.00 72.90 1.25 147.00 146.32 0.46 132.00 132.12 0.09

6/13/2023 104.00 103.20 0.77 75.00 74.08 1.23 133.00 132.05 0.71 116.00 116.12 0.10

6/14/2023 91.00 90.12 0.97 73.00 72.58 0.58 116.00 116.43 0.37 134.00 134.76 0.57

6/15/2023 67.00 65.98 1.52 76.00 75.55 0.59 89.00 89.02 0.02 83.00 84.09 1.31
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used in our study and showed accuracy measures (MAPE = 0.1835,
MAE = 21.3457, MASE = 0.9887, RMSE = 21.2335, RRSE = 0.5047,
and RMLSE = 0.2370) that were significantly greater than those of
our best (ESMV) model. The best model proposed in another study
(see Bhatti et al., 2021) - the seasonal autoregressive moving average
factor analysis approach - was also applied to our dataset and
obtained average mean errors (MAPE = 0.1823, MAE = 20.1038,
MASE = 0.9483, RMSE = 36.1853, RRSE = 0.7214, and RMLSE =
0.2901) that were higher than those of our best (ESMV) model.
Similarly, in reference Waseem et al. (2022), the best proposed
LSTM encoder-decoder applied to our dataset obtained
performance metrics (MAPE = 0.2010, MAE = 25.0597, MASE =
0.9204, RMSE = 36.1912, RRSE = 0.6192, RMSLE = 0.2610) worse
than those obtained with our best combination model (ESMV). In
conclusion, our study’s best final model (ESMV) showed high
efficacy and accuracy compared to the best models reported in
the literature.

4.2 Future short-term forecasting using the
superior model

On the other hand, once the best models were assessed through
average accuracy errors (MAPE, MAE, MASE, RMSLE, RRSE, and
RMSE), an equal forecast statistical test (the DM test), graphical
evaluation (the ACF, PCAF, and correlogram plots), and comparing
with the literature best models this work proceeded to future short-
term forecasting with the superior model (the ESMV). In this regard,
the current work used the ESMV for the PM2.5 concentration and
forecast from June 1 to 15 June 2023 (15 days) for the daily PM2.5

concentration. The forecasted and actual values of the daily PM2.5

concentration are tabulated in Table 5. As seen from this table, the
daily PM2.5 concentration gradually increased, and the first peak
(123.12 (μg/m3)) was attained on 9 June 2023; however, after this
peak, the forecasts were between 65 (μg/m3) and 110 (μg/m3). In
Lahore city’s case, the highest value (236.00 (μg/m3)) of PM2.5 was
observed on 8 June 2023, while the other days also showed higher
and worse air quality throughout the 15 days. Conversely, Karachi
City has observed moderate PM2.5 concentration levels between
50 (μg/m3) and 80 (μg/m3) throughout the next 15 days. In the case
of Peshawar City, the PM2.5 concentration level was not healthy, and
the highest peak was observed on 9 June 2023; however, the other
14 days also showed significant polluted air in the city. As the
proposed ensemble model passes all the necessary statistical tests to
prove its efficiency over the other existing models that are being
compared, the final step is to move towards daily forecasted PM2.5

concentration values versus the original PM2.5 concentration values
of the 15 days (June 1 to 15 June 2023). Table 6 presents the
forecasted values for the next 15 days for all four megacities using the
proposed model. The percentage forecast error (PFE) is calculated,
while the PFE can be defined as PFE = (P̂ - P/P) * 100. where P is the
actual value and P̂ stands for forecasted values. Table 6 gives PFE for
each city for the next 15 days. It is found that, on average, the PFE for
Islamabad station is 1.04, which is negligible, or stated differently,
that this error lies in a 95% confidence interval. Also, for the Karachi
station, the PFE on average is 1.12. Moreover, the PFE on average for
Lahore station is 0.58, and lastly, for Peshawar station, the PFE on
average is 0.51. These, on average, errors prove that the proposed

ensemble model forecasts the PM2.5 efficiently with the lowest
forecast errors.

As per the Air Quality Index by the Environment Protection
Agency, US, the following ranges and their health level concerns:
0–12 (μg/m3), good; 12.1–34.5 (μg/m3), moderate;
34.6–55.4 (μg/m3), unhealthy for sensitive groups;
55.5–150.4 (μg/m3), unhealthy; 150.5–250.4 (μg/m3), very
unhealthy; 250.5–350.4 (μg/m3), and hazardous;
350.5–450.4 (μg/m3). In this way, the air quality is classified into
different categories for the four megacities of Pakistan based on
actual and forecasted values. Islamabad city found that most of the
predicted values lie in the fourth class, i.e., S 55.5, which indicates
that the air in Islamabad is unhealthy and needs severe precautions
for the citizen’s health. Moreover, for Karachi, it is found from the
forecasted table that the most values lie in the third class, i.e., &
55.5 (μg/m3), which highlights that the air of the Karachi district is
sensitive to some specific groups of people. In addition to this, for
Lahore city, the majority of forecasted values lie in the, i.e.,&
55.5 (μg/m3) unhealthy and, i.e., & 150.5 (μg/m3) very
unhealthy class of air quality, and lastly, for Peshawar city, the
majority of predicted values lie in the suffering class of air quality.
Therefore, given that the study demonstrated that ensemble-based
time series models could reliably simulate and forecast PM2.5 levels,
it is suggested that these models be used in real-world scenarios.
These models can help decision-making about pollution control and
public health by offering insight into future PM2.5 levels.
Policymakers can benefit from precise PM2.5 forecasts when
creating efficient pollution management strategies and
regulations. To detect trends and patterns and implement timely
measures to alleviate pollution and its detrimental impacts on public
health, regular monitoring of PM2.5 levels in Pakistan’s main cities
might be helpful. The study’s findings can be utilized to educate the
public about the dangers increased PM2.5 levels pose to their health.
Public awareness efforts concerning PM2.5 pollution can help people
decrease their exposure by encouraging them to use air purifiers
indoors and stay indoors during high pollution. In summary, this
study offers a significant understanding of the modeling and
forecasting of PM2.5 levels in Pakistan’s main cities, which may
guide policy decisions and measures to lower air pollution and
safeguard public health.

5 Conclusion

This work proposes a novel time series ensemble approach using
the daily PM2.5 concentration data from 1 January 2019 to 31 May
2023 from Pakistan’s megacities, including Lahore, Karachi,
Peshawar, and Islamabad, to forecast short-term PM2.5

concentrations. First, the proposed ensemble approach
preprocesses the PM2.5 time series by missing value, variance
stabilization, normality, deterministic features, and stationary
concerns. Second, six single forecasting models: four linear
(autoregressive, simple exponential smoothing, autoregressive
moving average, and theta) and two nonlinear (nonparametric
autoregressive and neural network autoregressive) time series
models and three of their ensemble models forecast the cleaned
PM2.5 concentration time series. The results of six accuracy metrics,
the Diebold and Mariano test, and the correlation plot show that the
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proposed ensemble approach, ESMV, was accurate and efficient for
day-ahead PM2.5 concentration forecasting. For instance, when the
performance of the best ensemble model (ESMV) was compared to
all the competitor models (six single models and two other proposed
ensemble models) in the four monitoring cities, it was discovered
that the model performance had mean errors ranging from 3.60% to
25.79%, 0.81%–13.52%, 1.08%–7.06%, and 1.09%–12.11% in
Islamabad, Lahore, Karachi, and Peshawar.

In addition, using the best ensemble model in this work, a
forecast was made for the next 15 days (1 June to 15 June 2023); the
forecast exercise shows that the elevated levels of PM2.5 in major
megacities of Pakistan, including Islamabad, Lahore, Karachi, and
Peshawar, are suffering from severe air pollution issues. The capital
city of Pakistan, Islamabad, is significantly affected by the problem
of air pollution, with exceptionally high PM2.5 levels, and the leading
cause of this pollution belongs to multiple sources, including
industrial processes, natural sources, and vehicle emissions.
Another significant city in Pakistan, Lahore, has frequently
experienced considerable trouble with its air quality, notably in
the winter season when variables like temperature inversions and
crop burning increase pollution levels. Being a major metropolis and
an industrial center, Karachi also suffers from air pollution. The
reasons behind this air pollution are the city’s industrial operations,
heavy traffic, and trash burning. Peshawar, a capital city in the
province of Khyber Pakhtunkhwa, also has air pollution problems,
and the same factors, like automobile emissions, manufacturing, and
farming practices, cause air pollution. It was found that the factors
that pollute the air and make it unhealthy are similar in every city in
Pakistan. This polluted air caused smog and irregular moments like
accidents and holidays at educational institutions.

However, the study’s main limitation is that it only incorporates
PM2.5 concentration data and does not include additional exogenous
parameters such as temperature, PM10, wind speed, ozone
concentration, meteorological data, and gas concentrations, which
might improve PM2.5 forecasting accuracy. On the other hand, the
current study employed only data from Pakistani megacities. It may be
used in different countries to assess the utility of the proposed time
series ensemblemodeling and forecasting approach. Furthermore, while
this study only employed univariate time series models, machine
learning techniques like deep learning and artificial neural networks
might be explored within the proposed forecasting framework.
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