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Wildfires rank among the world’s most devastating and expensive natural
disasters, destroying vast forest resources and endangering lives. Traditional
firefighting methods, reliant on ground crew inspections, have notable
limitations and pose significant risks to firefighters. Consequently, drone-
based aerial imaging technologies have emerged as a highly sought-after
solution for combating wildfires. Recently, there has been growing research
interest in autonomous wildfire detection using drone-captured images and
deep-learning algorithms. This paper introduces a novel deep-learning-based
method, distinct in its integration of infrared thermal, white, and night vision
imaging to enhance early pile fire detection, thereby addressing the limitations of
existing methods. The study evaluates the performance of machine learning
algorithms such as random forest (RF) and support vector machines (SVM),
alongside pre-trained deep learning models including AlexNet, Inception
ResNetV2, InceptionV3, VGG16, and ResNet50V2 on thermal-hot, green-hot,
and white-green-hot color images. The proposed approach, particularly the
ensemble of ResNet50V2 and InceptionV3 models, achieved over 97%
accuracy and over 99% precision in early pile fire detection on the FLAME
dataset. Among the tested models, ResNet50V2 excelled with the thermal-
fusion palette, InceptionV3 with the white-hot and green-hot fusion palettes,
and VGG16with a voting classifier on the normal spectrum palette dataset. Future
work aims to enhance the detection and localization of pile fires to aid firefighters
in rescue operations.
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1 Introduction

Wildfires have recently caused significant damage to forests, wildlife habitats, farms,
residential areas, and entire ecosystems. Data from the National Interagency Fire Center
(NIFC) reveals that between 2012 and 2021 in the United States, 22,897 fires ravaged more
than 1,082,125 acres, resulting in over $7.4 billion in losses. Fires are rare but can quickly
lead to extensive harm and property damage. The National Fire Protection Association
(NFPA) predicts that in 2022, the United States Emergency Fire Service will respond to
approximately 1,089,844 fires, leading to 1,149 civilian deaths and an estimated $18 billion
in property damage (National Fire News), (Statistics). Early identification of fires without
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false alarms was critical to reduce such catastrophes. As a result,
various active fire protection methods were created and are widely
used in the current world. There were several methods available for
detecting and monitoring fires. Satellite imagery, remotely piloted
vehicles (RPV), and sensors were examples of this. These systems,
however, do not enable real-time fire detection and monitoring.
Some disadvantages of these technologies include: i) fires were not
noticed in their early stages, ii) satellites have larger time delays, and
iii) sensors become an infeasible option due to their limited range.
Even if spectral imaging is employed, it may not provide an accurate
result at night or in bad weather. To fight against fire at the right
moment, individuals were now engaged to watch the forest, risking
their lives. These troubling facts inspire academics to develop
innovative early pile burn identification and monitoring methods.

In particular, technical innovations in airborne surveillance
technologies can provide early rescuers and tactical soldiers with
more precise fire behavioral information for improved fire
catastrophe prevention and mitigation. Using computer vision
and remote tracking imagery, remotely piloted aircraft proved
highly effective for real-time fire monitoring and detection.
Unmanned aerial vehicles (UAVs), also known as drones, offer a
quicker, more agile, and cost-effective method for forest
surveillance. Enhancing UAVs with remote sensors can
significantly improve current techniques. Additionally, UAVs can
operate in hazardous areas that are unsafe for human access.
Traditional methods of finding and monitoring flames included
stationing personnel in observation stations or sending choppers or
corrected airborne vehicles to surveil fires using long-wave thermal
vision (Habiboǧlu et al., 2012, Rafiee et al., 2011, Jadon et al., 2019).
Current research has examined wireless mesh network-based
Internet of Things (IoT) advancements, but such infrastructures
would require additional funding and verification before providing
meaningful information. Satellite data was frequently used for
international fire assessment at larger scales, albeit at relatively
low resolution and with repeat imagery availability controlled by
satellite circular trends (Afghah et al., 2018a).

Given these systems’ limits and problems, the use of Unmanned
Drones for fire monitoring has grown in recent decades. UAVs
provide innovative characteristics and benefits such as quick
deployment, mobility, a broader and adjustable field of view, and
little operator engagement (Afghah et al., 2018b, Aggarwal et al.,
2020, Afghah et al., 2019). UAVs can offer the following advantages:
they cover a large area, even in overcast conditions, work at all hours
of the day and night, are readily recovered, and are reasonably
affordable, electric UAVs are also beneficial to the environment,
transport various payloads for various missions and effectively cover
target area (Casbeer et al., 2006, Yuan et al., 2015a) and, most
critically, missions may be completed automatically without or with
minimal human pilot/operator interaction. Drone technology
development has increased in recent years. Nowadays, unmanned
aerial vehicles (UAVs) are employed in emergency relief scenarios
and activities such as forest fires and flooding, especially as a short-
term solution whenever domestic connections crash due to
destroyed infrastructure, miscommunication, or bandwidth limits
(Shamsoshoara et al., 2020a, Shamsoshoara, 2019).

Artificial intelligence (AI) and machine learning advancements
in recent years have boosted the success of image categorization,
detection, legitimate forecasting, and other applications. Artificial

intelligence (AI) can be utilized in numerous fields. The
advancement of nanotechnology in semiconductor materials has
led to the creation of advanced tensor and graphical processing
units, which offer exceptional processing power for data-driven
approaches. Moreover, modern drones and aerial vehicles can be
equipped with compact edge technology TPU and GPU units for
real-time processing, enabling early detection of fires and preventing
major disasters (NVIDIA Jetson Nano Developer Kit), (Edge TPU).

Several guided learning algorithms rely on massive training sets
to produce a suitably accurate model (Wu et al., 2020). Using a
public fire dataset, their research detected fires using pre-trained
convolutional neural networks such as mobile and AlexNet
architecture. That dataset, however, was based on images of the
fire acquired from the ground. To our knowledge, the fire luminosity
airborne-based machine learning evaluation (FLAME) dataset was
the only airborne imagery collection for pile-fire research that could
be used to build fire modeling or advanced analytics systems for
airborne surveillance systems. The authors used their own gathered
normal-spectrum fire dataset to detect fire using XceptionNet’s pre-
trained convolutional neural network (CNN) architectures
(Shamsoshoara et al., 2021).

In this article, researchers have utilized the FLAME dataset
for pile burns. It is a drone-captured pile of fire clips and photos
taken during organized slashed piles in North Arizona. Pile burns
were extremely useful for studying spot fires and early-stage fires.
Following thinning and restoration initiatives, forest
management generally uses pile fires to clear up forest
leftovers, such as branches and leaves. Various UAVs took the
imagery with distinct viewpoints, magnification levels, and
camera kinds, including conventional and infrared cameras.
Forestry interventions were an essential strategy for reducing
biofuels, and blazing chopped piles were often the most cost-
effective and secure technique for re-moving gash. Large burning
regions were often hard to manage, resulting in massive
deforestation from wildfires. As a result, any controlled
burnings were accompanied by comprehensive forest
management strategies to avoid fire. Slash or debris burning
was common for certain farms and families to burn leaves,
crop remnants, and other agricultural trash. This method was
both faster and handier than taking them away. However, being
near woods increases the danger of wildfires and affects the
environment, not to mention that it was outlawed in many
nations and states across the United States. Using automated
aerial surveillance devices can significantly decrease the effort of
forest managers. Google’s Federated Transfer Learning (FTL) is
highlighted as a promising decentralized learning methodology
that can be integrated with UAV-based fire detection systems,
enhancing the efficiency and accuracy of models operating with
limited resources. (Bonawitz et al., 2019). Portable technologies,
such as unmanned aerial vehicles (drones), employ localized
information to train a model with raw data the drone collects.
They then communicate anticipated data with the FTL. Later, the
FTL gets all model parameters via various drones and starts
combining them before releasing an optimal model to all
drones so they can concur rapidly. FTL techniques provide
data secrecy and confidentiality; these techniques are well
suited to narrow bandwidth and portable devices with limited
charging capacity. Furthermore, it exchanges model parameters
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with the FTL rather than all images and videos, reducing
latency output.

The current FLAME dataset was gathered utilizing several
drones (Shamsoshoara et al., 2021, Shamsoshoara et al., 2020b).
As a result, the FTL solutions in this data collection are vital for
industrial difficulties and open issues (Brik et al., 2020). The FLAME
collection contains aerial imagery and clips of two sorts of palettes:
normal range spectrum palettes and thermal fusion palettes, taken
by advanced high-resolution cameras attached with drones which
give four output visuals such as normal-spectrum for RGB col-or-
space, Fusion heat map, white-fusion, and lastly, green-fusion
having thermal palettes. In this work, the authors focused on
individual binary classification tasks to assess the dataset’s utility
for extreme fire control problems. This paper presents a
comprehensive comparative study of the performance of machine
learning and deep learning models on the FLAME dataset. Gabor
filter and Sobel filters extract features, and RF and SVM classifiers
are used to detect early pile fire detection. Transfer learning is used
to design and implement deep learning models. An ensemble voting
classifier is used to further improve the deep learning models’
performance. The proposed deep learning technique
demonstrated robust performance on the FLAME dataset, which
consists of aerial imagery for pile burn surveillance, including both
normal spectrum and thermal heat map frames.

2 Related work

Recent deep learning applications include detecting and
classifying visual objects, audio recognition, and natural language
processing. To increase performance, researchers have done several
experiments on fire detection based on deep learning. Deep learning
varies significantly from conventional computer vision-based fire
detection. As a result, the effort required to identify the appropriate
handcrafted qualities has been redirected toward establishing a
strong network and preparing training data. Another distinction
was that the detector/classifier may be obtained by simultaneously
training with the features in the same neural network.

Frizzi et al. (2016) proposed a fire detection network based on
CNN, where features were simultaneously learned by training a
multilayer perceptron (MLP) neural network classifier. Zhang et al.
(2016) also presented a CNN-based fire detection system that works
in a chain. If a fire is discovered, a fine-grained patch classifier is
employed to pinpoint the fire patches precisely. Muhammad et al.,
2019 suggested a fire detection system based on a finely tuned CNN
fire detector. Squeeze Net-inspired (Ye et al., 2013) optimum neural
network architecture was proposed for fire identification,
positioning, and cognitive comprehension of the fire situation.
Saydirasulovich et al. (2023) used the YOLOv8 model to detect
forest fire smoke using UAV images. Abdusalomov et al. (2023) used
the Detectron2 platform based on deep-learning methods for fast
and accurate forest fire detection.

A unit in the deep layer of CNN has a huge receptive field;
therefore, its activation may be viewed as a feature containing a big
region of context information. This was another advantage of using
CNN to train features for fire detection. Shamsoshoara et al. (2021)
produced the FLAME dataset for pile burns in the forest of Northern
Arizona, one of the key reference papers researchers have

investigated. The FLAME collection contains aerial imagery and
clips of two sorts, normal range spectrum and thermal fusion
spectrum, taken by advanced high-resolution cameras that
provide four output visuals: normal-spectrum view, Fusion heat
map view, white-hot view, and lastly, green-hot view. The video
frames were employed for two purposes: fire presence or absence
classification and fire detection. The authors used an artificial neural
network for fire absence or presence classification and U-Net
architecture for fire detection. Xuan Truong and Kim (2012)
used an adaptive Gaussian mixture model to detect moving
regions, a fuzzy c-means algorithm to segment fire regions, and
SVM applied on parameters extracted to detect fire and non-fire
regions. Rinsurongkawong et al. (2012) proposed a method for early
fire detection based on the Lucas-Kanade optical flow algorithm.

3 Proposed methodology

Image identification is among the most challenging tasks in
computer vision. Image identification in the past algorithms used
RGB or Red and Yellow or only green channel comparison to
distinguish distinct items in frames or films, such as fire.

RGB luminosity comparing methods, for example, which
normally employ a specified threshold to locate the fire, may
identify sunset and sunrise as false positives. A guided machine
learning technique and certain advanced CNN principles are used in
this work to detect pile fires in a region using drone-camera-
captured footage, as shown in Figure 1. When pile-fire and no-
pile-fire components coexist in a mixed image, the frame is
designated “pile-fire,” when there is no pile burn, the frame is
labeled “no-pile-fire.” The Forward-Looking-Infrared (FLIR)-
Vue-Pro-R-Camera, Zen-muse X4S, and DJI Phantom 3 cameras
are used to identify four different types of recorded clips, such as
white-hot, green-hot, thermal heat mapping, and normal spectrum
of imagery. The binary classification models employed in this study
are the Resnet50V2 network, the AlexNet network, the
InceptionV3 network, and a VGG-16 network integrated with an
ensemble voting classifier. The selection of ResNet50V2, AlexNet,
InceptionV3, and VGG-16 models was based on their proven
efficacy in handling complex image classification tasks and their
ability to generalize well across varied datasets, making them
suitable for the challenging task of early fire detection in aerial
imagery. Since pile-fire detection is a binary classification problem
with two possible outcomes—pile-fire and no-pile-fire—the output
layer consisted of two neurons and employed a sigmoid activation
function. The sigmoid activation function is represented by the
following Equation 1.

p target label � pile−fire( ) � σ target label � pile−fire | ζ θ( )( )
� 1/ 1+ ê −ζ θ( )( )( )

(1)
where ζ(θ) was the output layer value obtained from the input
neuron, each neuron is nothing more than a pixel value of each
pixel, then summed it up with the hidden network weights. The
output value of the Sigmoid activation function was the
probability of pile-fire detection based on the loaded frames
into the network. While training the proposed pre-trained
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networks, the network weights are calculated using weight
initialization techniques; also, a loss function is employed
using the tensor-flow library to improve network accuracy and
determine the optimal weight values. Although the challenge in
this part involves binary-classification, the error function studied
is a binary-cross-entropy binary cross entropy which is calculated
as shown in Equation 2 below:

LBCE z, ẑ( ) � −1\/NΣ zi p log p ẑi( )( )
+ 1 − zi( ) p log 1 –p ẑi( )( ) (2)

where N, at each epoch is the sample population in each
batch utilized to adjust the gradient descent, and z is the actual
true label for the frames training dataset. Classified as pile-fire (z = 1)

FIGURE 1
General architecture of multi-vision cameras input and different use-case for early pile fire detection.
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and z = 0, if classified as no-pile-fire. The projected probability of a
frame belonging to the fire class was given by (ŷ). During the
learning phase, the Adamax optimizer optimizer regulates the
error function and the optimal weights on each hidden layer.

3.1 Residual neural network–Resnet-50:
Version 2.0

ResNet50V2 is a typical pre-trained convolutional neural
network capable of image recognition, auto-encoding, and
classification. ResNet50V2 is a variant of the ResNet model with
forty-eight convolutions, one max-pooling layer, and one average-
pooling layer (Xuan Truong and Kim, 2012), (Rinsurongkawong
et al., 2012). ResNet50V2 is an upgraded version of the
ResNet50 architecture that outperformed ResNet50 and
ResNet101 on the ImageNet repository. ResNet50V2 modified
the transmission formulation of the linkages between blocks.
ResNet50V2 creates a 10 × 10 2048 feature map from the input
picture on its final feature ex-tractor layer. The residual network is
generated from a 50-layer residual network architecture and
includes 177 layers in total. The weights of the pre-trained
network’s previous layers (1–174) are frozen. The weights of
several early layers can be frozen to accelerate network training
and considerably prevent over-fitting to new data.

3.2 AlexNet: Version 2010

The AlexNet model has enhanced network depth compared to
LeNet-5. AlexNet encompasses eight tiers of trainable parameters, as
discussed in (Hu et al., 2018), (Muhammad et al., 2019). Its
architectural design consists of five layers, comprising a max-
pooling layer, three fully connected layers, and a final layer with an
output layer employing the ReLU activation function to produce
outputs. Dropout layers are also used to avoid overfitting in their
model. This model takes images with dimensions 227 × 227 × 3 as
input. The resultant feature vector has the dimensions (13 × 13 × 256).
The number of filters rises as input imagesmove further into the levels.

3.3 Inception-Net: Version 3.0

The InceptionV3 is a pre-trained convolution neural network
used for image classification. The InceptionV3 is a modified version
of the base models like the InceptionV1, launched by Google in
2014. The InceptionV3 model is a slightly advanced and optimized
version of the inception-v1 model. Many techniques were used to
optimize and stabilize the model (Shafiq and Gu, 2022), (Zhou et al.,
2016). As a result, they created deeper networks than the Inception-
v1 and v2 models, though it needed to be more effective, it took less
computational power. The Inception-v3 model has forty-two layers,
which is slightly higher than the previous base models. Several
improvements have beenmade to Inception v3, such as factorization
being fast as smaller convolutions, spatial factorization being
converted to asymmetric convolutions, and the efficient grid size
being reduced. These were the primary changes made to the
InceptionV3 model.

3.4 Visual geometry group networks–VGG-
Net: Version 16

The VGG-16 is also a modified version of the VGG model with
sixteen convolution layers. As per the observation of the VGG-16
architecture, it contains sixteen convolutional layers. This model
also has the same 3 × 3 size filters on each layer (Kundu et al.,
2018), (Szegedy et al., 2017), and (Wang et al., 2017). This study
used the VGG-16 model as a pre-trained model, which was trained
on an ImageNet dataset. The parameters can be used as hyper-
parameters to improve the accuracy. This network setup accepts a
fixed size of 227 × 227 image pixels with three channels - Red,
Green, and Blue. The only image preprocessing performed on the
image is normalizing each pixel’s RGB values. Then, the image is
passed through the ReLU activation function with a stack of two
convolution layers having a filter size of 3 × 3. These 2 convolution
layers include 64 filters, each with stride and padding by 1. This
setup is also helpful in preserving spatial resolution. In the last
layer, the dimension of the output layer is kept the same as the
dimensions of the input image. A window size of 2 × 2 and a stride
of two pixels were applied to the images.

3.5 Ensemble vote
classifier–Voting classifier

A voting classifier is an ensemble learning technique. Voting
classifiers can aggregate multiple base model outputs and give the
best result for a specific problem. The voting aggregation method
considers each base model probability and combines them to
produce an average probability of a model (Mueller et al., 2013),
(Borges and Izquierdo, 2010), (Qureshi et al., 2016). There are
two methods of voting criteria. Hard voting gives an integer
number as a probabilistic output class, while soft voting means a
floating-point-based probabilistic output class. Thus, a voting
classifier can be used as a hard or soft vote for optimal results. The
proposed model is trained using three basic estimators for pile fire
classification: Logistic Regression, RF, and Gaussian naive Bayes
as shown in Figure 2. Developers have the flexibility to select
between hard and soft vote aggregators using the parameters
“voting = ‘soft’” or “voting = ‘hard’”. In the proposed model, a soft
voting classifier is utilized with a weight distribution of 1:2:1,
where the RF model is assigned twice the weight compared
to others.

4 Dataset

This section contains information about the captured
images and recorded clips captured by drones. These video clips
were played at different frames-per-second speeds. To create
an image (frame) dataset from a video clip, it is edited and cut
into frames, where each frame may contain a black-out, pile-fired,
or no-plie-fired type of background. The FLAME collection,
hosted on the IEEE POST website, is freely accessible. Users
can download the full high-resolution video clips and
corresponding images, which are organized into four categories
based on the type of drone camera and palette used. The dataset is
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FIGURE 2
Voting Classifier for pile fire classification.

FIGURE 3
Randomly generated frames of pile burn and no pile burn areas using three different drones having normal spectrum.
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structured to facilitate easy extraction of frames for analysis. The
FLAME collection has a total of four different recordings, which
were captured using different drone cameras, such as normal-
range-spectrum with RGB color-space shown in Figure 3 and
thermal-heat-map, white-hot-fusion and green-hot-fusion
palettes shown in Figure 4.

4.1 Normal-spectrum palette

The Zenmuse-X4S and the Phantom-3 Camera were used to
capture the Normal-Spectrum Palette. Many videos and photos
with pile-fire and no-pile-fire imagery were accessible in the
FLAME repository. Two clips were recorded using the
Zenmuse-X4S Camera. One was a 16-min video with a
resolution of 1,280 × 720 and a frame rate of 29 frames-per-
second (fps). At 1,280 × 720 quality and 29 frames per second, a
further 6 min of video was available for pile-fire from the start of
the burning. The size of the videos was 1.14 GB and 479 MB,
respectively. The video captured from the Phantom-3 Camera was
of length 17 min with a frame resolution of 3,840 × 2,160. Figure 3
shows some images (frames) of pile-fire and no-pile-fire clips
captured by the drone. These clips can be found in the
suggested flame dataset. All videos were shot using different
palettes—Normal-Spectrum, Thermal-Fusion, White-Hot, and
Green-Hot—each captured with specialized drone cameras. All
videos were shot at 640 × 512 resolution and 30 frames per second.
There were several videos with varying lengths of fire and no-fire
types. Table 1 (a) shows the sample set distribution for normal
spectrum palette images.

4.2 Thermal-fusion palette

The Thermal-Fusion Palette was captured using a Forward-
Looking-Infrared (FLIR) Vue Pro R camera. A solitary video clip
was accessible in the FLAME repository, showcasing frames
depicting both scenes with pile fires and scenes without pile fires.
The video of length 24 min and has 640 × 512 resolution with
30 frames-per-second (fps). The size of the video clip was 2.83 GB.
Table 1 (b) shows the sample set distribution for thermal fusion
palette images.

4.3 White-hot palette

The White-Hot palette was recorded using a Forward-Looking-
Infrared (FLIR)-Vue-Pro-R-camera. Only one video clip was
available on the FLAME repository, which has frames containing
both pile-fire and no-pile-fire imagery. The video of length 2 min
and has 640 × 512 resolution with 30 frames-per-second (fps). The
size of the video was 43.3 MB. Table 1 (c) shows the sample set
distribution for white-hot palette images.

4.4 Green-hot palette

The Green-Hot Palette was recorded using Forward-Looking-
Infrared (FLIR)-Vue Pro-R-camera. Only one video clip was present
on the FLAME repository with frames containing both pile-fire and
no-pile-fire imagery. The video of length 5 min and has 640 ×
512 resolution with 30 frames-per-second (fps). The size of the video

FIGURE 4
Images (frames) of a thermal heatmap, comprising thermal-fusion, white-black-fusion, and green-black-fusion palettes, whichwere taken from the
sky view to the ground view.
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clip was 146 MB. Table 1 (d) shows the sample set distribution for
green-hot palette images.

5 Image pre-processing and
augmentation

5.1 Image pre-processing

Image processing of flame is an important part of fire safety
engineering since pixel-based fire detection systems are increasing
rapidly. The border extraction method was one of the most critical
phases in fire image processing, serving as a precursor and laying the
groundwork for subsequent processing. There were several motives
because flame margin identification was crucial. For starters, the
flame borders provide a framework for measuring many aspects of
flame dynamics, such as structure, volume, orientation, and
steadiness. Second, establishing flame borders can reduce the file
size processed and screen out unwanted data within the frame, such
as noise in the background (Celik, 2010), (Habiboǧlu et al., 2011).
Border identification, in other words, can preserve significant
structural characteristics of the flames while shortening time
consumption. Finally, border identification can be used to split a

group of flames. This was useful in smothering many flames in boiler
tubes with a multi-burner system. Moreover, prompt identification
of flame borders can trigger a fire alert and offer firefighters
information on the type of fire, combustible substances, the
outside of the flame, and so on. For example, the mobility of a
monitored flame border can be used to distinguish between actual
and spurious fire alarms (Çelik and Demirel, 2009), (Umar et al.,
2017), (Binti Zaidi et al., 2015). In this study, the authors have
extracted features from an image/frame using pixel value, Gabor,
and Sobel filters. Figure 5 depicts a sample image of a thermal fusion
palette and flame edge detection phases.

5.2 Image augmentation

In this study, we utilized image augmentation techniques to
diversify the training dataset, thereby enhancing the model’s
exposure to a wider range of image variations. By altering factors
such as orientation, brightness, and size randomly, the model is
compelled to recognize image subjects across different contexts.
Unlike image preprocessing, which is applied to both training and
test sets, image augmentation is exclusively implemented on the
training data. Various methods such as translation, rotation, lighting
adjustments, and color manipulation can be employed for data
augmentation, which can be categorized into offline and online
stages. Offline augmentation involves expanding the training dataset
before training begins, while online augmentation increases the
diversity of images seen during training. In this research, offline
augmentation was employed to create a dataset for plant seedling
categorization. This involved resizing, cropping, and horizontally
flipping training photos into three sizes. Additionally, data
augmentation was illustrated in Figure 6, depicting augmentation
and transformation on thermal fusion frames across different
spectrums. Such augmentation is vital for enhancing the system’s
robustness and accuracy in estimating thermal heat within a pile.

6 Experimental results and analysis

6.1 Traditional machine learning techniques
and its comparative analysis

6.1.1 Thermal-fusion palette
The total number of frames in the training portion was 1,204,

out of which 686 were of class “pile-fire” and 518 frames of class
“pile-no-fire.” All the frames were scrambled before dumping into
themodel. The dataset containedmany raw frames, blackout frames,
and so on. As a result, image processing was required to extract the
features from the frame. A total of three filters were applied to each
frame to extract features from it. So, the first feature extracted was
the pixel value. Each image has a pixel value representing how bright
the image is in a specific region of the image or how much intensity
of the color is present in that region. The image is distributed into
three channels: red, blue, and green. Thus, each channel is
represented by 8 bits, and a total of three channels have range
from 0 to 255). The second feature extractor was the Gabor filter;
now, a total of four Gabor filters were applied on each frame with
different parameters. The parameters were theta value, which ranges

TABLE 1 Training samples and Testing samples of (a) normal spectrum
palette, (b) thermal fusion palette, (c) white-hot palette and (d) green-hot
palette.

(a) Normal spectrum palette

Class Label Training Sample Testing Sample

Pile Fire 25,018 6,242

No-Pile Fire 14,357 6,107

Total 43,375 12,353

(b) Thermal Fusion Palette

Class Label Training Sample Testing Sample

Pile Fire 686 100

No-Pile Fire 518 118

Total 1,204 218

(c) Whit-hot palette

Class Label Training Sample Testing Sample

Pile Fire 914 100

No-Pile Fire 392 114

Total 1,306 214

(d) Green-hot palette

Class Label Training Sample Testing Sample

Pile Fire 722 118

No-Pile Fire 522 100

Total 1,244 218
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from 0.0 to 2.0; sigma value, which ranges between 1 and 3; lambda
value of 0.78; and gamma value of 0.5. The third feature extractor
was the Sobel filter or the Sobel edge detector, a gradient-based
method that looks for significant changes in an image’s first
derivative. To evaluate the accuracy of the test dataset,

218 frames, including 100 pile-fire-labeled frames and 118 pile-
no-fire-labeled frames, were fed into traditional machine learning
algorithms such as RF and SVM. Table 2 shows the training
parameters used for both algorithms, and Table 3 shows the
classification report, volume of the model, inference CPU time,

FIGURE 5
Infrared image processing of pile fire images for feature extraction.

FIGURE 6
Sample augmented images of infrared -thermal processed pile fire images.
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and flops. Figures 7A, B show the confusion matrix and ROC-AUC
curve for RF algorithm applied on thermal heat map frames to detect
fire piles.

6.1.2 White-hot palette
The total number of frames in the training portion was

1,306 frames, out of which 914 frames were of class “pile-fire”
and 392 frames of class “pile-no-fire.” In image processing for this
frame, doing the same thing here by applying three filters on each
frame to extract features from the frame. So, the first feature
extracted was the pixel value. Each image has a pixel value
representing how bright the image is in a specific region of the

image or how much intensity of the color is present in that region.
The image was distributed into one channel only: Black and White.
Thus, each channel is represented by 8 bits, and a total of one
channel has 8 bits (ranging from 0 (darker) to 255 (brighter)). The
second feature extractor was the Gabor filter; now, four Gabor filters
were applied on each frame with different parameters. The
parameters were theta value, which ranges from 0.0 to 1.0; sigma
value, which ranges between 1 and 4; lambda value of 0.85; and
gamma value of 0.7. The third feature extractor was the Sobel filter
or the Sobel edge detector, a gradient-based method that looks for
significant changes in an image’s first derivative. 100 Pile-Fire-
labeled frames and 114 Pile-No-fire-labeled frames were used in
traditional machine learning methods, such as RF and SVM, to
evaluate the accuracy of the test dataset. Table 4 shows the report of
training accuracy on the training set and testing accuracy on the
testing set. Figures 8A, B show the confusion matrix and ROC-AUC
curve for RF algorithm applied on white hot palette frames to detect
fire piles.

6.1.3 Green-hot palette
The total number of frames in the training portion was 1,244, of

which 722 were of class “pile-fire” and 522 frames of class “pile-no-
fire.” In image processing for this frame, doing the same thing here
by applying three filters on each frame to extract features from the
frame. So, the first feature extracted was the pixel value. Each image
has a pixel value representing how bright the image is in a specific

TABLE 2 Training parameters of (A) RF classifier and (B) SVM classifier.

(A) (B)

Parameter Method Parameter Method

N_estimators 100 C 2

Criterion Gini Kernel ‘rbf’

Max_depth 12 decision_function_shape ‘ovo’

Min_samples_split 2 gamma ‘auto’

Random-state 42 max_iter 200

TABLE 3 Accuracy for evaluation of the pile fire for thermal fusion classification (224 × 224).

Model
name

Size of
model (MB)

Dataset type Training
accuracy

Testing
accuracy

Precision Recall F1-
score

AUC

RF 49.67 Thermal- Fusion 0.997 0.995 0.99 0.99 0.99 0.987

Palettes

SVM (RBF
Kernel)

200 Thermal- Fusion
Palettes

0.994 0.981 0.98 0.97 0.98 0.995

FIGURE 7
(A): Confusion matrix and (B) ROC-AUC curve RF algorithm applied on thermal heat map frames to detect fire piles (Best Model Performance).
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region of the image or how much intensity of the color is present in
that region. The image was distributed into one channel only: Black
and Green. But here, the green channel often contains larger bits.
This is due to our eyes’ increased sensitivity to green color and
decreased sensitivity to blue or other colors (ranging from 0 (darker)
to 255 (brighter)). The second feature extractor was the Gabor filter.
A Gabor filter with different parameters was applied to each frame.
The parameters were theta value, which ranges from 0.0 to 2.0; sigma
value, which ranges between one and 2; lambda value of 0.78; and
gamma value of 0.65. The third feature extractor was the Sobel filter
or edge detector, a gradient-based method that looked for significant
changes in an image’s first derivative. To evaluate the accuracy of the
test dataset, 218 frames, including 118 Pile-Fire-labelled frames and
100 Pile-No-fire-labelled frames, were fed into traditional machine
learning algorithms such as RF and SVM. Table 5 shows the report
of training accuracy on the training set and testing accuracy on the
testing set. Figures 9A, B show the confusion matrix and ROC-AUC
curve for RF algorithm applied on white hot palette frames to detect
fire piles.

6.2 Knowledge transferring technique:
Transfer learning (TL)

There are ample advantages to using the RF algorithm. Still, the
main drawback of using RF is that it has more decision trees, making

the algorithm computationally expensive and complex. It is also not
preferable for live streams or real-time analysis. Furthermore,
manual feature extraction is difficult to eliminate because it
requires business and domain logic to build a robust model that
can replicate and capture trends and patterns from data (Çelik et al.,
2007), (Khalil et al., 2021), (Chino et al., 2015), (Verstockt et al.,
2013). Transfer learning was, therefore, increasingly employed to
save cost and time by removing the need to train several machine
learning models from the start to execute identical tasks. This paper
uses a transfer learning approach to reduce computational costs. The
initial layers, except the last dense layer, were frozen, and pre-trained
models with trainable parameters contributing to the last layer were
used, which reduced the time required for the training and
compared to training the entire model from scratch. Pre-trained
models were used to compensate for the lack of labeled training data
held by an organization. Table 6 shows the training parameters used
to implement transfer learning approaches in this study.

6.2.1 Thermal-fusion palettes
The total number of frames in the training portion was 1,204,

of which 686 were of class “pile-fire” and 518 frames of class “pile-
no-fire.” All the frames were scrambled before being sent to the
network. Furthermore, data augmentation was performed using
different techniques before feeding the training samples into the
model. The initial learning rate was set to 0.0001, and the Adamax
optimizer was used to regulate weight and minimize the loss

TABLE 4 Accuracy for evaluation of the pile fire for white-hot palette classification (224 × 224).

Model name Size of
model (MB)

Dataset
type

Training
accuracy

Testing
accuracy

Precision Recall F1-
score

AUC

RF 49.67 White-Hot
Palettes

0.998 0.996 0.99 0.99 0.99 0.996

SVM – RBF
Kernel

200 White-Hot
Palettes

0.99 0.983 0.99 0.98 0.985 0.997

FIGURE 8
(A): Confusion matrix and (B) ROC-AUC curve RF algorithm applied on thermal heat map frames to detect fire piles (Best Model Performance).

Frontiers in Environmental Science frontiersin.org11

Joshi et al. 10.3389/fenvs.2024.1440396

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2024.1440396


function. In addition, a batch size of 50 was employed while
training the model. To test the performance and error loss of
the testing samples, 218 frames were fed into the pre-trained
networks, in which 100 frames were labeled as “pile-fire” and
118 frames as “pile-no-fire.” Five models were fine-tuned and

trained on the Thermal-Fusion Palette dataset. Among them,
Resnet50V2 performs better on test and train datasets of the
thermal-fusion palette. Table 7 shows the error-loss and
accuracies of multiple models. The classification “pile-fire versus
no-pile-fire” obtained 99.08% testing accuracy. Figures 10A, B
depict training versus validation loss and accuracy curves for
Resnet50V2 model.

6.2.2 White-hot palettes
The total number of frames in the training portion was

1,306 frames, out of which 914 frames were of class “pile-fire”
and 392 frames of class “pile-no-fire.” To test the performance
and loss of the testing samples, 214 frames were fed into the pre-
trained networks, in which 100 frames were labeled as “pile-fire”
and 114 frames as “pile-no-fire.” Five models were fine-tuned and
trained on the White-Hot Palette dataset. Among them,
InceptionV3 performs well on test and train datasets of the
white-hot palette. Table 8 shows the training and testing
accuracy, model weight, and model inference time on CPU
taken while training the model with Bflops and AUC score. In
inceptionv3, the researcher got a testing accuracy of around
99.86% for pile fire classification. Figures 11A, B depict
training versus validation loss and accuracy curves for the
InceptionV3 model.

TABLE 5 Accuracy for evaluation of the pile fire for green hot palettes classification (224 × 22).

Model name Size of
model (MB)

Dataset
type

Training
accuracy

Testing
accuracy

Precision Recall F1-
score

AUC

RF 49.67 Green-Hot
Palettes

0.998 0.958 0.96 0.96 0.96 0.997

SVM – RBF
Kernel

200 Green-Hot
Palettes

0.994 0.912 0.91 0.92 0.91 0.992

FIGURE 9
(A): Confusion matrix and (B) ROC-AUC curve RF algorithm applied on thermal heat map frames to detect fire piles (Best Model Performance).

TABLE 6 Training parameters of transfer learning neural networks.

Parameters Method

Epoch 5–50

Iteration per epoch 25

Steps per epoch 15

Weight decay 0.00004

Learning rate 0.001 > 0.0005 > 0.00025 > 0.000125

Learning rate decay 0.00001 (Iteration equal step size)

Loss Function binary_crossentropy

Activation Function Sigmoid

Optimizer Adamax

Batch size 50
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6.2.3 Green-hot palettes
The total number of frames in the training portion was 1,244, of

which 722 were of class “pile-fire” and 522 frames of class “pile-no-
fire.” To test the performance and loss of the testing samples,
218 frames were fed into the pre-trained networks, in which
118 frames were labeled as “pile-fire” and 100 frames as “pile-no-
fire.” Five models were fine-tuned and trained on the Green-Hot
Palette dataset. Among them, InceptionV3 performed better on a test
set of the green-hot palettes. Table 9 shows the accuracy, inference
CPU time, and flops while training and testing the model. In the
classification of “pile-fire versus no-pile-fire,” the researcher obtained
a testing accuracy of 99.89%. Figures 12A, B depict training versus
validation loss and accuracy curves for the InceptionV3 model.

6.2.4 Normal-spectrum palettes
The total number of frames in the training portion was 43,375, of

which 25,018 were of class “pile-fire” and 14,357 were class “pile-no-
fire.” To test the performance and loss of the testing samples,
12,343 frames were fed into the pre-trained networks, comprising
6,242 frames labeled as “pile-fire” and other 6,107 frames labeled as
“pile-no-fire.

Thus, three pre-trained models were fine-tuned and trained
on a normal-spectrum palette dataset. Among them,
VGG16 performs well on test and train datasets of a normal-
spectrum palette. The frames (data) collected from the
Matrice 200 drone and Zenmuse X4S camera were used to train
the model, while the frames collected from the Phantom drone

TABLE 7 Transfer learning enhances the performance of pile-fire classification for thermal fusion. (227 × 227).

Model
name

Size of
model (MB)

Inference
time (ms)

Training
accuracy

Testing
accuracy

Precision Recall F1-
score

AUC BFlops

AlexNet 233 539 0.8512 0.8303 0.9175 0.7542 0.8278 0.8086 0.0122

Inception
ResnetV2

92 42.2 0.9538 0.9700 0.9478 1.00 0.9732 0.9727 0.1322

InceptionV3 215 130.2 0.9728 0.9817 0.9914 0.9746 0.9829 0.9991 0.0567

VGG16 528 69.5 0.8945 0.9037 0.9145 0.9068 0.9106 0.9350 0.3069

Resnet50V2 98 45.6 0.9845 0.9908 0.9915 0.9915 0.9915 0.9946 0.0696

FIGURE 10
(A) Training loss vs. validation loss (B) training accuracy vs. validation accuracy for Resnet50V2 (best model performance).

TABLE 8 Transfer learning accuracy for evaluating pile fire classification for white hot palette (227 × 227).

Model
name

Size of
model (MB)

Inference
time (ms)

Training
accuracy

Testing
accuracy

Precision Recall F1-
score

Auc-
curve

BFlops

AlexNet 233 539 0.9478 0.9019 1.00 0.8158 0.8985 0.9578 0.0122

Inception
ResnetV2

92 42.2 0.9850 0.9950 1.00 0.9903 0.9945 1.00 0.1322

InceptionV3 215 130.2 0.9990 0.9986 1.00 1.00 1.00 1.00 0.0567
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were used to test the model. As a result, there is no overlap between
the training and validation samples. Table 10 shows the accuracy,
inference CPU time, and flops while training and testing the
model. The “pile-fire vs. no-pile-fire” classification attained a

testing accuracy of 77%. Figures 13A, B depict the error loss
and accuracy curve graphs generated during training and
testing for VGG-16. Figure 13C shows the confusion matrix of
the VGG-16 model for detecting fire piles.

FIGURE 11
(A) Training Loss Vs. Validation Loss (B) Training Accuracy for InceptionV3 model (Best Model Performance).

TABLE 9 Transfer learning accuracy for evaluating pile fire classification for a green hot palette (227 × 227).

Model
name

Size of
model (MB)

Infere nce
time (ms)

Training
accuracy

Testing
accuracy

Precision Recall F1-
score

Auc-
curve

BFlops

AlexNet 233 539 0.9622 0.9587 0.9473 0.9636 0.9553 0.9933 0.0122

Inception
ResnetV2

92 42.2 0.9688 0.9400 0.9645 0.9622 0.9633 0.9826 0.1322

InceptionV3 215 130.2 0.9930 0.9989 1.00 1.00 1.00 1.00 0.0567

VGG16 528 69.5 0.9487 0.9850 0.9787 0.9891 0.9838 0.9983 0.3069

Resnet50 V2 98 45.6 0.9396 0.9550 0.900 0.900 0.9473 1.00 0.0696

FIGURE 12
(A) Training Loss Vs. Validation Loss (B) Training Accuracy for InceptionV3 model (Best Model Performance).
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6.2.5 Optimization of normal–Spectrum model:
Transfer learning–Using pre-trained knowledge of
VGG- 16 for feature extraction and amalgamation
with ensemble learning algorithms

VGG-16 has a deep convolutional layered architecture and uses
a smaller kernel size, which reduces the trainable and non-trainable
parameters. The input layer for this model was ninety single-
dimensional feature vectors. In this study, the authors used a
VGG-16 with a single-dimensional kernel space in every

convolution layer, followed by a max-pooling layer to extract
boundary points of flame features from them. The ninety input
vectors as a one-batch and the single-dimensional VGG-16 can grab
boundary pixel values as feature vectors with the same weights in
each network. Table 11 shows the performance accuracies obtained
by amalgamating VGG-16 (feature-extractor) with ensemble
learning models. In this study, authors have used many ensemble
learning models for the amalgamation process with VGG16 and
XGBoost because they selected the optimum tree model. Proposed

TABLE 10 Transfer learning accuracy for evaluating pile fire classification for normal spectrum palette (227 × 227).

Model
name

Size of
model (MB)

Inference
time (ms)

Training
accuracy

Testing
accuracy

Precision Recall F1-
score

AUC BFlops

Inception V3 215 130.2 0.9792 0.7525 0.8117 0.5040 0.6218 0.7152 0.0567

VGG16 528 69.5 0.9364 0.7700 0.7186 0.7075 0.7130 0.7641 0.3069

Resnet50 V2 98 45.6 0.9312 0.7276 0.7811 0.4523 1.00 0.7320 0.0696

FIGURE 13
(A) Training Loss Vs. Validation Loss (B) Training Accuracy for VGG-16 model (C) Confusion-matrix of VGG16 model for normal spectrum palette
(Best Model Performance).
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classifiers used in voting were Logistic Regression, RF, and Naïve
Bayes. These types of classification algorithms can be beneficial for
balancing the unique shortcomings of a group of equally highly
performing models.

6.3 Discussion

This study aimed to assess the effectiveness of fine-tuning five pre-
trained convolutional architectures for classifying frames into two
classes: “Pile Fire” and “No-Pile-Fire”. The primary contribution of
this work lies in the systematic evaluation and identification of the
most suitable deep transfer learning models for each type of thermal
imagery, leading to highly accurate fire detection across diverse
environmental conditions. Following are the key contributions.

• Model-specific optimization: The study does a deep analysis of
the performance of different CNN models applied to various
types of thermal imagery. Of the rest, ResNet50V2 reached
99.08% on thermal fusion frames, AlexNet performed at
95.87% on green-hot frames, InceptionV3 reached 99.87%
on white-hot frames, while VGG16 did best with 77.37% on
the normal spectrum frame type. These results emphasize the
importance of appropriate architecture selection based on the
characteristics of the data.

• VGG16 as Feature Extractor: One of the novelties of this study
is to use VGG16 with one-dimensional kernel space in each
convolution layer, which could obtain boundary pixel values
of flame features effectively. This work shows that the ongoing
approach blended with max-pooling can be more informative
for fine-grained features required for accurate fire detection.

• Ensemble Learning Integration: t also tends to investigate the
combination of VGG16 with ensemble learning algorithms
such as XGBoost, Logistic Regression, Random Forest, and
Naïve Bayes. Such combinations tend to improve predictive
performance by cancelling out specific drawbacks of single
classifiers and thereby yielding a fire-detection system that is
robust in performance and based on the strengths of various
algorithms.

7 Conclusion

This study underscores the importance of model selection and
optimization in developing reliable fire detection systems, providing

a foundation for future research in enhancing disaster management
and environmental monitoring technologies. The FLAME dataset
includes thermal imagery processed by various filters to extract
information from an infrared image. In this study, two different
approaches were used for fire classifications using different image
modalities. In the first task, a standard machine learning approach,
such as binary pile fire classification, was used to label data and grasp
data insights. In the second method, researchers presented a transfer
learning strategy to execute the sharing of knowledge concepts,
which can result in a far more precise and efficient model. In this
study, for thermal fusion frames, ResNet50V2 exhibited the highest
accuracy of 99.08%; for green hot frames, InceptionV3 achieved the
highest accuracy of more than 99%; for white-hot frames,
InceptionV3 exhibited the highest accuracy of 99.87%; and lastly,
for normal spectrum frames, VGG16 achieved the highest accuracy
of 77.37%. Finally, to improve the performance of the normal-
spectrum vision model, we combined transfer learning with
ensemble learning to produce the most efficient model with an
accuracy of 91%. The scientific community can enhance the given
findings by building more advanced systems. Another potential
application for this collection is the development of fire detection
and segmentation algorithms, such as semantic segmentation or
instance segmentation, based on a collective study of several
imaging modalities, including conventional and thermal images
provided by the researcher. Instance segmentation can be used to
segregate pile burns, thermal heat, and forest, animals, and
human beings so that we can save them before any disaster
occurs in that location. Researchers may also use fire
segmentation approaches to identify associated networking
and monitoring challenges, such as optimum job scheduling
for a fleet of drones to cover pile burns in a certain location in
the least amount of time.
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