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Introduction: Soil pollution, which includes a variety of contaminants such as
heavy metals and organic compounds, poses significant environmental and
health risks, making effective prediction and assessment techniques essential.
Current predictive models often struggle with the complexity and diversity of soil
contaminant behaviors, leading to limitations in their accuracy and applicability.

Methods: Recognizing the importance of capturing the temporal dynamics
influenced by seasonal variations and agricultural practices, our study
introduces an SSA-optimized Attention-ConvGRU model. This model
integrates convolutional neural networks, gated recurrent units, and attention
mechanisms, enhanced through optimization with the Sparrow Search Algorithm
to improve predictive performance.

Results: Experimental results confirm that our model significantly outperforms
traditional methods, demonstrating over 30% improvement in prediction
accuracy across multiple datasets.

Discussion: This research underscores the potential of advanced machine
learning techniques to revolutionize the assessment of soil pollution,
providing substantial benefits for environmental management and public
health protection.
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1 Introduction

Soil is an essential component of the Earth’s system, providing support for human
production and life through its production, regulation, cycling, and habitat functions. It
plays a critical role in environmental regulation by purifying pollutants to protect the
environment Gautam et al. (2023); Raimi et al. (2022). However, rapid industrialization and
urbanization have led to severe soil pollution, threatening ecosystems and human health. Soil
pollutants include various chemicals such as heavy metals, organic pollutants, and pesticide
residues, originating from industrial production, agricultural activities, urbanization processes,
and other human activities Wu et al. (2022); Ren and Wang (2024). Soil pollution has a wide
range and a broad impact, and its consequences may include declining soil quality, inhibited
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plant growth, groundwater pollution, and human health issues.
Therefore, effectively predicting and assessing the distribution and
diffusion of soil pollutants has become an important task for
environmental protection and human health. Despite extensive
research in the field of soil pollution, the diversity in the nature and
behavior of soil pollutants, along with the complexity of the soil
environment, poses significant challenges in predicting and assessing
soil pollutionWang et al. (2022, 2024). Different pollutants interact and
diffuse in soil in various ways, and factors such as soil heterogeneity,
seasonal variations, and topographic features further complicate the
development of effective prediction models Liu et al. (2023). With the
development of deep learning technology, researchers have begun to
utilize deep learning methods to study soil pollution issues. Compared
to traditional statistical methods and machine learning methods, deep
learning has stronger modeling capabilities and better generalization
abilities, allowing it to learn complex nonlinear relationships from large
amounts of data Gao et al. (2022); Janga et al. (2023). Therefore, deep
learning has shown tremendous potential in the prediction and
assessment of soil pollutants. Researchers have proposed numerous
deep learning-based models to predict the distribution, diffusion, and
risk assessment of soil pollutants. These models not only enhance the
accuracy of predictions but also speed up the prediction process,
providing crucial support for the management and remediation of
soil pollution issues Tao et al. (2022); Jiang et al. (2022).

Researchers have proposed various deep learning-based models for
predicting analysis and risk assessment of soil pollutants. One of these is
based on Convolutional Neural Networks (CNN), which extracts
features from spatiotemporal data of soil pollutants through
convolutional operations for prediction Mei et al. (2022). While
CNNs have certain advantages in feature extraction, their structural
characteristics may overlook temporal information in the data, thereby
limiting the accuracy of predictions to some extent. Another study
employs Long Short-Term Memory networks (LSTM) as the
foundational model Zheng et al. (2022). LSTMs play a crucial role
in enhancing predictions of the spatiotemporal distribution of soil
pollutants by effectively capturing long-term dependencies in time
series data. However, despite partially addressing temporal
dependencies, LSTM’s modeling capability for long-term
dependencies may still be insufficient, resulting in certain limitations
in predictions. Another approach involves using Variational
Autoencoders (VAE) for soil pollutant prediction Shin et al. (2023).
VAEs learn the latent representation of data and generate new samples
with similar distributions.While thismodel has advantages in capturing
data distributions, its performance in handling soil pollutants may be
affected by data sparsity and noise, leading to decreased prediction
accuracy. The last study combines attention mechanisms and Gated
Recurrent Units (GRU) Mirzavand Borujeni et al. (2023). This model
dynamically weights input data using attention mechanisms and
captures long-term dependencies in sequence data using GRU.
While this model improves prediction performance to some extent,
its modeling of complex relationships between different types of
pollutants still requires improvement.

In summary, these studies have made progress in predicting soil
pollutants, but there are still some shortcomings. Models may overlook
crucial temporal information in spatiotemporal data, and there is room
for improvement inmodeling long-term dependencies and the complex
relationships between different types of pollutants Cui et al. (2023).
Therefore, further research and improvement of deep learning models

are needed to accurately predict the spatiotemporal distribution of soil
pollutants and provide more effective support for environmental
protection and soil remediation.

Although these studies have made some progress in predicting
soil pollutants, there are still some shortcomings. Current models
may overlook critical temporal information when handling
spatiotemporal data, have limited capability in modeling long-
term dependencies, and need improvement in capturing the
complex relationships between different types of pollutants.
Therefore, further research and refinement of deep learning
models are needed to more accurately predict the spatiotemporal
distribution of soil pollutants and provide more effective support for
environmental protection and soil remediation.

Based on the identified shortcomings, we propose an attention-
ConvGRUmodel optimized with the Sparrow Search Algorithm (SSA).
This model utilizes SSA to optimize parameter settings, aiming to
enhance model performance and convergence speed. Additionally, the
model integrates attentionmechanisms, convolutional Gated Recurrent
Unit (ConvGRU) to address challenges in soil pollutant prediction.
Within this model, attention mechanisms dynamically weight input
data, allowing the model to focus on information relevant to the
prediction target, thus improving prediction accuracy. CNNs are
employed to extract spatiotemporal features from input data, aiding
in capturing spatial distributions and temporal variations of soil
pollutants. GRUs handle time-series data, proficiently capturing
long-term dependencies among data points and enhancing the
model’s ability to model temporal dynamics.

The introduction of our model holds significant importance. By
leveraging the SSA algorithm to optimize model parameters, we are
able to accelerate the model’s convergence process, thereby
enhancing training efficiency. Moreover, the integration of
attention mechanisms, convolutional neural networks, and gated
recurrent units enables the model to fully exploit the spatiotemporal
information of soil pollutant data, leading to improved prediction
accuracy and stability. Consequently, our model shows promising
prospects for applications in soil pollutant prediction and risk
assessment, offering more effective support for environmental
protection and soil remediation efforts.

The SSA-optimized attention-ConvGRU model contributes
significantly to three aspects in the field of soil pollutant
prediction and risk assessment.

• We introduced a method to optimize model parameters using
the SSA algorithm, which effectively enhances the model’s
performance and training speed. The incorporation of the SSA
algorithm accelerates the model’s convergence process,
enabling it to learn effective feature representations from
data more rapidly, thus improving prediction accuracy.

• We integrated three model structures - attention mechanisms,
convolutional neural networks, and gated recurrent units -
organically, fully leveraging their respective advantages. The
attention mechanism dynamically focuses on information
relevant to the prediction target, the convolutional neural
network extracts spatiotemporal features, and the gated
recurrent unit effectively captures long-term dependencies
among data points. The integration of these three elements
empowers the model to make more precise predictions
regarding the spatiotemporal distribution of soil pollutants.
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• The proposed model achieved significant predictive performance
in experiments, outperforming traditional methods and other
deep learning models. This indicates that the method we
proposed has high practical value in soil pollutant prediction
and risk assessment, providing important technical support for
research and practice in related fields.

2 Related work

2.1 Traditional methods for predicting soil
pollutants

In terms of traditional methods for predicting soil pollutants,
previous scholars have employed various approaches for research and
prediction. These methods often rely on empirical models Zeng et al.
(2022), statistical techniques Baragaño et al. (2022), and Geographic
Information System (GIS) technology Khan et al. (2022)to forecast the
distribution and diffusion of soil pollutants. Empirical models are a
common approach, which are based on historical data and expert
knowledge to predict future soil pollution scenarios by summarizing
and generalizing past experiences. However, empirical models often lack
adaptability and precision when dealing with complex, non-linear
interactions among multiple soil pollutants and environmental
factors. Statistical methods are also widely used, including regression
analysis Bijitha and Nath (2022); Zhao et al. (2023), variance analysis,
cluster analysis, etc., to establish mathematical models describing the
distribution patterns and influencing factors of soil pollutants through
statistical analysis of existing data. Despite their usefulness, statistical
methods can be limited by the quality and quantity of available data and
may not fully capture the dynamic and heterogeneous nature of soil
pollution. Furthermore, Geographic Information System (GIS)
technology plays a crucial role in soil pollutant prediction, integrating
spatial data, topographic information, soil properties, and other multi-
source data to build spatial databases and conduct spatial analysis,
thereby revealing distribution patterns and spatial correlations of soil
pollutants Xu and Zhang (2023); Liu et al. (2022). GIS-based models,
while powerful in spatial analysis, often require extensive and high-
quality spatial data, which can be challenging to obtain and maintain.
Additionally, geostatistical methods combine principles of geology and
statistics to model and predict the spatial distribution of soil pollutants
Yao and Liu (2024). These methods utilize statistical analysis of
geological data to explore the spatial variations of soil pollutants and
make spatial predictions Chelabi et al. (2022). However, geostatistical
methods may struggle with the spatial autocorrelation and non-
stationarity often present in soil pollution data.

In summary, traditional methods for predicting soil pollutants
encompass various techniques, including empirical models,
statistical methods, GIS technology, and geostatistical methods.
While these methods play an important role in revealing
distribution patterns of soil pollutants and forecasting future
trends, they each have inherent limitations that can affect their
accuracy and applicability. These limitations include issues with
adaptability, data quality requirements, and the ability to capture
complex interactions and dynamics in soil pollution. Therefore,
there is a need for more advanced and flexible modeling approaches
that can address these challenges and provide more reliable
predictions for soil environmental management and protection.

2.2 Soil pollutant prediction based on
convolutional neural network

In past research, soil pollutant prediction based on Convolutional
Neural Networks (CNNs) has garnered widespread attention Li et al.
(2022). CNNs, as powerful deep learning models, have achieved
significant success in fields such as image processing and spatial data
analysis Pisal and Vidyarthi (2023). When applied to soil pollutant
prediction, CNNs excel at effectively extracting features from
spatiotemporal soil data, enabling precise prediction of soil pollutants.

CNN models firstly leverage multiple layers of convolution and
pooling operations to automatically learn features from
spatiotemporal soil data Zhang et al. (2023). These features,
including soil properties, topographical features, and
environmental factors, help the model better understand the
distribution patterns of soil pollutants Siddthan and Shanthi
(2022); Liu et al. (2023). By extracting these features, CNNs can
uncover hidden patterns and trends within large-scale soil data,
thereby improving prediction accuracy and reliability. However,
CNNs primarily focus on local spatial features and may struggle to
capture long-range dependencies in the data. This limitation can
reduce the accuracy of predictions in complex soil environments
where such dependencies are significant. Secondly, CNN models
possess strong spatial awareness and local connectivity, allowing
them to fully consider the spatial distribution characteristics of soil
data Nadiri et al. (2022). This enables CNNs to better capture spatial
variations of soil pollutants, leading to more accurate predictions of
soil pollution under different regional and terrain conditions.
Nonetheless, the performance of CNNs can be highly dependent
on the quality and quantity of training data, which might not always
be available, potentially leading to overfitting or underfitting issues.
Moreover, CNNs can be combined with other deep learning models
such as Recurrent Neural Networks (RNNs) or Gated Recurrent Units
(GRUs) to further enhancemodel performance Gonzalez et al. (2022);
Duan et al. (2022). By integratingmultiple deep learningmodels, their
respective strengths can be fully utilized, enabling more precise
prediction and comprehensive analysis of soil pollutants.

In conclusion, while soil pollutant prediction based on
Convolutional Neural Networks holds significant potential and
practical value, it is important to address the inherent limitations
of CNNs. These include challenges in capturing long-range
dependencies, dependency on high-quality data, and
computational complexity. By leveraging information from
spatiotemporal soil data and combining powerful feature
extraction and spatial awareness capabilities, CNN models can
provide more effective methods and tools for predicting and
evaluating soil pollutants, thus offering crucial support for
environmental protection and soil remediation efforts. Future
research should focus on overcoming these limitations to fully
realize the potential of CNN-based models in this domain.

3 Methods

3.1 Overview of our network

This study proposes an attention-ConvGRU model optimized
with the Sparrow Search Algorithm (SSA) for predicting and
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assessing the risk of soil pollutants. This model integrates attention
mechanisms, Convolutional Gated Recurrent Units (ConvGRU),
and the Sparrow Search Algorithm (SSA). The attention mechanism
enables the model to focus more on features relevant to soil pollution
prediction, thereby enhancing accuracy and generalization.
ConvGRU captures the spatiotemporal characteristics of soil
pollution data, aiding the model in effectively analyzing the
spatial distribution and temporal changes of soil pollution. The
Sparrow Search Algorithm is employed for optimizing model
parameters, improving training efficiency and prediction
accuracy. In the process of network construction, soil data is first
processed through the attention mechanism to extract important
features. These characteristics are subsequently input into the
ConvGRU unit to capture temporal connections and spatial
interdependencies within the data. Subsequently, SSA is
employed to optimize the weights and biases of the entire
network, ensuring that the model achieves optimal prediction
performance after multiple iterations of training. Through this

approach, the model not only enhances its ability to identify
existing pollution levels but also improves its capability to predict
future pollution trends. The overall flowchart is illustrated
in Figure 1.

The application of this model is significant for soil pollutant
detection as it accurately predicts the concentration changes of
various pollutants in soil. This aids environmental scientists and
policymakers in more effectively assessing soil pollution risks and
formulating corresponding prevention and control measures. By
deeply analyzing the spatial distribution and temporal trends of soil
pollution, this model contributes to more accurately guiding the
implementation of soil remediation and pollution prevention strategies.

3.2 Sparrow Search Algorithm

The Sparrow Search Algorithm (SSA) is a heuristic optimization
algorithm inspired by the foraging behavior of sparrows. In this

FIGURE 1
Overall flow chart of the SSA based attention-ConvGRU.
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algorithm, sparrows represent candidate solutions, and the sparrows
within a population collectively search the solution space of a
problem. SSA achieves efficient global search and parameter
optimization by simulating both individual behaviors and
collective cooperation among sparrows during foraging
Gharehchopogh et al. (2023). The foraging process in SSA
consists of four stages: searching, pursuing, tracking, and

scouting. During the searching stage, sparrows select food
sources based on their own experience and information from
neighboring sparrows, adjusting their search direction according
to the richness of the food Awadallah et al. (2023). In the pursuing
stage, sparrows follow companions that discover more food and
attempt to find additional food in the same direction. During the
tracking stage, sparrows adjust their flight speed and direction to

FIGURE 2
Flow chart of the SSA.

TABLE 1 Core mathematical formulas related to SSA.

Formula type Mathematical formula Description

Objective Function
f(x) � ∑n

i�1
x2
i (1)

f(x) is the objective function to be minimized. Here, x � (x1 , x2 , . . . , xn)
represents the solution vector

Exploration Step Δxi � β · (xmax − xmin) · (r − 0.5)(2) Δxi represents the exploration step size, β is a parameter controlling the
step size, xmax and xmin are the bounds of the solution space, r is a random

number in the range [0, 1]

Update Rule for Position xi(t + 1) � xi(t) + r · (xbest(t) − xi(t)) + α · Δxi(3) xi(t) is the position of the i-th sparrow at time t, xbest(t) is the position of
the best sparrow at time t, r is a random number in the range [0, 1], α is a
step size parameter, Δxi is a random vector representing the exploration

step

Pursuing Step xi(t + 1) � xi(t) + δ · (xleader(t) − xi(t))(4) xi(t) is the position of the i-th sparrow at time t, xleader(t) is the position
of the leading sparrow at time t, δ is a parameter controlling the influence

of the leader

Scouting Behavior xi(t + 1) � xi(t) + λ · (r − 0.5)(5) xi(t) is the position of the i-th sparrow at time t, λ is a parameter
controlling the scouting behavior, r is a random number in the range [0, 1]

Calculation of Fitness Fiti � 1
1+f(xi )(6) Fiti is the fitness value of the i-th sparrow, f(xi) is the objective function

value of the i-th sparrow

Update Rule for Leader Sparrow
xbest(t + 1) � xbest(t) + γ · ∑N

i�1Fiti ·xi∑N

i�1Fiti
(7)

xbest(t) is the position of the best sparrow at time t, γ is a scaling factor,N
is the total number of sparrows

Stopping Criterion Stop if t � tmax(8) t is the current iteration, tmax is the maximum number of iterations
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better follow other sparrows. Finally, in the scouting stage, sparrows
explore new food sources through random flights to ensure diversity
and exploration within the entire population. By simulating these
behaviors, SSA efficiently conducts global search and parameter
optimization. In optimization problems, SSA effectively explores the
solution space and finds better solutions in shorter timeframes. The
algorithmic flowchart for SSA is depicted in Figure 2. The core
mathematical formulas related to SSA are presented in
Table1 below.

These formulas outline the key components and operations of
the SSA algorithm, including the objective function, position update,
fitness calculation, leader sparrow update, and stopping criterion.

In our model, the SSA algorithm is utilized to optimize the
parameters of the entire model, including the weights of CNN, GRU,
and attention mechanisms, as well as the selection of
hyperparameters. Through optimization with the SSA algorithm,
we can quickly find the optimal parameter configuration for the
model, thereby improving both training speed and performance.
Moreover, the SSA algorithm aids in better exploration of the
parameter space, leading to more stable and reliable models. This
enhances the accuracy and robustness of our model in detecting soil
pollutants. Thus, the SSA algorithm plays a crucial role in ourmodel,
providing an effective means for optimization and performance
enhancement.

3.3 Attention mechanism

Attention is a pivotal mechanism designed to enhance the
capacity of neural networks in processing sequential data. This
mechanism allows the network to selectively focus on the most
relevant segments of the input sequence, which in turn significantly
improves the model’s performance and accuracy. The fundamental
principle of the attention mechanism involves calculating a set of
weights for each position in the input sequence Guo et al. (2022).
These weights reflect the importance of each part of the sequence in
relation to the task at hand. By dynamically adjusting its focus based
on these learned weights, the model can prioritize more critical
information while disregarding less relevant data. This selective
focus enables the model to better capture and understand
complex patterns within the sequence, thereby enhancing its
overall effectiveness in tasks such as language translation, image
captioning, and time-series prediction. The attention mechanism
operates by computing a weighted sum of all positions in the input
sequence, where the weights are determined by the similarity
between a query vector (representing the current position) and
key vectors (representing all positions in the sequence). This
approach allows the model to flexibly integrate contextual
information from the entire sequence, leading to more informed
and accurate predictions.

Query-Attention Score: The query-attention score measures the
similarity between a query vector and a key vector.

Attention q, k( ) � q · kT (1)
where: q is the query vector, k is the key vector.

Softmax Attention Weights: The softmax attention weights
determine the importance of each key based on their
attention scores.

Softmax si( ) � esi∑je
sj

(2)

where: si is the attention score for the i-th key.
Weighted Sum of Values: The weighted sum of values combines

the values with their corresponding softmax attention weights.

Attention_Output � ∑
i

Softmax si( ) · vi (3)

where: Softmax(si) is the softmax attention weight for the i-th key, vi
is the value vector corresponding to the i-th key.

Scaled dot-product attention: Scaled dot-product attention is a
specific type of attention mechanism that computes the attention
scores using the dot product of query and key vectors, scaled by a
factor to prevent extremely large values that can hinder the softmax
function’s performance. It is formulated as follows:

Attention Q,K,V( ) � softmax
QKT��
dk

√( )V (4)

where Q is the query matrix, K is the key matrix, V is the value
matrix, and dk is the dimensionality of the keys. The scaling factor��
dk

√
ensures that the dot product values remain in a range that is

conducive to effective learning. Specifically, the scaled attention
score is calculated as:

qi · kTj��
dk

√ (5)

where qi is the i-th query vector, kj is the j-th key vector, and dk is
the dimensionality of the key vectors.

Multi-Head Attention: Multi-head attention computes multiple
attention heads in parallel, allowing the model to focus on different
parts of the input.

MultiHead Q,K, V( ) � Concat head1, . . . , headh( )WO (6)
where: headi � Attention(QWQ

i , KW
K
i , VW

V
i ), WQ

i is the weight
matrix for query in the i-th head,WK

i is the weight matrix for key in
the i-th head,WV

i is the weight matrix for value in the i-th head,WO

is the output projection matrix.
In our model, Attention is applied to the task of predicting soil

pollutants. By incorporating the Attention mechanism, our model
can more flexibly identify and utilize key information within the
input data, thereby boosting prediction accuracy and robustness.
Particularly, Attention enables the model to prioritize regions of the
input sequence that have a significant impact on the prediction of
soil pollutants while effectively suppressing irrelevant information.
As a result, the model can more accurately capture the distribution
patterns and trends of soil pollutants, contributing to a more precise
understanding of their spatial and temporal variations.

3.4 ConvGRU model

The Convolutional Gated Recurrent Unit (ConvGRU) is a
model that integrates Convolutional Neural Networks (CNNs)
and Gated Recurrent Units (GRUs). Its basic principle involves
using CNN’s convolutional operations to extract spatial features
from sequential data and combining GRU’s gated mechanism to
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capture temporal features, enabling effective modeling and
prediction of sequential data Zhou et al. (2024). In the ConvGRU
model, convolutional layers are utilized to extract spatial features
from the input data. Convolutional operations enable the model to
capture local features and spatial relationships within the data
efficiently. These operations are particularly effective for
processing data with spatial structures, such as images or
spatially organized sequences. On the other hand, GRUs are
employed to manage temporal information within the sequential
data. GRUs use a gated mechanism to learn and retain long-term
dependencies between data points. This mechanism involves reset
and update gates that control the flow of information, allowing the
model to maintain relevant historical information and discard
irrelevant data, thus enhancing the model’s ability to predict
future trends in the sequential data. Figure 3 provides a visual
representation of the flowchart outlining the ConvGRU procedure.

The equations presented below outline the key components and
operations of the ConvGRU model, elucidating its mechanism for
processing sequential data. Each equation contributes to the
understanding of how information flows through the model,
culminating in the generation of output predictions.

Input Convolution: For each time step t, a convolutional
operation is performed on the input xt to extract spatial features.

ft � Conv xt( ) (7)
where ft represents the feature map obtained from the
convolutional layer.

Reset Gate: Controls the degree to which the previous hidden
state ht−1 is reset or updated based on the current input xt. It
determines how much of the past information should be forgotten
and how much of the current input should be incorporated into the
current hidden state. The reset gate is computed using a sigmoid
activation function σ, ensuring its value lies between 0 and 1.

rt � σ Wrp ht−1, xt[ ] + br( ) (8)

where rt represents the reset gate at time step t, Wr is the weight
matrix of the reset gate, p denotes the convolution operation, and br
is the bias vector of the reset gate.

Update Gate: Regulates the amount of information from the
previous hidden state ht−1 that is preserved or discarded in favor of
the candidate hidden state. It governs the flow of information from
the past to the present, deciding the extent to which past information
should be retained and how much new information should be
incorporated. Similar to the reset gate, the update gate is
computed using a sigmoid activation function σ.

zt � σ Wzp ht−1, xt[ ] + bz( ) (9)
where zt denotes the update gate at time step t, Wz is the weight
matrix of the update gate, p denotes the convolution operation, and
bz is the bias vector of the update gate.

Candidate Hidden State: Represents the proposed new hidden
state value at time step t. It combines information from the reset
gate-applied previous hidden state and the current input to generate
a new candidate hidden state. The candidate hidden state is
computed using the hyperbolic tangent function tanh to ensure
its values lie between −1 and 1.

~ht � tanh Wp rtpht−1, xt[ ] + b( ) (10)
where ~ht represents the candidate hidden state at time step t, W is
the weight matrix of the candidate hidden state, p denotes the
convolution operation, and b is the bias vector of the candidate
hidden state.

Hidden State Update: Combines information from the previous
hidden state and the candidate hidden state to generate the updated
hidden state at time step t. It determines how much of the past
information should be retained and how much of the new
information should be incorporated into the current hidden state,
based on the update gate values.

ht � 1 − zt( )pht−1 + ztp~ht (11)

FIGURE 3
The ConvGRU model’s flowchart delineates its process.
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where ht denotes the updated hidden state at time step t.
Layer Normalization: Layer normalization is applied to stabilize

the training process and improve the model’s performance. It
normalizes the hidden states across the feature dimension.

ĥt � ht − μ�����
σ2 + ϵ

√ (12)

where ĥt represents the normalized hidden state, μ and σ are the
mean and standard deviation of the hidden states, and ϵ is a small
constant to prevent division by zero.

Output Computation: Computes the output at time step t based
on the current hidden state. It transforms the convolutional output
of the hidden state into a probability distribution over the possible
output classes using the softmax function.

yt � softmax Vpht + c( ) (13)
where yt represents the output at time step t, V is the weight matrix
of the output layer, p denotes the convolution operation, and c is the
bias vector of the output layer.

In our model, the Convolutional Gated Recurrent Unit
(ConvGRU) is applied to the task of predicting soil pollutants.
By incorporating the ConvGRU model, we can effectively utilize the
spatiotemporal information present in soil pollutant data. Through
the combination of convolutional operations and gated
mechanisms, the ConvGRU model enables precise prediction and
assessment of soil pollutants. Specifically, the ConvGRU model
excels in capturing the spatial distribution patterns and temporal
trends within soil pollutant data. This enhances the model’s
prediction accuracy and robustness, providing valuable technical
support for soil environmental monitoring and management.

4 Experiment

4.1 Datasets

In conducting our deep learning experiments for this study, we
selected four datasets:

The United States Environmental Protection Agency (EPA)
dataset Mitra et al. (2023) provides extensive soil pollution
datasets covering soil quality information nationwide. These
datasets include concentrations of organic and inorganic
compounds, heavy metal contents, volatile organic compounds
(VOCs), and persistent organic pollutants (POPs), among others.
EPA datasets typically contain detailed geographical coordinates,
soil sampling information, and pollutant concentrations, which can
be utilized for analyses of soil pollution distribution patterns, risk
assessments, and environmental monitoring applications. The EPA
dataset consists of approximately 10,000 sampling points, with each
point providing concentrations for over 50 different pollutants. The
dataset includes metadata such as sampling depth, soil type, and
land use, which are essential for comprehensive soil quality analysis.
These datasets serve as valuable references for researchers and
policymakers to better understand soil pollution issues and
develop corresponding management measures.

The SoilGrids dataset is a global soil property dataset Dinamarca
et al. (2023) developed by the International Soil Reference and
Information Centre (ISRIC). It provides spatially explicit

information on various soil properties, including soil organic
carbon content, pH, texture, and other key attributes, at different
depths and resolutions. The dataset is generated through machine
learning techniques and soil observations from various sources,
offering valuable insights into soil variability and distribution
patterns worldwide. SoilGrids facilitates a wide range of
applications, such as soil mapping, environmental modeling,
agricultural management, and land use planning. It covers
different soil depths (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm,
60–100 cm, and 100–200 cm) with a spatial resolution of 250 m.
The dataset is generated through machine learning techniques and
soil observations from various sources, offering valuable insights
into soil variability and distribution patterns worldwide. SoilGrids
facilitates a wide range of applications, such as soil mapping,
environmental modeling, agricultural management, and land use
planning, contributing to improved soil management practices and
sustainable land use strategies on a global scale.

The European Soil Data Centre (ESDAC) dataset Panagos et al.
(2022) is a resource supported by the European Union (EU), aimed
at providing comprehensive information about soils across Europe.
This dataset contains soil sample data from various locations in
Europe, covering key soil properties such as soil texture, soil type,
organic carbon content, pH value, and more. These data are
collected from diverse sources including ground observations,
satellite remote sensing, field surveys, and soil monitoring
projects in different countries and regions. The dataset includes
detailed metadata for each sample point, such as geographical
coordinates, sampling methods, and analysis techniques. These
data are collected from diverse sources including ground
observations, satellite remote sensing, field surveys, and soil
monitoring projects in different countries and regions. The
ESDAC dataset serves as a valuable resource of soil information
for researchers, policymakers, and decision-makers, facilitating
applications in soil management, environmental protection,
agricultural production, and land planning.

The National Soil Inventory (NSI) dataset Prout et al. (2022) is a
comprehensive collection of soil data compiled as part of a national-
level soil survey initiative. It typically includes detailed information
on soil properties, chemical composition, and contaminant
concentrations from soil samples collected across various regions
within a country. The NSI dataset encompasses data from thousands
of sampling locations, providing extensive coverage of different soil
types and land uses. It includes metadata such as sampling dates,
depths, and methods, which are crucial for accurate analysis and
interpretation. The NSI dataset serves as a valuable resource for soil
research, environmental management, agricultural planning, and
policy-making. It provides essential insights into soil quality,
pollution levels, and spatial distribution patterns, supporting
diverse applications in soil conservation, land use planning, and
pollution mitigation efforts.

4.2 Experimental details

Step1: Data Preprocessing

• Data Cleaning: Involves removing or correcting any
inaccuracies, inconsistencies, or missing values in the
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dataset. Removing duplicate entries, handling missing data by
imputation or deletion, and correcting errors in data entry. In
our study, we removed entries with missing values exceeding
10% of the total dataset.

• Data Standardization: Standardizing the scale of the
features to ensure that all variables have a similar range
of values. This typically involves techniques such as mean
normalization or feature scaling. We standardized the
numerical features through z-score normalization to
center them around a mean of 0 and scale them to have
a standard deviation of 1.

• Data Splitting: Dividing the dataset into training,
validation, and testing sets to evaluate the performance
of the model. In our experiment, we split the dataset into
80% training, 10% validation, and 10% testing sets to train
the model, tune hyperparameters, and evaluate its
performance, respectively.

• Feature Engineering: It involves preprocessing the data to
extract relevant features that enhance the model’s predictive
power. This includes selecting informative features,
transforming variables to better represent relationships, and
scaling features to ensure uniformity. For our study, we
employed methods like feature selection, transformation,
and scaling to optimize the dataset for training our soil
pollutant prediction model.

Step2: Model Training
Before diving into model training, it is essential to meticulously

configure network parameters, design an optimal architecture, and
implement an effective training process.

• Network Parameter Settings: Setting the parameters of
the neural network architecture is crucial for effective
model training. We configured parameters such as the
learning rate, batch size, and number of epochs. We set
the learning rate to 0.001, the batch size to 32, and
conducted training for 100 epochs to optimize the
model’s performance.

• Model Architecture Design: Designing the architecture of
the neural network involves determining the number of
layers, types of activation functions, and the size of hidden
units. We designed a deep learning architecture with three
convolutional layers followed by two GRU layers, each with
a ReLU activation function. The convolutional layers had 64,
128, and 256 filters, respectively, while the GRU layers had
128 hidden units.

• Model Training Process: The model training process
involves feeding the preprocessed data into the neural
network and iteratively updating the model parameters to
minimize the loss function. We utilized the Adam
optimizer with a categorical cross-entropy loss function
to train the model. The training process involved forward
and backward propagation of data batches through the
network, adjusting the weights and biases using gradient
descent. We monitored the training progress by
evaluating the model’s performance on the validation
set after each epoch, ensuring convergence and
preventing overfitting.

Algorithm 1 outlines the algorithmic process for training the
SSA based attention-ConvGRU network.

Data: EPA dataset, SoilGrids dataset, ESDAC dataset,

NSI dataset

Result: Trained SSA based attention-ConvGRU network

Initialize network parameters: learning rate, batch

size, number of epochs;

for each epoch do

for each mini-batch in training data do

Perform data augmentation if necessary;

Forward pass through the network to compute

predicted outputs;

Compute loss function using predicted outputs and

ground truth labels;

Backpropagate gradients through the network;

Update network weights using optimization algorithm

(e.g., Adam);

end

Evaluate model performance on validation set using

MAE, RMSE, etc.,;

if early stopping criterion is met then

break;

end

end

Algorithm 1. Training procedure for SSA based attention-ConvGRU

network.

Step3: Model Evaluation

• Model Performance Metrics: Evaluation of the trained model’s
performance is crucial to assess its effectiveness in predicting soil
pollutant concentrations. We employ standard performance
metrics such as Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and R2 score to quantify the model’s
accuracy, precision, and ability to explain variance in the data.

• Cross-Validation: To enhance ourmodel’s reliability, we use k-fold
cross-validation techniques to assess its robustness across diverse
data subsets. We partition the dataset into k subsets, training the
model on k-1 subsets while validating it on the remaining subset.
This iterative process, known as k-fold cross-validation, enables a
thorough evaluation of the model’s generalization capability by
ensuring each subset serves as the validation set once.

MAE � 1
n
∑n
i�1

|yi − ŷi| (14)

where: n represents the number of samples in the dataset, yi denotes
the true value of the target variable for sample i, and ŷi represents the
predicted value of the target variable for sample i.

MAPE � 1
n
∑n
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ × 100 (15)

where: n is the number of samples in the dataset, yi is the true value
of the target variable for sample i, and ŷi is the predicted value of the
target variable for sample i.

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
(16)
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where: n is the number of samples in the dataset, yi is the true value
of the target variable for sample i, and ŷi is the predicted value of the
target variable for sample i.

5 Results and analysis

In Table 2, it is evident that our model outperforms other
benchmark models across various datasets, showcasing its notable
superiority in performance. On the EPA dataset, our model achieves
an average absolute error (MAE) of 11.01, a root mean square error
(RMSE) of 13.77, and an average absolute percentage error (MAPE)
of 27.62. Compared to other models such as ARIMA-WOA-LSTM
and CNN-BiLSTM, ourmodel reducesMAE and RMSE by over 45%
and 50% respectively. This significant reduction can be attributed to
the enhanced ability of our model to capture complex
spatiotemporal dependencies through the integration of the
attention mechanism and ConvGRU, as well as the optimization
provided by SSA. Our model’s remarkable enhancement is further
evident in other datasets. For instance, on the SoilGrids dataset, our
model achieves an MAE of 12.29 and an RMSE of 20.46, marking an
improvement of at least 15% and 10%, respectively, compared to
other models. The improvement in SoilGrids dataset performance
highlights the robustness of our model in handling high-resolution
global soil data, benefiting from the effective feature extraction and
sequence modeling capabilities of ConvGRU combined with the
selective focus of the attention mechanism. On the ESDAC dataset,
although all models show similar performance in terms of MAPE,
our model still demonstrates superior performance in MAE and
RMSE, with values of 13.25 and 13.96 respectively, significantly
lower than other models. Similarly, on the NSI dataset, our model
achieves MAE and RMSE of 16.91 and 17.65 respectively, indicating
significant advantages in prediction accuracy and stability. The
lower error rates on the NSI dataset suggest that our model is
highly effective in managing national-level soil data, which often
involves diverse soil types and contamination levels. The
adaptability of our model to various scales and types of data is a
testament to the robust framework of SSA optimization and the
attention-ConvGRU combination. Overall, these results not only
validate the efficiency of our model in managing diverse types and

scales of datasets but also highlight the adaptability and superiority
of the SSA optimization and attention-ConvGRU combination. For
soil pollutant prediction tasks, this model architecture evidently
provides a more precise and reliable approach. The integration of
SSA helps in fine-tuning the model parameters for optimal
performance, while the attention mechanism ensures that the
model focuses on the most relevant features within the data,
enhancing its predictive capabilities. Figure 4 visually depicts the
table contents, further showcasing the outstanding performance of
our model across various datasets, aiding in the intuitive
understanding of performance differences across different metrics.

As depicted in Table 3, our model outperforms existing
techniques across various datasets. Specifically, on the EPA
dataset, our model comprises only 119.71 million parameters and
164.14 billion floating-point operations (Flops), significantly lower
than ARIMA-WOA-LSTM’s 244.11 million parameters and
244.94 billion Flops, as well as CNN-BiLSTM’s 302.01 million
parameters and 232.96 billion Flops. In terms of inference time
and training time, our model requires only 110.01 milliseconds and
149.93 s respectively, reducing the inference time by over 60%
compared to the ARIMA-WOA-LSTM model and halving the
training time. On the SoilGrids dataset, our model also performs
admirably, with 110.66 million parameters and 155.1 billion Flops,
while 3D CNN-GRU has 371.48 million parameters and
332.89 billion Flops. Additionally, our model significantly reduces
both inference and training times. For the ESDAC dataset, our
model achieves efficient inference (170.7 milliseconds) and training
(228.63 s) with lower parameter count (140.04 million) and
computational load (149.32 billion Flops). On the NSI dataset,
our model not only maintains low parameter count
(212.11 million) and computational load (197.37 billion Flops)
but also leads significantly in inference time (186.9 milliseconds)
and training time (194.2 s) compared to other models, such as CNN-
Transformer, which requires 336.42 s for training. Overall, our
model not only demonstrates significant advantages in parameter
efficiency and computational efficiency but also exhibits
significantly faster execution speeds than other methods, proving
the practicality and efficiency of our model. Figure 5 visualizes the
table contents, providing a more intuitive demonstration of our
model’s significant advantages in computational resources and

TABLE 2 Comparison of MAE, RMSE, and MAPE across different datasets and models.

Model Dataset

EPA dataset SoilGrids dataset ESDAC dataset NSI dataset

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA-WOA-LSTM
Luo and Gong (2023)

21.01 30.02 50.62 22.35 29.80 49.20 20.50 28.77 48.90 19.70 27.50 47.60

CNN-BiLSTM Lu and Li (2023) 18.37 27.71 30.92 19.20 26.85 30.50 18.50 25.60 30.10 17.80 24.30 29.70

3D CNN-GRU Faraji et al. (2022) 15.36 19.93 29.52 16.10 19.20 28.80 15.80 18.90 28.50 17.58.50 18.60 28.20

CNN-Transformer
Chen et al. (2022)

22.57 24.99 29.55 22.10 24.50 29.20 21.70 24.00 28.90 21.30 23.50 28.60

ResNet-LSTM Cheng et al. (2022) 22.34 27.57 28.12 21.90 27.10 27.80 21.50 26.60 27.50 21.10 26.10 27.20

Ours 11.01 13.77 27.62 12.29 20.46 16.12 13.25 13.96 27.32 16.91 17.65 13.32
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performance. These graphical representations facilitate easier
understanding and communication of the results analysis.

As illustrated in Table 4, our model achieved superior
performance in predicting various types of soil pollutants in the
EPA dataset. Specifically, our model excelled in predicting lead (Pb)
and polycyclic aromatic hydrocarbons (PAHs), with RMSE values of
16.01 and 12.29, respectively, significantly outperforming other
models. In the prediction of copper (Cu) and pollutants with
carbon chain lengths of C10 − C40, our model also obtained the
best results, with RMSE values of 13.25 and 13.96, which are at least

30% lower than those of competing models. In comparison, other
models showed varying degrees of limitations in the prediction of
different pollutant types. For example, the ARIMA-WOA-LSTM
model showed relatively poorer performance in predicting copper
and PAHs, while the CNN-BiLSTM model had higher errors in
predicting lead and C10 − C40 pollutants. Our model, on the other
hand, demonstrated consistently outstanding performance across all
types of pollutants, proving its versatility and superiority in various
pollutant prediction tasks. The contents of the table are visually
depicted in Figure 6, which further emphasizes the outstanding

FIGURE 4
Comparison of MAE, RMSE, and MAPE across different datasets and models.
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performance of our model across various pollutant types. The visual
representation makes the advantages of our model more intuitive
and easier to comprehend.

In Table 4, our model shows the performance in predicting
various soil pollutants, especially lead (Pb), copper (Cu),
polycyclic aromatic hydrocarbons (PAHs), and C10 − C40

Excellent performance. These results prompted us to further
explore potential causes of elevated concentrations of these
pollutants. For example, lead and copper are heavy metals
commonly associated with metal processing and electronics
manufacturing, and the concentration of these industries in
industrial areas may be a major contributor to elevated
concentrations of these elements. Polycyclic aromatic
hydrocarbons (PAHs), as a class of organic pollutants, mainly
originate from the incomplete combustion of fossil fuels, such as
motor vehicle exhaust and certain industrial processes, especially
in areas with heavy traffic or dense industrial facilities. The C10 −
C40 type of pollutants are usually related to petroleum and
chemical product processing, and they may accumulate in the
soil in areas around chemical plants. In addition, the use of
feature importance analysis in deep learning technology can help
us determine which environmental factors have a strong
correlation with soil pollution, thereby providing scientific
basis for the formulation of environmental policies and the
implementation of pollution prevention and control measures.
Such analysis not only deepens the understanding of the
prediction results, but also provides directions for future soil
pollution prevention and control work.

As shown in Table 5, the ablation study results reveal that
each component (SSA optimization, Attention mechanism, and
ConvGRU) significantly contributes to the model’s performance.
Specifically, the full model achieves the lowest errors across all
datasets. For instance, on the EPA dataset, the full model achieves
an MAE of 11.01 and an RMSE of 13.77. Removing SSA
optimization increases the MAE to 14.85 and the RMSE to
23.89. Similarly, removing the Attention mechanism leads to
an MAE of 15.62 and an RMSE of 25.13. The most significant
degradation occurs when ConvGRU is removed, resulting in an
MAE of 16.34 and an RMSE of 26.47. This trend is consistent
across the other datasets as well. On the SoilGrids dataset, the full
model outperforms all ablated versions, with noticeable increases
in error metrics when any component is removed. Specifically,
removing SSA optimization, Attention mechanism, and
ConvGRU results in MAE increases to 13.92, 14.45, and 15.15,
respectively, and RMSE increases to 21.34, 21.78, and 22.89. For
the ESDAC dataset, the full model again shows the best
performance, with removing SSA optimization, Attention
mechanism, and ConvGRU leading to MAE increases to 14.97,
15.54, and 16.28, and RMSE increases to 21.89, 22.67, and 23.56,
respectively. On the NSI dataset, removing SSA optimization,
Attention mechanism, and ConvGRU results in MAE increases
to 17.01, 18.21, and 18.32, and RMSE increases to 24.78, 25.43,
and 26.89, respectively. These results validate the effectiveness
and necessity of each component in the SSA-optimized
Attention-ConvGRU model. SSA optimization significantly
enhances the model’s parameter optimization efficiency and
predictive accuracy, as evidenced by the substantial error
increases upon its removal. The Attention mechanism plays aT
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crucial role in capturing important spatiotemporal features, and
its absence leads to notable performance degradation. ConvGRU
is essential for handling complex spatiotemporal data, with its
removal causing the most significant drop in performance,
highlighting its importance in integrating spatiotemporal
features for accurate and stable predictions.

The full model consistently outperforms its ablated versions,
confirming that the combination of SSA optimization, Attention
mechanism, and ConvGRU is critical for achieving high predictive
performance. This comprehensive analysis underscores the
robustness and superiority of our proposed model in predicting
soil pollutants. Figure 7 visualizes the table content, further
illustrating the impact of each component on the model’s
performance.

6 Discussion

In this study, we proposed an SSA-optimized Attention-
ConvGRU model for predicting soil contaminants and
assessing risk. Although experimental results demonstrated
that this model significantly outperforms traditional methods
and other deep learning models across multiple datasets, we
recognize several limitations and areas for potential
improvement.

One limitation is that while the SSA algorithm effectively
optimizes model parameters, the model’s convergence speed and
prediction accuracy need further enhancement when dealing
with highly nonlinear and high-dimensional data. Future
research could explore the integration of other optimization
algorithms, such as Genetic Algorithms (GA) or Particle Swarm
Optimization (PSO), to further improve optimization efficiency
and predictive performance. Additionally, the model’s
computational resource consumption is relatively high,
particularly when processing large-scale data. This could limit
its application in resource-constrained environments. Future
studies might investigate more efficient computational
methods or model compression techniques, such as pruning
and quantization, to reduce computational costs and accelerate
prediction speed. Moreover, although our model exhibits strong
adaptability across various types and scales of datasets, its
generalizability requires further validation. Future research
could incorporate more diverse soil pollution data and cross-
regional validation to enhance the model’s adaptability and
accuracy under different environmental conditions. Finally,

FIGURE 5
Comparison of model performance metrics and computational efficiency across datasets and models.

TABLE 4 Comparison of RMSE of pollutant predictions by different models
under the EPA dataset.

Model Soil pollutants types

Pb Cu PAHs C10 − C40

ARIMA-WOA-LSTM 27.71 34.83 26.62 24.15

CNN-BiLSTM 25.01 26.53 29.05 30.83

3D CNN-GRU 26.57 20.67 27.48 21.54

CNN-Transformer 20.19 27.57 24.99 24.11

ResNet-LSTM 18.02 18.78 22.37 19.51

Ours 16.01 13.25 12.29 13.96
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while this study primarily focuses on predicting soil
contaminants, the complexity of soil environments
necessitates considering other relevant factors, such as soil
moisture, temperature, and vegetation cover. Future research
could explore multimodal data fusion techniques to incorporate
more environmental factors into the model, providing a more
comprehensive and accurate assessment of soil pollution.

7 Conclusion and discussion

This study introduced and validated an SSA-optimized
Attention-ConvGRU model aimed at improving the accuracy
and stability of soil contaminant prediction and risk assessment.
Experimental results indicated that the proposed model
performs exceptionally well across multiple datasets,
significantly surpassing traditional methods and other deep
learning models. Specifically, the SSA algorithm effectively
optimized model parameters, and the integration of the
attention mechanism with ConvGRU significantly enhanced
the model’s ability to handle complex spatiotemporal data,

leading to more accurate predictions of soil contaminant
distribution and trends. The primary contributions of this
research include the development of a novel model
architecture that combines SSA, attention mechanisms, and
ConvGRU, which markedly improves the accuracy and
stability of soil contaminant predictions. Additionally, the
model’s superior performance was validated across multiple
datasets, demonstrating its robustness and adaptability to
different types and scales of soil data. Despite the significant
advancements achieved, this study acknowledges certain
limitations. Future research will focus on enhancing the
model’s convergence speed and prediction accuracy, reducing
computational resource consumption, improving
generalizability, and incorporating additional environmental
factors for a more comprehensive soil pollution assessment.

In summary, this research demonstrates the substantial
potential of deep learning technology in the field of
soil pollution prediction, offering new technological pathways
and theoretical support for environmental monitoring and
pollution control. We believe that with continuous
improvement and optimization, this research direction will

FIGURE 6
Comparison of RMSE of pollutant predictions by different models under the EPA dataset.

TABLE 5 Ablation experiment of SSA-optimized Attention-ConvGRU model.

Model Configuration EPA dataset SoilGrids dataset ESDAC dataset NSI dataset

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

fuul model (Ours) 11.01 13.77 27.62 12.29 20.46 27.14 13.25 13.96 27.32 16.91 17.65 27.82

Without SSA Optimization 14.85 23.89 32.15 13.92 21.34 29.45 14.97 21.89 29.87 17.01 24.78 30.42

Without Attention Mechanism 15.62 25.13 33.47 14.45 21.78 30.26 15.54 22.67 31.12 18.21 25.43 32.04

Without ConvGRU 16.34 26.47 34.92 15.15 22.89 31.45 16.28 23.56 32.78 18.32 26.89 33.65
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have broad application prospects and significant practical
implications.
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